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Abstract

The availability of the humongous amount of multi-
modal content on the internet, the multimodal senti-
ment classification, and emotion detection has become
the most researched topic. The feature selection, context
extraction, and multi-modal fusion are the most impor-
tant challenges in multimodal sentiment classification
and affective computing. To address these challenges
this paper presents multilevel feature optimization and
multimodal contextual fusion technique. The evolution-
ary computing based feature selection models extract a
subset of features from multiple modalities. The con-
textual information between the neighboring utterances
is extracted using bidirectional long-short-term-memory
at multiple levels. Initially, bimodal fusion is performed
by fusing a combination of two unimodal modalities at a
time and finally, trimodal fusion is performed by fusing
all three modalities. The result of the proposed method
is demonstrated using two publically available datasets
such as CMU-MOSI for sentiment classification and
IEMOCAP for affective computing. Incorporating a sub-
set of features and contextual information, the proposed
model obtains better classification accuracy than the two
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standard baselines by over 3% and 6% in sentiment and
emotion classification, respectively.
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1 | INTRODUCTION

The increased usage of smartphones and the availability of affordable internet facilities led the
user to post an audio-visual review on social media networks.! Hence, the multimodal senti-
ment classification and affective computing have become more popular among the researchers.
The industries are using this large amount of information to increase their revenue. They per-
form sentiment analysis and emotion detection to understand the mood of customers towards
their service, product, complaints, suggestions, etc. The advantage of analyzing multimodal con-
tent over the textual data is the availability of audio-visual content, which greatly improves the
overall performance of the system. In multimodal sentiment classification and affective com-
puting, features are extracted from individual modalities such as text, acoustic, and visual.> The
main issues in multimodal sentiment analysis and affective computing are feature selection and
multimodal fusion. The features extracted from individual modalities are of high dimensional in
nature and many of these features are redundant and irrelevant. Due to this, the training and
testing process takes more time and many times degrades the training accuracy. This issue can
be dealt with logically by selecting important features from individual modalities. The evolu-
tionary computing based models such as genetic algorithm (GA), particle swarm optimization
(PSO) and greedy search based genetic algorithm (GGA) are built for selecting a subset of
features.

The multimodal data is divided into small segments called utterances and each video is a
sequence of utterances. The effective polarity or emotion of an utterance may depend on the
outcome of neighboring utterances (ie, contextual knowledge). For multimodal fusion, either
early (feature level) fusion® or late (decision level) fusion* techniques are used. These sim-
plistic models will not extract the contextual information among the utterances. Also, the
audio-visual data may contain redundant and irrelevant information, which cannot be handled
by these traditional fusion techniques. These issues are addressed by selecting a subset of features
and using a multimodal contextual fusion technique for fusing the information from multiple
modalities.

The contributions of the proposed model are,

+ Designing evolutionary computing based models such as GA, PSO, and GGA for feature
selection.

» Early fusion, late fusion, and recurrent neural network-based models restrict the extrac-
tion of contextual information among the neighboring utterances. Hence, bidirectional
long-short-term-memory (biLSTM) based model is designed to extract the context among
utterances at multiple levels and multimodal fusion for fusing information from multiple
modalities.
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+ The performance of the proposed model was demonstrated using two publically available
datasets. The results show that the proposed model achieves higher accuracy than the stan-
dard baselines. Also, the time required for training the model with a subset of selected features
is relatively less compared to all features.

The structure of the remaining article follows: the important recent work in feature selection
methods, multimodal sentiment analysis, affective computing, and traditional multimodal fusion
techniques is discussed in Section 2. The proposed multi-level feature selection, weighted feature
ensemble, and multimodal fusion techniques are discussed in detail in Section 3. Section 4 gives
the experimental results and analysis of the proposed model. Finally, the future work in multi-
modal sentiment classification and emotion detection is presented and concludes the article in
Section 5.

2 | LITERATURE REVIEW

The multimodal data from the internet is analyzed for understanding the user's sentiment or emo-
tion towards a product or a service.® The sentiment analysis and affective computing have a lot
of challenges such as subjectivity analysis,® aspect detection and consideration,’ topic detection
and tracking,® document summarization.® The earlier research concentrates on textual data for
sentiment analysis'® but more recently multimodal data such as textual-acoustic-visual modal-
ity were considered for sentiment classification and affective computing.!! Usually, handcrafted
features!? or lexicons!® or networks!* or ontologies!® are used in sentiment classification.

Feature selection is one of the main issues in machine learning. The aim of feature selection
is to select the important features for a given problem. By removing the redundant, irrelevant and
ambiguous features, the feature selection reduces the dimensionality and improves the training
process of the machine learning task and also improves the classification accuracy.'® Most of the
existing feature selection models use either exhaustive search!’ or heuristic search'® or backtrack-
ing algorithm.!® The experimental results show that the performance of the heuristic algorithm
is the same as the backtracking algorithm but heuristic search-based algorithm takes much less
time. More recently evolutionary computing-based algorithms are being used to address the
feature selection issue. Traditional search based methods need domain knowledge, but evolution-
ary computing-based algorithms work without domain knowledge. These algorithms make an
assumption about the search space.

