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14.1 Introduction

The depletion of fossil fuels has created an urgent demand for alter-
native energy supplies. Inexhaustible energy sources for example the
sun and wind are considered possible options. As a result of the
exhaustion of fossil fuels, there is a pressing need for alternate energy
technologies. Renewable energy sources like solar and wind are being
considered as possible alternatives, to store these energies batteries are
playing an important role as a source of storage device. Research on
pure energy sources like solar, wind, and hydro has begun, however,
the most important drawback in creating smart use of this energy is the
correct current storage thanks to the sporadic nature of those sources of
energy. This requires the efficacious energy storage technologies of bat-
teries and supercapacitors [1,2].

Ionic liquids (ILs) are salts dissolved in water in a convincing situation,
the term is limited to salts with melting points below certain tempera-
tures, such as 100�C (212�F). Lack of electrical charge molecules is distin-
guished from ions by their making up the majority of ordinary liquids
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like water and gasoline, whereas ions make up the majority of ILs. Liquid
electrolytes, ILs, molten salts, liquid salts, ionic fusions, and ionic glasses
are some of the terms used to describe these materials [3,4].

IL is used in many aspects of energy storage and conversions, as well
as clean and sustainable energy, are in high demand. Lithium batteries
and fuel cells, for example, have already made a substantial impact in
this area.

Extensive research supports the development of innovative materials
for these devices. Carbonate electrolytes are used in lithium-ion batter-
ies (LIBs), making them the most energetic rechargeable battery. A com-
prehensive and active research program has been undertaken to
develop new materials for use in these devices. For example, LIBs used
carbonate-based electrodes, which resulted in higher energy densities in
the development of secondary batteries.

However, these volatile organic compounds (VOCs) can create safety
concerns when using LIBs in high-energy applications for example in
electric means of transport or power grid network. In addition, side
reactions, the solubility of the electro-active components, and the sol-
vent volatility make conventional electrolytes in the form of carbonates
unsuitable for use in non-LIBs for example lithium-sulfur and lithium-
oxygen batteries. Rapid water evaporation and the associated reduction
in proton conductivity proton-conducting films, mainly Nafion-R, limit
the use of fuel cells above 100�C.

When studying chemistry, ILs opened up a new era of matter. ILs
have also had a major impact on the chemical, pharmaceutical, biotech-
nology, and energy industries as well as gas processing, processing, and
recycling.

In the field of materials chemistry, ILs are a relatively recent study
topic. Chemical processing, medicines, biotechnology, energy, gas man-
agement, and material processing have all benefited from the usage of
ILs [5,6]. A battery’s LIBs and supercapacitors use ILs as alternate
electrolytes because of these advantages [7,8].

14.2 Classification of ionic liquids based on their chemical
structure

ILs are divided into different classes based on their chemical struc-
ture. One of the most important classes of ILs, ILs contain non-proton
and proton ions [9]. The characteristics of aprotic ionic liquids (AILs)
and polymeric ionic liquids (PILs) are similar, but the most significant
distinction between the two types of ILs is the presence of “accessible”
(or free) protons on the PIL cation. PILs (protic and aprotic ILs) are two
of the most significant types of ILs with applications (Fig. 14.1).
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14.2.1 Protic ionic liquids as electrolytes for lithium-ion battery

PILs are a kind of IL that is created by transferring protons from
Bronsted acid for regeneration. Because of the “free” proton they have,
they have several intriguing characteristics (e.g., hydrogen bond). Pure
PILs or PIL mixes with acetonitrile or water have been proposed as
super-capacitor electrolytes. Due to the “free” proton they have, they
have several interesting characteristics (e.g., a hydrogen bond). Pure
PILs or mixtures of PILs with acetonitrile or water have been proposed
as electrolytes of supercapacitors. A study of proton conductivity of
PIL-based polymers was also conducted in the context of its application
in fuel cells [10]. Little attention has been made to the use of PIL as an
electrolyte solvent in LIBs. As a result, PIL is much cheaper than aprotic
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PIL. (B) Applications of ionic liquids in various fields.

