
© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3160

DESIGN OF EFFICIENT 32-BIT FLOATING

POINTMULTIPLIER USING STANDARD IEEE

754
Prof. Sachin S Patil1, Prof. Sujata S Kamate2

Assistant Professor1&2
Department of Electronics & Communication Engineering1&2

Hirasugar Institute of Technology, Nidasoshi-591313, India1&2

Abstract— The IEEE 754 standard provides the format for representation of Binary Floating point

numbers. The Binary Floating point numbers are represented in Single and Double formats. The Single

consist of 32 bits and the Double consist of 64 bits. The formats are composed of 3 fields: Sign,

Exponent and Mantissa. In case of Single, the Mantissa is represented in 23 bits and 1 bit is added to the

MSB for normalization, Exponent is represented in 8 bits which is biased to 127, actually the Exponent

is represented in excess 127 bit format and MSB of Single is reserved for Sign bit. When the sign bit is

1 that means the number is negative and when the sign bit is 0 that means the number is positive. In 64

bits format the Mantissa is represented in 52 bits, the Exponent is represented in 11 bits which is biased

to 1023 and the MSB of Double is reserved for sign bit. The main object of this paper is to reduce the

power consumption and to increase the speed of execution by implementing certain algorithm for

multiplying two floating point numbers.

These Lab-Oriented work and Activities have been carried out into two parts. First Half is the Floating

Point Representation Using IEEE-754 Format (32 Bit Single Precision) and second Half is simulation,

synthesis of Design using HDLs and Software Tools. The Binary representation of decimal floating-

point numbers permits an efficient implementation of the proposed radix independent IEEE standard for

floating-point arithmetic.

Keywords— IEEE-754 Format, Simulation, Synthesis.

1. INTRODUCTION

Floating point numbers are one possible way of representing real numbers in binary format; the

IEEE 754 standard presents two different floating point formats, Binary interchange format and

Decimal interchange format. Multiplying floating point numbers is a critical requirement for DSP

applications involving large dynamic range. This paper focuses only on single precision normalized

binary interchange format. Fig. 1.1 shows the IEEE 754 single precision binary format

representation; it consists of a one bit sign (S), an eight bit exponent (E), and a twenty three bit

fraction (M or Mantissa). An extra bit is added to the fraction to form what is called the significand

1. If the exponent is greater than 0 and smaller than 255, and there is 1 in the MSB of the significand

then the number is said to be a normalized number; in this case the real number is represented by (1).

Figure 1.1 IEEE single precision floating point format

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3161

Z = (-1S) * 2 (E - Bias) * (1.M)

Where M = m22 2-1 + m21 2-2 + m20 2-3+…+ m1 2-22+ m0 2-23, Bias = 127.

Significand is the mantissa with an extra MSB bit.

Multiplying two numbers in floating point format is done by

1- adding the exponent of the two numbers then subtracting the bias from theirresult 2-

multiplying the significand of the two numbers,and

3- calculating the sign by XORing the sign of the two numbers.

In order to represent the multiplication result as a normalized number there should be 1 in the

MSB of the result (leading one).

Floating-point implementation on FPGAs has been the interest of many researchers. In 2008,

an IEEE 754 single precision pipelined floating point multiplier was implemented onmultiple FPGAs

(4 Actel A1280). In 1995, a custom 16/18 bit three stage pipelined floating point multiplier that

doesn’t support rounding modes was implemented. In 1996, a single precision floating point

multiplier that doesn’t support rounding modes was implemented using a digit-serial multiplier:

using the Altera FLEX 8000 it achieved 2.3 MFlops. In 2001, a parameterizable floating point

multiplier was implemented using the software-like language Handel-C, using the Xilinx XCV1000

FPGA; a five stages pipelined multiplier achieved 28MFlops. In 2002, a latency optimized floating

point unit using the primitives of Xilinx Virtex II FPGA was implemented with a latency of 4 clock

cycles. The multiplier reached a maximum clock frequency of 100 MHz.

Our discussion of floating point will focus almost exclusively on the IEEE floating- point

standard (IEEE 754) because of its rapidly increasing acceptance. Although floating- point

arithmetic involves manipulating exponents and shifting fractions, the bulk of the time in floating-

point operations is spent operating on fractions using integer algorithms.