Another issue in multimodal affective computing is multimodal fusion.?’ Multimodal senti-
ment analysis is performed on movie reviews collected from YouTube.?! Unigram, bigram and
trigram bag of word features for textual modality, head pose, gaze direction and smile intensity
of facial modality and acoustic features like low-level descriptors (LLD) were extracted. Linguis-
tic features are trained using support vector machine and audio-visual features are trained using
bidirectional long short-term memory and cross-domain Metacritic corpus was used to evaluate
the proposed model.

The multimodal opinion Utterances dataset (MOUD) dataset containing video reviews in the
Spanish language proposed in Reference 3 Bag-of-word representations for textual data, smile
duration, facial expressions for visual modality and MFCC features for acoustic modality are
extracted.?? Early fusion was used to merge the unimodal features from individual modalities
and show that the multimodal model outperforms the unimodal model. Multimodalities such
as text-video-audio were used to detect sentiment intensity in Reference 23. Feature level and



QUII) UOIINJIIXd pasn Sem sainjesaj uoisny uoisny I0J] N¥ Yy

5
m SSOT JIM AOBINDIE UOTIBIIJISSE[D UT [ensia 10y NND € pUe d1snooe [eNIX)U0D ‘UOTIOJ[3S INJ LY dVDOONAI
= saureseq pIepue)s ayj surojradinQ 10 HTINS uadQ ‘Tenixa) 10§ NND [e2TYOIeISTH I0J VOO ‘OSd ‘VO ISON-NIND J1om pasodoig
m aqnInox
T S[opoul [epowIun uorsng s[opout ‘OINININ-LOI
w10319dino suonejuasardor JuIof S9INJEJ [BNSIA PUE ONSIIUIT ONISN0dY [edryoreIsl  9ouanbas 0) aduanbag ‘ISOIN-NIND  810T ozIB 19 Weyq
KoeIndoe UONEIIJISSE]d pasn sem saInjesy
JO SULId) UI %T A0 AqQ [ensIA 10 NND d€ pue d1jsnode uorsng (N sxj10MI9U ISON-NIND
auI[eseq pIepuels 9y} surojradinQ 10] ATIAS uadQ ‘Tenixa) 10y NND [edryoIeIaTH [BINSU JUSIINIY ‘AVOOWAIL 8107 [® 1 Jopwnfe|y
poyaw (THIN)
SoUI[aseq pIEpUE)S A} Surures [ouIay OIWININ-LOI
sur1oy1adino poypewr pasodord oy, s9INIES [BNSIA PUB ONSIMFUI] ONSNOJY  UOISNJ UOISId  S[dNNUI [BUOHIN[OAUOD 29 9qNINOX ‘ANOIN LIOT 4zIB 19 BLIOd
I91ISSB[d NNV PUB INAS pasn a1e
‘U0ISNJ [9A3] UOISIOdP 0} paredwod SaINJedJ [BNIX3) PIseq-J9N J1IUSS pue UOBOIJISSe[d
191399 ISlISSed IN'TH pue werd-1deouo) pue Yyq uado ‘LT uorsny I0J pasn
UOISNJ [9A9]-2INJEdJ JO A0eINOOE AU SIS Sursn saInjesj onsnode 29 [ensip  UOISIOdP/aInjedd ore NNV 2 ITH ‘INAS jJaserep aqnINox 9107 48 19 BLI0g
Pa1oeInXd
d19m AjITepout [ensiA woiy asod
uontugoda1 A1And3[qns ur peay ¥ T4 ‘Nvd 29 orpne woj adofs uoisnj sisA[eue
SISATEU® [EPOW[NUI JO SSOUIAIORFH  yead pue DDA 1%9) oY) WOIy SWeISN [9AS] UOTSIOd (T £1a1309[qNs 103 INAS ISON-NIND STO0T cZUoPeZ
M - [opou [epOWITUN Y} UBY) 19139q $10}d1I0S9P [9AJ[-MO]
=5 suroyrad [opow [epown U pue ‘DDA ‘uonoaIrp azes ‘osod uorsny (ystueds)
W.W. o) 18]} POMOYS SyUSWLIddXH peay ‘uoryeInp JTWS ‘spiom-jo-Seq [9A9] 9INJed  UONBOIISSE]D I0J INAS jaserep CNOIN  £10T 1B 19 sesoy
S= S[opour fepowitun 0) paredurod uoIsny UOT}BOTJISSE[D (ystueds)
m %G°0T AQ PaONPaI Sem 9)BI JOIID Y], SOINJEdJ [ENSIA PUE ONSMSIUI] ‘ONISNOdY [9AS] 2IN3edq JUSWITIUSS I0J INAS 19se1ep ANOIN €10T ¢[B 19 SBSOY-Za19d
S PaIapISUOD sisATeue
[1] IOU SIA}[epOW [BNIX3} AU JI USAD s103d110S9p [ensIA-oIpne 10§
—l 191399 sI Kj1[epoW JO UOHBUIQUIOD [9AS]-MO] ‘UoT)ORITp 9Ze3 ‘osod uoisny 1S9 2 SisA[eue
M [ensIA-OIpNE JO dOUBWLIOJId] peay “Kisusjur S[Tws ‘spiom-jo-Seq [9AS] 2InJed] onsm3ury 103 INAS OWIWIN-IDI €107  1[®10 IoWOM
sSurpurg SaINyedq uorsny wyILIosry jaseje JIedx ‘ou ‘Joy
repownm

864

UOT}93}9P UOTIOUId PUE SISATRUE JUSWIIUSS [EpOWT) [N U0 Apnjs oaneredwo) T FTIV.L



HUDDAR ET AL.