36714.2 Classification of ionic liquids based on their chemical structure

4. Electronic applications



IL, is easier to manufacture, and is environmentally friendly, so it has
the potential to be used in LIBs [11]. Gel polymer electrolytes (GPEs)
are the blends of organic solvents with inorganic salts, like ethylene car-
bonate/ propylene carbonate/ sodium iodide etc. [12,13]. To produce a
pure bipolar moment, the polymer host must have excessive chemical
resistance and strong functional groups without electrons [14].

Because most ILs are liquids at room temperature, they can be uti-
lized as electrolytes without the need for a solvent medium. However,
using organic liquid electrolytes has some drawbacks for devices,
including leakage, corrosion, and a lack of supply.

To solve these issues, the scientific community then proposed using
ILs with polymer electrolytes (PEs) to maintain the mechanical qualities
of ILs while still preserving their good electrochemical properties [15].
Because many PEs have low ambient temperature conductivities, this is
the case. Therefore, they are ideal as solvents and electrolytes, and their
internal ionic conductivity is important for electrochemical applications.
ILs have unique properties that make them ideal for a wide variety of
energy-related applications [16].

14.2.2 Aprotic ionic liquids as electrolytes for lithium-ion battery

ILs are attractive for producing LIB electrolytes because of, their
sturdy thermal stability, and low vapor pressure. For more than a
decade, scientists have studied the use of IL in LIBs and used unusual
forms of cations and anions to make AILs. The cations that have been
researched the most include imidazolium, pyridinium, pyrrolidinium,
and piperidinium. They are used in a mixture with lithium salt to gen-
erate electrolytes excellent for LIBs.

Tetrafluoroborate (BF4
2), PF6

2, and per-fluoro-alkyl as di-(trifluoro
methane sulfonyl imide) (TFSI) and di-(fluoro sulfonyl imide) (FSI) are
the common anions shown in Fig. 14.2. These AILs are mixed with lith-
ium salts to create LIB-compatible electrolytes.

Lithium salts often contain anions that are used to reduce the weight of
electrolyte solutions. It is often referred to as “solvent-free” because it
does not require a solution to form these liquid electrolyte solutions [17].

The cation�anion pair has a significant influence on the properties of
ILs. For example, the addition of imidazolium cations enables the
production of IL with higher conductivity than the pyrrolidinium and
piperidinium cations.

For example, the inclusion of imidazolium cations can produce
IL with higher conductivity than pyrrolidinium and piperidinium
cations [16,18]. Using these cations instead of imidazoles allows for the
synthesis of ILs with a wide electrochemical stability window [17].
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The FSI-based AILs have a lower viscosity than the TFSI-based AILs.
With the properties of imidazole ions, it is clear that one of the main advan-
tages of using an IL-based electrolyte is that the properties of the electrolyte
can be modified by changing the composition of the cations and anions.

14.3 Introduction to Li batteries

The power stored using a battery is converted from chemical energy
into electrical energy by redox chemistry. An electrical source can be
converted into chemical, power for the life of a battery. Rechargeable
lithium batteries have become very popular in electrical energy storage

FIGURE 14.2 Ion families in common ionic liquids used in lithium-ion batteries [16].
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systems because of their high-powered capacity, operating current,
prolonged existence life, and less self-discharge (Fig. 14.3) [19,20].

In effect, phosphorous oxide has a completely high potential for Li
batteries, making it a very not unusual manner of improving their elec-
tricity density [21]. In recent years, Li batteries have exhibited a power
density of 100�200 Wh/kg, making them improper for cars. Steel lith-
ium has been used as an anode for a long term; however, when coupled
with natural liquid electrolytes, lithium dendrite development is the
most important trouble with Li batteries [22,23].

Furthermore, the usage of those flammable and volatile liquids is
exposed for its safety at hazard. In addition, because of their electro-
chemical instability at better voltages, these natural liquid electrolytes
cannot be used in batteries [24].

Therefore, an alternative electrolyte is required for the safe use of
lithium metal in batteries. Owing to their mechanical, thermal, and elec-
trochemical stability permanence in addition to their safety and flexibil-
ity, PEs have become established in Li batteries [25].