2. ARCHITECTURAL DETAILS

2.1 IMPLEMENTATION OF PROPOSEDARCHITECTURE

The Architecture has sign calculator, exponent calculator, mantissa calculator, which works parallel,

and a normalization unit. It takes two IEEE 754 format single precision floating point numbers and

produces the multiplied output. It also supports the features like underflow, overflow and invalid

operations. The implementation of Floating point multiplier Unit consists of two stages of

multiplication calculation and Normalization. First stage includes three blocks which work

inparallel.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3162

Figure 2.1: Floating Point Multiplier Architecture Using Booth and Vedic techniques

A. Sign Calculator: The Output Sign is the exclusive or of two sign bitinputs

B. Exponent Calculator: The input exponents are added using Ripple Carry Adder (RCA) and the

bias is subtracted using Ripple Carry Subtractor (RCS) to produce the exponent of Output.

C. Mantissa Calculator: Output Mantissa is calculated by multiplying themantissa’s using

multiplier (Modified Booth/Vedic techniques)

Second stage performs Normalization of the first stage output. It first calculates how much amount

the mantissa needs to be left shifted using LZC (Leading Zero Counter) and finally produces the

multiplier output.

2.2 MULTIPLIERS USED IN THEARCHITECTURE

2.2.1 Vedicmultiplier:

For Mantissa calculations, Vedic and modified booth multipliers are used in the implementation. The

design of Vedic Multiplier starts with 2x2 bit multiplier. Here, “Urdhva Tiryakbhyam Sutra”

(Vertically and Crosswise Algorithm) has been used for multiplication to develop

multiplierarchitecture.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3163

Figure 2.2: 4 X 4 bit Vedic multiplication

The expressions of the partial products obtained by multiplying A=A3A2A1A0 and B= B3B2B1B0

are P1=A0B0 and Carry=C0 P2=A1B0+B1A0+C0 and Carry=C1 P3=A2B0+B2A0+A1B1+C1 and

Carry=C2 P4=A3B0+A0B3+A2B1+A1B2+C2 &Carry=C3

P5=A3B1+A2B2+A1B3+C3 and Carry=C4 P6=A3B2+A2B3+C4 and Carry=C5

P7=A3B3+C5 This Sutra shows how to handle multiplication of a larger number (N x N, of N bits

each) by breaking it into smaller numbers of size (N/2 = n, say) and these smaller numbers can again

be broken into smaller numbers (n/2 each) till 2 × 2 basic multiplier block. Hence, whole

multiplication process is to be simplified. First the basic block, 2×2 multipliers have been made then,

using these blocks, 4×4 block and thereby using 4×4 block, 8×8 block and then finally 16×16 bit

Multiplier has beenmade.

Figure 2.3: Black box view of single precision floating point vedic multiplier

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3164

Figure 2.4: single precision floating point vedic multiplier

2.2.2 Modified BoothMultiplier

Booth multiplication is smaller, faster multiplication algorithm through encoding the signed numbers

to 2’s complement, which is also a standard technique used in chip design, and provides significant

improvements by reducing the number of partial product to half over “long multiplication”

techniques. Modified Booth's multiplication algorithm is a multiplication algorithm that multiplies

two signed binary numbers in two's complement notation. Modified Booth algorithm reduces the

number of partial products generated in a multiplication process through encoding the signed

numbers to 2’s complement according to the table shown below.

TABLE 2.1 Modified Booth Encoding Table

b2b1b0 Operations

000 All zero

001 Same number

010 Same number

011 Single left shift

100 2's complement and left shift

101 2's complement

110 2's complement

111 All zero's

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3165

Figure 2.5: Black box view of single precision floating point modified booth multiplier

Figure 2.6: single precision floating point modified booth multiplier

2.2.3 DELAY RESULTS:

Multiplier Delay(ns)

Modified Booth algorithm 121.737

Vedic multiplier 94.770

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3166

3. COMPARISON WITH DIFFERENT MULTIPLICATION

METHODS

This is the most important stage, product of the mantissa bits is calculated. The multiplication of

mantissa bits is performed in the following stages.