Ions can move about in the ion transport host matrix, which is a poly-
mer matrix with free space. Organic salts are usually dissolved in a
polymer concentration to form solid polymer electrolytes (SPEs). If a polar
group is present in the polymer matrix, it affects whether it can easily
interact with the cations and if the bond rotation is limited [26]. Due to
their flexibility in large chains and their ability to remove many biologi-
cal/unnatural chemicals, polymer poly(ethylene) oxide (PEO) electrolytes
in various polymer matrices have been extensively studied [27,28].

FIGURE 14.3 Compare battery types.
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14.4 Basics of ionic liquids

Organic salts, ILs, molten salts, or organic salts are all examples of
ILs. Bulky, distinct, weak organic cations and organic and inorganic
anions are the most common IL mechanisms [29].

Water and organic solvents may have nonvolatility, high thermal
stability, and high ionic conductivity are features of solvents (and elec-
trolytes). In other words, when it comes to the features of ILs, it is
important to remember that the abovementioned characteristics are not
always present in all ILs, which opens up the possibility of creating
new task-specific ILs. Fig. 14.4 demonstrates the general cations and
anions of ILs that are used in batteries [30].

Because of low lattice energy and weak ionic bonds between cations and
ionic salt anions, ILs are separated (NaCl, KCl, etc.). The result is high con-
ductance, low vapor pressure, glass transition temperature and high melting
temperature, excellent heat and electrochemical stability, low deposition,
and easy recovery. Table 14.1 presents some of the properties of IL.

FIGURE 14.4 General cations and anions for ionic liquids in batteries.
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14.5 Organic and inorganic ionic liquids in electrical storage
systems

At normal temperatures, ILs are referred to as molten salts, a form of
substance that contains both organic cations and inorganic/inorganic
anions [31,32]. It is significant that the separation of polymer ions into
ILs reduces the electrostatic force of the ions and separates them, lower-
ing the melting temperature. In organic synthesis, chemical detection,
life sciences, green chemistry, and storage systems that can generate
electrical energy ILs are used as solvents [33,34]. ILs are utilized as
electrolytes and solvents in different ways, since the advantages of ILs,
like variable polar nature and ionic conductance, low volatile nature,
exceptional thermal stability, and low flammability, have contributed to
several advantages and uses in electrical energy storage [35,36].

14.6 Ionic liquid-based polymers electrolytes historical
background

Because of its interesting characteristics, synthetic polymer materials
developed quickly in the industrialized world. Various research groups
created physicochemical and theoretical techniques needed to explore
polymeric materials at the same time.

TABLE 14.1 Ionic liquids properties

Ionic liquids Tg (C) Tm (C) Td (C) σ (mS/cm) η (cP)

PYP1,4-TFSI 287 26 � 2.69 60

[EMIM][BF4] 293 211 450 14 at 25�C 43 at 20�C

[EMIM][PF6] � 60 � 5.2 at 26�C �
[EMIM][TFSI] 298 4 440 8.8 at 20�C 28 at 25�C

[BMIM][Cl] — 41 254 — 1534 at 50�C

[EMIM][FSI] � 12.9 � 16.5 at 25�C 24.5 at 25�C

[HMIM][PF6] 278 261 417 585 at 25�C

[BMIM][PF6] 276 10 390 1.8 at 25�C 312 at 25�C

[BMIM][TFSI] 2104 24 439 3.9 at 20�C 52 at 25�C

[OMIM][PF6] 282 240 376 � 682 at 25�C

[HMIM][BF4] 282.4 218 409 1.22 at 25�C 439
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Owing to their intriguing features, synthetic polymer materials have
developed quickly in industrialised nations. Numerous researchers
independently developed the physicochemical and computational tech-
niques needed to study the polymeric materials. Wright et al. reported
that poly (ethylene) oxide (PEO) compounds with sodium thiocyanate,
potassium thiocyanate, and sodium iodide show ionic conductivity [37].

Instead of looking for high-performance electrolytes, the focus is
shifting to more recent industries such as high-performance composites
and fibers (such as Kevlar). The importance of Wright’s paper was
explored by Armand et al. in 1978, who advocated using a salt-polymer
combination as a solid electrolyte [38,39].

In 20 years in a new field of PE, inventions and widespread distribu-
tion of portable microelectronics and electronics have emerged, and
there is a strong demand for extremely lightweight rechargeable batter-
ies, high performance, and affordable.

In the beginning, electrolytes become increasingly necessary as a
result. Several methods for limiting the crystallinity of polymer materi-
als were discovered. In the beginning, several methods for limiting the
crystallinity of polymer materials were discovered [40].

The third decade, around the 1990s, saw the widespread acceptance of
LIBs in addition to a fast increase in the production of low-cost
portable devices. PEs made from amorphous PEO were referred to as
“classics.” The new electrolyte is a high salt or angel salt PE, and a gel
electrolyte containing solvent molecules is used in the polymer matrix [41].

Environmental contamination is a serious problem in today’s globe,
owing to a variety of human activities, including electricity generation.
As a result, a lot of attention is being paid to sharpening equipment
with harmless materials that provide outstanding performance. PEs is
also experiencing significant changes, such as the use of natural poly-
mers and feasible solvent and plasticizer replacements [42].

The preparation and analysis of inorganic and inorganic polyethylene
represented advancement in polyethylene research in the fourth decade.
Owing to their mechanical, thermal, electrochemical, and chemical stability
and their excellent conductance at room temperature, these materials promise
excellent use in lithium rechargeable batteries [43]. Also, the addition of
minerals to the chemical makeup and the creation of new classes of synthetic
gels and IL-based PEs have created a whole new family of materials [44,45].

14.7 Polymeric ionic liquids for rechargeable lithium-ion
batteries

As IL molecules are added to a polymer chain, PILs or ionic polymer-
ization liquids (polymer ILs) are produced. This is a new type of
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functional polymer that blends the characteristics of room temperature
ILs with the polymer structure. Produces a new type of functional poly-
mer. As a result of Ohno’s and his co-workers’ insight [46,47]. PILs play
an important role in various energy storage systems, as in batteries and
supercapacitors, as well as conversions (fuel cells) and electro-
mechanical applications (actuators and sensors) [48,49].

PIL, with a unique combination of polymer and anti-ion, has tuneable
properties such as glass transition temperature and solubility that
enable a multitude of new applications. The mechanical stability,
increased process capability, robustness, spatial control capability, and
other benefits of using PIL over IL are just a few of the benefits.

Used as a SPE, PIL has a variety of architectures, as shown in
Fig. 14.5. PILs with variety of architectures (Fig. 14.5) were extensively
used as SPEs. Researchers made attempts to investigate the relationship
between the structure-ionic conductivity of the PIL-based SPEs with
respect to the type of cation and anion present in PILs [48,49].

14.7.1 Emerging of ionic liquid�based polymer electrolyte

There is serious research for energy solutions in vehicles with the rising
need for clean, dependable, and internationally inexpensive electricity and
energy. Many efforts to find novel materials and appropriate design meth-
ods have resulted as a result of this. PEs have made significant progress
toward high safety and noticeable efficiency. ILs are suitable materials for
integration with PE because of their high conductivity; chemical resilience,
low toxicity, and favorable electrochemical characteristics [50]. These are
molten salts with bulky asymmetric organic and mineral anions that can
be used at a comfortable temperature. IL has been used as possible sol-
vents that are inherently unsafe to PE. ILs have been dubbed “green sol-
vents” since they are non-volatile, soluble, and evaporation resistant [51].
ILs have also been used to increase the ambient temperature conductivity
of PEs. The IL, N-alkyl-N-methylpyrrolidinium per fluoro-sulfonylimide,
was used by Passerini et al. to aid conductivity enhancement in a PE [52].

The development of a compelling amorphous phase was described
using the zinc ionic conductivity of PE 1-ethyl-3-methyl-imidazolium,
bis (trifluoro-methane-sulfonyl) imide (EMIMTFSI). PE EMIMTFSI ion
conductor zinc ion di(trifluoromethanesulfonyl) imide (EMIMTFSI) ion
conductor is effective, and the development of an amorphous phase is
compelling proof of existence [53]. Because the properties of a liquid are
determined by the careful selection of IL-imidazolium, pyridinium,
alkylammonium, alkyl-phosphonium, pyrrolidinium, guanidinium, etc.,
IL is aprotic and aprotic depending on the type of cation. They can
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contain ILs that contain metal and anions like halides (Cl2, Br2, I2),
polyatomic metals (PF6