3.1 Generation of PartialProducts

The Booth multiplier makes use of Booth encoding algorithm in order to reduce the number of

partial products by considering certain number of bits of the multiplier at a time, thereby achieving

a speed advantage over other multiplier architectures. This algorithm is valid for both signed and

unsigned numbers. It can handle signed binary multiplication by using 2's complement

representation. For generating the partial products Radix-8 Modified Booth's Algorithm is used.

Since the multiplier and multiplicand comprises of 24 bits, this algorithm will generate 8 partial

products. The shortcoming of Radix 2 Booth algorithm is that it becomes inefficient when there are

isolated 1's. For example, 001010101(decimal 85) gets reduced to 01-11- 11-11-1(decimal 85),

requiring eight instead of four operations.001010101(0) recoded as 011111111, requiring 8 instead

of 4operations.

3.1.1 Radix-8 Modified Booth’sAlgorithm

Recoding extended to 3 bits at a time - overlapping groups of 4 bits each. Radix-8 recoding applies

the same algorithm as radix-4, but now we take quartets of bits instead of triplets.

Consequently, a multiplier based on this radix-8 scheme generates fewer partial products than a

radix-4 multiplier, but the computation of each partial product is more complex. In particular, a

partial product corresponding to an encoding x=+3 requires the computation of 3x, and therefore a

full addition. Each quartet is codified as a signed-digit using the table 3.1.

Table 3.1: Recoding in Booth Radix-8 Algorithm.

Quartet

value

Signed-digit

value

Quartet

value

Signed-digit

value

0000 0 1000 -4

0001 +1 1001 -3

0010 +1 1010 -3

0011 +2 1011 -2

0100 +2 1100 -2

0101 +3 1101 -1

0110 +3 1110 -1

0111 +4 1111 0

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3167

3.1.2 Synthesis Results onFPGA

Table 3.2 shows the synthesis report on Xilinx for generation of partial products.

Table 3.2: Synthesis Report of Partial Product Generation

 Spartan 3E
xc3s500E

Virtex 4 xc4vlx15

No. of Slices 2003/4656 (43%) 1913/6144 (31%)

No. of LUTs 3653/9312 (39%) 3794/12288 (30%)

Minimum Period 10.344ns 6.537ns

Maximum Frequency 96.676MHz 152.986MHz

3.2 Partial Product Reduction
8 Partial products are generated using Radix-8 Modified Booth's Algorithm. They are reduced

using 4:2compressors.

3.2.1 Carry Save Adder

A Carry-Save Adder is just a set of one-bit full adders, without any carry-chaining. The most

important application of a carry-save adder is to calculate the partial products in integer

multiplication. 4:2 compressors are used as carry save adders. The 4:2 compressor structure

actually compresses five partial products bits into three. The architecture is connected in such a

way that four of the inputs are coming from the same bit position of the weight j while one bitis fed

from the neighboring position j- 1(known as carry-in). The outputs of 4:2 compressor consists of

one bit in the position j and two bits in the position j+1.

A 4:2 compressor can also be built using 3:2 compressors. It consists of two 3:2 compressors (full

adders) in series and involves a critical path of 4 XOR delays as shown in Figure 3[8]. The output

Cout, being independent of the input Cin accelerates the carry save summation of the partial

products. 4:2 compressor is made from 2 full adders. The final carry is saved and hence is called

carry save adder. The delay of 4:2 compressor is equal that of 4 xor gates.

Initially two 4:2 compressors are used to reduce each 4 partial products pair to generate the pair of

sum and carry. Then these final 4 partial products generated from above two 4:2 compressors are

further reduced to generate final sum and carry. The final sum and carry are added in next Carry

Propagate adder.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3168

Figure 3.1: 4:2 Compressor Design using Full Adders

3.2.2 Synthesis Results onFPGA

Table 3.3 shows the synthesis report on Xilinx for Partial Product Addition.

 Table 3.3: Synthesis Report of Partial Product Addition

 Spartan 3E

xc3s500E

Virtex 4

xc4vlx15

No. of Slices 501/4656 (10%) 502/6144 (8%)

No. of LUTs 706/9312 (7%) 702/12288 (5%)

Minimum Period 5.184ns 3.075ns

Maximum Frequency 192.905MHz 325.256MHz

3.3 Final stage Carry PropagateAdder

Further the partial products generated through carry save adders are further reduced by using

Ripple Carry Adder.

3.3.1 Ripple Carry Adder

Ripple Carry Adder is used to obtain the final sum and the output carry by adding the partial

products from the carry save adders. It creates a logical circuit using multiple full adders to add N-

bit numbers. Each full adder inputs a Cin, which is the Cout of the previous adder. This kind of

adder is a ripple carry adder, since each carry bit "ripples" to the next full adder. The 48-bit sum

and carry outputs obtained from the partial product accumulator are added in the final stage adder

to give the product of the mantissas. As shown in Figure 4 a ripple carry adder is a chain of

cascaded full adders and one half adder; each full adder has three inputs (A, B, Ci) and two outputs

(S, Co). The carry out (Co) of each adder is fed to the next full adder (i.e each carry bit "ripples" to

the next fulladder).

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3169

Figure 3.2: Ripple Carry Adder

3.3.2 Synthesis Results on FPGA
Table 3.4 shows the synthesis report on Xilinx for Final 48- bit Stage Carry Propagate Adder.

Table 3.4: Synthesis Report of 48-bit Ripple Carry Adder

Device Spartan 3E
xc3s500E

Virtex 4
xc4vlx15

No. of Slices 150/4656 (3%) 146/6144 (2%)

No. of LUTs 246/9312 (2%) 250/12288 (2%)

Minimum Period 8.235ns 5.206ns

Maximum Frequency 121.438MHz 192.095MHz

3.4 PIPELINING
A pipeline is a set of data processing elements connected in series, so that the output of one

element is the input of the next one. It is divided into segments and each segment can execute its

operation concurrently with the other segments. When a segment completes an operation, it passes

the result to the next segment in the pipeline and fetches the next operation fromthepreceding

segment. The final results of each instruction emerge at the end of the pipeline in rapid succession.

The pipeline technique is widely used to improve the performance of digital circuits. As the

number of pipeline stages is increased, the path delays of each stage are decreased and the overall

performance of the circuit is improved.

3.4.1 5-Stage Pipelining

In order to enhance the performance of the multiplier, five pipelining stages are used to divide the

critical path thus increasing the maximum operating frequency of the multiplier. Five pipelining

stages mean that there is latency in the output by five clocks[8]. The pipelining stages are

embedded at the following locations:

i. After the Pre-processing of the Multiplicand and Multiplier.

ii. After the Exponent Adder and Generation of 8 Partial Products.

iii. After subtracting the Bias and compressing the partial Products to4.

iv. After Compressing the Partial Products to2.

v. After Normalization and Final Carry Propagate Adder.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3170

Table 3.5 shows the synthesis result. Comparing with 3-stage pipelined multiplier, the frequency is

increased as the pipeline stages are increased.

3.4.2 Synthesis Results on FPGA

Table 3.5: Synthesis Report of 5-Stage Floating Point Multiplier
Device Spartan 3E

xc3s500E

Virtex 4

xc4vlx15

No. of Slices 2045/4656 (43%) 2067/6144 (33%)

No. of LUTs 3893/9312 (41%) 3900/12288 (31%)

Minimum Period 12.154ns 6.532ns

Maximum Frequency 82.279MHz 153.081MHz

Figure 3.3 shows the various pipeline stages in the Multiplier.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3171

Figure 3.3: Floating point multiplier with 5 pipelining stages

4. HARDWARE OF FLOATING POINT MULTIPLIER
4.1 Sign bit calculation

Multiplying two numbers results in a negative sign number if one of the multiplied numbers is of a

negative value. By the aid of a truth table we find that this can be obtained by XORing the sign of

twoinputs.

4.2 Unsigned Adder (for exponent addition)

This unsigned adder is responsible for adding the exponent of the first input to the exponent of the

second input and subtracting the Bias (127) from the addition result (i.e. A_exponent + B_exponent

- Bias). The result of this stage is called the intermediate exponent. The add operation is done on 8

bits, and there is no need for a quick result because most of the calculation time is spent in the

significand multiplication process (multiplying 24 bits by 24 bits); thus we need a moderate

exponent adder and a fast significandmultiplier.