2, BF4
2) and polyoxometalates, as well as

organic anions like nitrate (NO3
2) and trifluoromethylsulfonylimide

FIGURE 14.5 Chemical structure of PIL used in SPE.
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(TFSI2) and trifluoromethanesulfonate (Tf2). Fig. 14.6 depicts a few
common ions involved in the production of ILs. They include halides
(Cl2, Br2, I2), inorganic polyatoms (PF6

2, BF4
2), inorganic anions such

as polyoxometallate, NO3
2, TFSI2, and Tf2. Some common ions are

involved in IL production. These cationic chemicals and replacements
have a significant impact on IL conductivity, hydrophobicity, melting
temperature, viscosity, solubility, and other chemical and physical prop-
erties [34]. Conductivity is important in electrolytes because the balance
between the interactions of ion pairs has a substantial influence in real-
world applications. LIBs make up the vast majority of commercially
available batteries. Because they generally employ electrolytes that are
volatile and flammable, their use is severely limited Conductivity is
important in electrolytes because the balance between the interactions of
ion pairs has a substantial influence in real-world applications.

LIBs make up the vast majority of commercially available batteries.
Because they generally employ electrolytes that are volatile and flamma-
ble, their use is severely limited. In the early 1980s, lithium-ion polymer
cells were presented as a possible answer to safety concerns [54]. Even
though these efforts were partially effective, the primary issue of the
system remained because liquid organic solvents are flammable. The
non-toxic, eco-friendly nature of ILs provides value to the rechargeable
battery business in general. Many reports in recent years have demon-
strated that integrating ILs will result in a positive outcome shortly [55].
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Due to their solubility in solvents or electrolytes, IL electrolytes are
often used as suitable alternative battery energy storage systems (BESS)
like LIBs. This chapter attempts to summarize the present state of knowl-
edge on the electrochemical, cycle, and physical characteristics of IL-based
electrolytes that are relevant to LIB. Solvents like IL can help enhance the
performance of environmental and energy storage devices, particularly
LIBs, by replacing more flammable organic carbon [56].

One of the most important studies is the active usage of IL. LIBs, for
example, employ carbonate electrolytes to achieve the maximum energy
density of secondary batteries. However, these VOCs are a safety concern
when using LIBs in extensive applications such as electric motors and
power grids. For example, LIBs use carbonate-based electrolytes, achieving
the highest energy density of any secondary battery developed so far.
However, when an LIB is used in more applications in electric motors and
power grids, these VOCs pose safety concerns. These concerns have
prompted the development of novel IL-based electrolyte compounds.
Meanwhile, the nonvolatility and great thermal stability of ILs have
allowed some of them to be used as carbon material precursors. For energy
applications, this new approach reveals highly functional, task-specific car-
bon compounds. This article describes the energy consumption of IL.

The carbon compounds produced from IL are shown. This shows
that IL can be used as a new functional material for energy applications,
especially as a new building block for catalysts and electrodes.
Table 14.2 presents common cation and anion abbreviations found in IL.

TABLE 14.2 General abbreviations for cations and anions in IL.
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14.8 Li/Na-ion battery electrolyte

LIBs are used as a light source because they have a high power den-
sity and high energy density. The generally common components in Li
batteries are negative electrodes, highly volatile electrodes containing Li
(Li-MO2, M: conversion metals), and organic electrolytes [57,58].

Li is inserted into a negative carbon electrode while charging an LIB
and Li is evicted as of a positive LiMO2 electrode during the extraction
process. Li salts are extensively employed as electrolytes in LIBs, ethylene
carbonate (EC) and diethyl carbonate are aprotic molecular solvents used
[59,60]. Organic molecular solvents are characterized by their flammability
and volatility. The safety of LIBs must be enhanced, particularly in large-
scale energy storage systems used as electric cars and power grids.

Alternative energy sources were also investigated, including sodium-
ion batteries at room temperature with operating electrolytes [61].
Thermally stable electrolytes are widely used to increase the thermal
durability of these batteries [59,62].