An 8-bit ripple carry adder is used to add the two input exponents. As shown in Fig. 4.1 a ripple

carry adder is a chain of cascaded full adders and one half adder; each full adder has three inputs

(A, B, Ci) and two outputs (S, Co). The carry out (Co) of each adder is fed to the next full adder (i.e

each carry bit "ripples" to the next full adder).

Figure 4.1 Ripple Carry Adder

The addition process produces an 8 bit sum (S7 to S0) and a carry bit (Co,7). These bits are

concatenated to form a 9 bit addition result (S8 to S0) from which the Bias is subtracted. The Bias

is subtracted using an array of ripple borrow subtractors. A normal subtractor has three

inputs(minuend (S), subtrahend (T), Borrow in (Bi)) and two outputs (Difference (R), Borrow out

(Bo)). The subtractor logic can be optimized if one of its inputs is a constant value which is our

case, where the Bias is constant (127|10 = 001111111|2). Table 4.1 shows the truth table for a 1-bit

subtractor with the input T equal to 1 which we will call “one subtractor (OS)”.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3172

Figure 4.2: 1-Bit Subtractor

Table 4.1: 1-Bit Subtractor With The Input T=1

S T Bi Difference(R) B0

0 1 0 1 1

1 1 0 0 0

0 1 1 0 1

1 1 1 1 1

The Boolean equations (2) and (3) represent this subtractor:

(2)

(3)

Figure 4.3: 1-bit subtractor with the input T = 1

Table 4.2 shows the truth table for a 1-bit subtractor with the input T equal to 0 which we

will call “zero subtractor (ZS)” .

Table 4.2: 1-Bit Subtractor With The Input T=0

S T Bi Difference(R) B0

0 0 0 0 0

1 0 0 1 0

0 0 1 1 1

1 0 1 0 0

The Boolean equations (4) and (5) represent this subtractor:

(4)

(5)

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3173

Figure 4.4: 1-bit subtractor with the input T = 0

Fig. 4.4 shows the Bias subtractor which is a chain of 7 one subtractors (OS) followed by 2 zero

subtractors (ZS); the borrow output of each subtractor is fed to the next subtractor. If an underflow

occurs then Eresult< 0 and the number is out of the IEEE 754 single precision normalized numbers

range; in this case the output is signaled to 0 and an underflow flag is asserted.

Figure 4.5: Ripple Borrow Subtractor

4.3 Unsigned Multiplier (for significand multiplication)
This unit is responsible for multiplying the unsigned significand and placing the decimal point

in the multiplication product. The result of significand multiplication will be called the

intermediate product (IP). The unsigned significand multiplication is done on 24 bit. Multiplier

performance should be taken into consideration so as not to affect the whole multiplier’s

performance. A 24x24 bit carry save multiplier architecture is used as it has a moderate speed with

a simple architecture. In the carry save multiplier, the carry bits are passed diagonally downwards

(i.e. the carry bit is propagated to the next stage). Partial products are made by ANDing the inputs

together and passing them to the appropriate adder.Carry save multiplier has three main stages:

1- The first stage is an array of halfadders.

2- The middle stages are arrays of full adders. The number of middle stages is equal to the

significand size minustwo.

3- The last stage is an array of ripple carry adders. This stage is called the vector merging stage.

The number of adders (Half adders and Full adders) in each stage is equal to the significand

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3174

size minus one. For example, a 4x4 carry save multiplier is shown in Fig. 6.5 and it has the

followingstages:

1- The first stage consists of three halfadders.

2- Two middle stages; each consists of three fulladders.

3- The vector merging stage consists of one half adder and two full adders.

The decimal point is between bits 45 and 46 in the significand multiplier result. The

multiplication time taken by the carry save multiplier is determined by its critical path. The critical

path starts at the AND gate of the first partial products (i.e. a1b0 and a0b1), passes through the carry

logic of the first half adder and the carry logic of the first full adder of the middle stages, then

passes through all the vector merging adders. The critical path is marked in bold in Fig. 4.6.