Due to the thermal stability, low volatility, and flame retardancy of
IL, many researchers plan to use IL as an electrolyte for batteries
[63�65]. Chloroaluminate-based IL (AlCl4) was investigated in IL’s
groundbreaking research on the battery used [66,67]. However, chloroa-
luminate anions are sensitive to water and corrosive, therefore, they
have not been widely used in chloroaluminate-based ILs in recent years
in lithium and sodium battery research. Therefore they have not been
widely used in chloro-aluminate-based ILs in recent years in lithium
and Na battery research.

The electrolyte also has sufficient electrical stability. When the battery
permanently damages the negative electrode and generates an oxidation
voltage on the positive electrode, it affects the charging and discharging
performance. When the battery is full, the negative and positive electro-
des are lowered and discharged separately. Therefore, the electrolyte
Li/Na ion batteries have great potential.

14.9 Polymer-electrolytes classification

Electric polymer is used to develop electrochemical devices. PE is
divided into the following groups based on materials (Fig. 14.7).

14.9.1 Electrolytes based on dry solid polymer

Electrolytes based on the dry solid polymer are ion-conducting
electrolyte that is made by integrating inorganic salt into a polar
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polymer [68]. Coordination bonds are formed when the metal ions in
the salt electrostatically interact with the polar polymer. The distance
between the polymer’s functional groups, the molecular weight, the
kind of branching, the metal’s charge, and other variables that might
influence the metal-polymer relationship [69]. Ions begin to migrate
from one coordination site to the next when the PE is exposed to an
electric field. It happens because the metal ion and functional g have
a weaker connection. Because the metal ion and the polymer chain’s
functional group have a weaker bond.

14.9.2 Electrolytes based on plasticized polymer

Plastic PEs are formed by the dissolution of low molecular weight
substances such as EC, propylene carbonate, and polyethylene glycol
[70]. This reduces Tg and crystallization while reducing intermolecu-
lar and intramolecular interactions between polymer chains and
increasing the salt dissociation capacity [71]. This method improves
the conductivity of poly-electrolytes but has limitations in terms of
mechanical durability, solubility, and lithium electrode reactivity.
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FIGURE 14.7 Polymer electrolytes classification.
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14.9.3 Electrolytes based on gel polymer

GPEs have advantages over liquid electrolytes, have high conductiv-
ity and good electrode contact with the electrolytes, with the advantages
of solid electrolytes, safety, mechanical and thermal properties for the
production of PEs. It is becoming more and more popular among them.
GPEs are safer than liquid electrolytes since they use a polymer to pre-
serve liquid components while simultaneously providing mechanical
support. GPE is a polymer that contains a lot of organic solvents and is
shipped with the bulk polymer [72]. Due to the desirable properties of
IL, IL-based GPE has recently been the focus of research, including
excellent conductivity, thermal stability, and low vapor pressure. As a
result, GPE can be used as an alternative to liquid electrolytes.

14.9.4 Electrolytes based on composite polymer

Polymer-based composite electrolytes offer the advantages of nonme-
tals and polymers and can be used directly in solid metal batteries in
the future, proton membrane membranes, and methanol fuel cells,
among other applications. It is expected to have high safety, good flexi-
bility, excellent thermal stability, and superior electrolyte performance.
However, the lithium-ion guide (lithium-ion, proton, etc.) and weak
electrolyte adaptation during the process of transport/discharge, espe-
cially when matching high voltage codes and metal lithium codes, are
still waiting for better solutions. In addition, the multipurpose Kuwaiti
functions are unique, such as healing, flexibility, and antiphizers, which
are also desirable for natural disasters in different situations. This
should be considered by ion, electrochemical/chemical movements, and
polymer-based disasters in dealing with the above issues [70]. It can
usually be divided into polymer/polymer mixture and polymer electric-
ity. The components of production devices are affected by their perfor-
mance. Each component and content/content/content is particularly
important in high-performance disasters [71]. The purpose of this
research is to progress in polymer-dependent rap, including the effect
of materials and their components, on mechanisms for improving the
relevant performance.

14.10 Ionic liquid-based gel polymer electrolytes application in
lithium batteries

IL-based electrolytes offer some favorable characteristics, and they
are widely employed in supercapacitors, batteries, and fuel cells.
Lithium batteries are essential because of their high energy density,
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versatility, and safety. In recent years, polymer batteries have been used
to power all electronic gadgets, including computers, cell phones, power
banks, and portable players. One of the primary advantages of GPE,
according to Gupta et al., is the creation of a strong interface between
the electrodes and electrolytes, which improves the lithium battery
cycle’s stability. The performance of PEO-based GPE battery has been
studied in the literature [73].

The electrochemical performance of GPE-Li batteries based on PEO is
shown in Table 14.3. The following researches demonstrate that utilizing
GPE instead of liquid solvents in lithium batteries increases battery
expandability and electrochemical stability substantially. IL-based GPE
not only exhibits high ion conductivity, flexibility, and mechanical sta-
bility but also contributes to the capacity, recycling ability, and safety of
lithium batteries.

14.11 Low melting point alkaline salts in lithium batteries

The MP of conventional lithium salts is over 200�C such as LiClO4 is
236�C, LiBF4 is 296.5�C, and LiPF6 is 200�C. The high electrostatic inter-
action between lithium and anions is the underlying reason for this. The
charge density of lithium ions is high due to the short ion radius, and
there is a significant electrostatic attraction between lithium ions and
anions. Thus fusion usually requires high temperatures. Some Li inor-
ganic salts have low melting points and should be mentioned here. The
M.P. temperature of LiClO3 is 128

�C, but in the fourth system �NaNO3,
�LiNO3, �LiClO3, �NaClO3 M.P. at 128�C [86].

LiAlCl3SCN melts at 110�C and may be kept at ambient temperature
as a superheated liquid, whereas LiAlCl4 melts at 143�C. The
LiAlCl3SCN anion is an asymmetric AlCl3SCN ligand compound with a
symmetric structure, whereas the AlCl3 anion has a symmetric struc-
ture. Several factors affect solubility, including electrostatic interactions
between Li and anions, anion size, anion symmetry, and anion mor-
phology. All of these affect the melting temperature of Li salts [87].

The weak interaction between the fundamental Lewis anion and Li,
according to the hard and soft acid and base (HSAB) theory, is feeble.
On the other hand, even the Li salt of a large element anion with a low
Lewis base has an M.P. significantly higher than room temperature.

According to the HSAB theory, the weak interaction within the major
Lewis and Lithium anions is weak. On the other hand, even salts of
large element anions with low Lewis bases are M.P. substantially higher
than ambient temperature [88,89]. Fujinami et al. studies have shown
that the formation of liquid salts of Li was activated by the penetration
of ether groups into the aluminate structure [90,91].
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The ether group acts as a coordination ligand for the Li cation, separat-
ing them from the anion’s nuclear atom. Researchers developed lithium
ILs, which separate the lithium cations from the anions’ core atoms by
combining them with borates that have electron-withdrawing moieties
to minimize the anionic basicity. We created a lithium IL containing Li-
containing borate with an electron-withdrawing group and the coordina-
tion of the ether ligand of Li. The ether group acts as a binding compound
for Li, separating the Li cation from the central atom of the anion.

TABLE 14.3 The electrochemical performance of GPE-Li batteries based on PEO.

Polymer electrolytes Li-battery C-rate Capacity (mAh/g) References

PEO20LiTFSI[Pyr13TFSI]1.27 Li/LiFePO4

at RT
C/10 115 at 20 cycles [74]

PEO20LiTFSI2[Pyr14TFSI]4 Li/NMC
at 40�C

C/10 160 at 100th cycle [75]

PEO20LiTFSI[Im12TFSI] Li/LiFePO4

at 50�C
C/5 110 at 20th cycle [76]

PEO20LiTFSI[Pip1.1O1TFSI] Li/LiFePO4

at RT
C/20 120 at 35th cycle [77]

PEO20LiTFSI[Pip1.101TFSI] Li/Li4Ti5O12

at RT
C/20 150 at 40th cycle [77]

PEO20LiTFSI2[Pyr14TFSI]4 Li/LiFePO4

at 40�C
C/10 140 at 450th cycle [78]

PEO1 20 wt.%
LiTFSI1 20 wt.%ThdpTFSI

Li/NMC622
at RT

C/10 148 at 150th cycle [79]