 Figure 4.6: 4x4 bit Carry Save multiplier

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3175

1- Partial product: aibj = ai andbj

2- HA: halfadder

3- FA: fulladder

4.4 Normalizer

The result of the significand multiplication (intermediate product) must be normalized to have a

leading ‘1’ just to the left of the decimal point (i.e. in the bit 46 in the intermediate product). Since the

inputs are normalized numbers then the intermediate product has the leading one at bit 46 or47

1- If the leading one is at bit 46 (i.e. to the left of the decimal point) then the intermediate product is

already a normalized number and no shift isneeded.

2- If the leading one is at bit 47 then the intermediate product is shifted to the right and the exponent

is incremented by1.

The shift operation is done using combinational shift logic made by multiplexers.

4.5 Underflow/Overflow Detection

Overflow/underflow means that the result’s exponent is too large/small to be represented in the

exponent field. The exponent of the result must be 8 bits in size, and must be between 1 and 254

otherwise the value is not a normalized one. An overflow may occur while adding the two exponents

or during normalization. Overflow due to exponent addition may be compensated during subtraction

of the bias; resulting in a normal output value (normal operation). An underflow may occur while

subtracting the bias to form the intermediate exponent. If the intermediate exponent < 0 then it’s an

underflow that can never be compensated; if the intermediate exponent = 0 then it’s an underflow that

may be compensated during normalization by adding 1 toit.

When an overflow occurs an overflow flag signal goes high and the result turnsto

±Infinity (sign determined according to the sign of the floating point multiplier inputs). When an

underflow occurs an underflow flag signal goes high and the result turns to ±Zero (sign determined

according to the sign of the floating point multiplier inputs). Denormalized numbers are signaled to

Zero with the appropriate sign calculated from the inputs and an

underflow flag is raised. Assume that E1 and E2 are the exponents of the two numbers A and

B respectively; the result’s exponent is calculated by (6)
E result = E1 + E2-127 (6)

E1 and E2 can have the values from 1 to 254; resulting in Eresult having values from -125 (2-127) to

381 (508-127); but for normalized numbers, Eresult can only have the values from 1 to 254. Table III

summarizes the Eresult different values and the effect of normalization on it.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3176

 Table 4.3 Normalization Effect On Result’s Exponent

And Overflow/Underflow Detection

Eresult Category Comments

-125 ≤ Eresult< 0 Underflow Can’t be compensated during normalization

Eresult = 0 Zero May turn to normalized number during

normalization (by adding 1 to it)

1 < Eresult< 254 Normalized

number

May result in overflow during normalization

255 ≤ Eresult Overflow Can’t be compensated

4.6 Implementation AndTesting

The whole multiplier (top unit) was tested against the Xilinx floating point multiplier core

generated by Xilinx coregen. Xilinx core was customized to have two flags to indicate overflow and

underflow, and to have a maximum latency of three cycles. Xilinx core implements the “round to

nearest” rounding mode.

A test bench is used to generate the stimulus and applies it to the implemented floating point

multiplier and to the Xilinx core then compares the results. The floating point multiplier code was

also checked using Design Checker .

Design Checker is a linking tool which helps in filtering design issues like gated clocks,

unused/undriven logic, and combinational loops. Also the speed of Xilinx core is affected by the fact

that it implements the round to nearest rounding mode.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3177

5. SOFTWAR E DETAILS
5.1 Algorithm:

As stated in the introduction, normalized floating point numbers have the form of Z= (-1S)

* 2 (E- Bias) * (1.M). To multiply two floating point numbers the following is done:

Step 1: Multiplying the significand; i.e. (1.M1*1.M2)

Step 2: Placing the decimal point in the result

Step 3: Adding the exponents; i.e. (E1 + E2 – Bias)

Step 4: Obtaining the sign; i.e. s1 xor s2

Step 5: Normalizing the result; i.e. obtaining 1 at the MSB of the results’

Significand

Step 6: Rounding the result to fit in the available bits

Step 7: Rounding the result to fit in the available bits

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3178

YES

Overflowor

Underflow

Exception

NO

NO
Still

Normalized

YES

Done

Round the significant to the appropriate number

ofbits

Normalize the sum, either shifting right and

incrementing the exponent or shifting left and

decrementing theexponent

Add the significant

5.2 FlowChart:

Compare the exponent of two numbers. Shift

smaller number to the right until its exponent

would match the largerexponent.