PEO20LiTFSI2[Pyr14TFSI]2 Li/LiFePO4

at 40�C
C/5 160 at 180th cycle [80]

PEO-LiTFSI-10wt%EMIMFSI Li/NCA
at RT

C/10 175 at 200th cycle [81]

PEO1LiFSI1 7.5 wt.%
EMIMFSI

Li/LiFePO4

at RT
C/20 143 at 100th cycle [82]

PEO1LiTFSI1 12.5%
EMIMTFSI

Li/LiMn2O4

at RT
C/10 120 at 10th cycle [83]

PEO1 20%LiTFSI1 30%
(1-butyl 3-methyl yridinium
TFSI)

Li/LiFePO4

at 40�C
C/10 160 at 25th cycle [73]

PEO1 20%LiFSI1 10%
PYR13FSI

Li/GO-
LiFePO4 at rt

C/10 163 at 100th cycle [84]

PEO1 20 wt.%
LiTFSI1 20 wt.% BMIMTFSI

Li/LiMn2O4

at RT
140 μAh/cm2

at 25 cycle
[85]
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Watanabe et al. have developed a lithium IL containing Li and a borate
with a single electron-removing group to reduce the presence of anions. Li
also controls the ether and separates lithium via anionic atoms [92,93].

Other alkali metals—IL (Li, Na, and K) can be formed in the same way
by using the same ether and larger anions. For example, at room tempera-
ture, alkali carboxylate is still a liquid [94], as shown in Fig. 14.8.

14.12 Conclusion

The use of IL in combination with organic electrolytes is an interest-
ing method in light of the development of better electrolytes. Some
studies have already investigated the effects of various electrolytes on
the performance and safety of LIBs, especially in terms of flammability.
The IL�solvent interactions were investigated in a few instances.
Nonetheless, gaining a better knowledge of these interactions might
help with the logical design of these electrolytes.

This latest study seems to be important in this regard. In recent years,
there has been increasing research showing that IL may help prevent
unwanted reactions such as anodic decomposition of Al or improve the
properties of additives such as redox shuttles. As a consequence, the use of

FIGURE 14.8 Structures of Li ILs.
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IL as an addition to traditional LIB electrolytes appears to be highly promis-
ing, and more studies in this area should be conducted as soon as possible.

Finally, various methods have been proposed to improve the conduc-
tivity of PEO-based PEs below the melting temperature. GPEs based on
ILs are considered to be the most promising. PEs with these GPEs have
improved ionic conductivity, thermal stability, and electrochemical sta-
bility. Advantages of lithium batteries include improved electro-
de�electrolyte interactions, mechanical stability, and safety. They can
help to avoid the formation of undesirable dendrites and contribute to
the safety of lithium batteries owing to their mechanical stability. It also
has excellent electrochemical stability, making it suitable for use in
high-voltage, high-energy batteries. These batteries offer excellent elec-
trochemical and periodic stability, as well as flexibility and safety. As
a result, these IL-based GPEs can be considered viable alternatives to
liquid electrolytes from lithium batteries.

Abbreviations

AILs Aprotic ionic liquids
BESS Battery energy storage systems
BF4

2 Tetrafluoroborate
EC Ethylene carbonate
EMIMTFSI 1-Ethyl-3-methyl-imidazolium,bis (trifluoro-methane-sulfonyl) imide
FSI Di-(fluoro sulfonyl imide)
GPEs Gel polymer electrolytes
HSAB Hard and soft acid and base
KSCN Potassium thiocyanate
ILs Ionic liquids
LIBs Lithium-ion batteries
LiBF4 Lithium tetrafluoroborate
LiClO3 Lithium chlorate
LiClO4 Lithium perchlorate
LiPF6 Lithium hexafluorophosphate
NaClO3 Sodium chlorate
NaSCN Sodium thiocyanate
PEs Polymer electrolytes
PEO Poly(ethylene) oxide
PF6

2 Hexafluorophosphate
PILs Protic ionic liquids
SPEs Solid polymer electrolytes
Tf2 trifluoro-methane-sulfonate
TFSI Di-(trifluoro methane sulfonyl imide)
VOCs Volatile organic compounds
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