START

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3179

6. RESULTS

6.1 RTL View

6.2 Technological View

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3180

6.3 Synthesis Report

Below Table Shows the Synthesis for final 32-bit floating point multiplier.

 Spartan 6
XC6SLX4

Virtex 7
XC7V285T

No. of Slices 1/4800(1%) 1/357600(1%)

No. of LUTs 72/2400(3%) 72/178800(1%)

No. of Bonded IOBs 97/102(95%) 97/600(16%)

Minimum Period 3ns 2.95ns

Maximum Frequency 333.33MHz 338.98MHz

Power Dissipation 14.4mW 545.7mW

Total memory usage 197MB 695MB

6.4 Simulation Results

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3181

7. ADVANTAGES & DISADVANTAGES
7.1 Advantages:

 They can represent values between integers.

 Because of the scaling factor, they can represent a much greaterrange

ofvalues.

7.2 Disadvantages:

 Rounds off largenumbers.

8. APPLICATIONS

8.1 Floating point multiplication is a most widely used operation in

DSP/Math processors, digitalcomputers.

8.2 Floating Point Arithmetic is extensively used in the field of banking, tax

calculation, currency conversion, and other financialareas.

9. CONCLUSION

Single Precision multiplier is designed and implemented using VHDL/Verilog and simulated using

Modelsim Simulator. One of the important aspects of the presented and implemented design method

is that it can be applicable to all kinds of floating-point multipliers. The presented design is

compared with conventional multipliers via synthesis. The synthesis results showed that the

proposed design is much faster and more efficient than conventional multipliers. The designed

multiplier conforms to IEEE 754 standard for floating point numbers. In this implementation default

rounding mode is used. The design is also verified for overflow and underflow cases and other

exceptions defined by IEEE standard.

10. FUTURE SCOPE

The future scopes of this project are to implement the proposed floating point arithmetic unit

using Field-Programmable Gate Arrays (FPGAs). This project presents an implementation of a

floating point multiplier that supports the IEEE 754-2008 binary interchange format, the multiplier

doesn’t implement rounding and just presents the significand multiplication result as is (48 bits).

This gives better precision if the whole 48 bits are utilized in another unit i.e. a floating point adder

to form a MACunit.

http://www.jetir.org/

© 2020 JETIR October 2020, Volume 7, Issue 10 www.jetir.org (ISSN-2349-5162)

JETIR2010414 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 3182

11. REFERENCES

1.M Al-Ashrafy, A Salem and W Anis, “An efficient implementation of floating point multiplier”, in

Proc. IEEE Electronics, Communications and Photonics Conference (SIECPC), Saudi International,

April 24-262011.

2. Tejaswini H N, Dr. Ravishankar C V, “Single Precision Floating point Numbers Multiplication using

standard IEEE 754” International Journal of Advanced Research in Electronics and Communication

Engineering (IJARECE) Volume 4, Issue 6, June2015.

3. Surendra Singh Rajpoot, Nidhi Maheshwari, D S Yadav, “ Design and implementation of efficient

32-bit floating point multiplier "International Journal Of Engineering And Computer Science

ISSN:2319-7242 Volume 2 Issue 6 June 2013 Page No.2098-2101.

4. Priyanka Koneru, M Tinnanti Sreenivasu, Addanki Purna Ramesh, "Asynchronous Single Precision

Floating Point Multiplier Using Verilog HDL" International Journal of Advanced Research in

Electronics and Communication Engineering (IJARECE) Volume 2, Issue 11, November2013.

5. Mr. S.S.Mohanasundaram, A.Nirmal kumar, T.Arul prakash, "Design of Floating Point Multiplier

Using Vedic Mathematics" IJISET - International Journal of Innovative Science, Engineering &

Technology, Vol. 2 Issue 1, January2015.

http://www.jetir.org/