Computational 865
Inte{'liqence -WILEY

i)

decision level fusion techniques and support vector machines (SVM), extreme learning method
(ELM) and artificial neural networks were used as a classifier in Reference 4

The textual, visual and acoustic features are extracted using the convolutional neural network
(CNN) and sentiment and emotion recognition are performed using multiple-kernel learning.?*
They constructed the CMU-MOSI dataset of 93 videos collected from YouTube. Ngrams from a
textual modality, MFCC and peak slope from acoustic modality and facial action units (FAU),
facial landmarks (FL) and head pose from visual modality were extracted. Instead of a traditional
feature level or decision level fusion, hierarchical fusion was used in Reference 25. The proposed
novel fusion technique outperforms the standard baselines by over 1%. Sequence-to-sequence
based model is used to understand the joint representation between multiple modalities.?
Recently shallow fusion models such as Tensor fusion?” model are built for multimodal senti-
ment classification. Table 1 shows the comparative study on multimodal sentiment and emotion
classification.

Research gaps:

The existing methods use CNN for extracting textual features, Open SMILE or Open EAR for
extracting acoustic features and FSDK 1.7 or 3D CNN for extracting visual features. The dimen-
sionality of the unimodal feature vector extracted using these methods is large and may contain
irrelevant and redundant features. The traditional fusion techniques use all raw features for train-
ing sentiment and emotion classification model. This makes the training machine learning task
slow and may produce contradictory results. Unlike the existing methods, the proposed model
extracts the subset of features from individual modalities using evolutionary computing based
feature selection methods. The bidirectional LSTM is used to extract the contextual data from a
subset of features. Finally, multilevel contextual fusion is used for multimodal sentiment anal-
ysis and affective computing. Finally, the model is demonstrated using two publically available
standard datasets.

3 | PROPOSED METHODOLOGY

This section discusses the proposed feature selection models and multimodal contextual fusion
in detail. The Overview of the proposed model is:

« First, textual, acoustic and visual features are extracted at utterance level.

« The evolutionary computing based feature selection model is used for selecting a subset of
features of individual modalities.

+ Unimodal contextual features are extracted using bi-LSTM
» Two-two modalities are fused at a time to get the bimodal features.

« A bimodal subset of features is selected and bimodal contextual features are extracted using
bi-LSTM.

+ All modalities are fused to get trimodal feature vector

« A trimodal subset of features is selected and contextual features are extracted using
bi-LSTM.

« The utterance-level multimodal contextual feature vector with a subset of features is finally
used for sentiment and emotion classification.
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FIGURE 1 Proposed multi-level feature optimization and multimodal contextual fusion methodology
[Color figure can be viewed at wileyonlinelibrary.com|

The proposed multi-level feature optimization and multimodal contextual fusion methodol-
ogy is shown in Figure 1 and discussed in detail in further sections.

The subset of features is selected using evolutionary computing based feature selection meth-
ods. Let F be the feature set, A be the accuracy and T be the execution time with all features, then
the objective function of feature optimization is to select the optimal subset of features F,

F, = featureSelect(F,A, T), (1)

such that A;> A and t; < t, where Ay is the accuracy and f; is the execution time with a subset of
features.
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3.1 | Dataset used

The proposed models are evaluated on two publically available multimodal datasets such as
IEMOCAP?® and CMU-MOSI® for multimodal sentiment analysis and emotion classification,
respectively.

311 | IEMOCAP

The IEMOCAP dataset contains two way recorded dyadic dialogs between two speakers. The
dataset is a collection of 302 videos and each video is divided into multiple small segments or
utterances. Each segment or utterance is annotated by multiple assessors for the presence of
nine different emotions such as angry, excitement, fear, neutral, surprised, frustrated, happi-
ness, sadness, and disappointment. To be in line with the recent research, the study considers
four emotion states such as angry, happiness, neutral and sadness for the experimentation. To
evaluate the proposed model the dataset is divided into train-test sets (such that the splits are
speaker-independent). Table 2 shows the train-test split of the IEMOCAP dataset.

31.2 | CMU-MOSI

The CMU-MOSI dataset is a collection of 93 opinion videos collected from YouTube. The dataset
is divided into 2199 small opinion segments with an average of 12 words per segment and
4.2 seconds of segment length. Each of the segments is rigorously annotated by 5 assessors with
scores in the range of [-3, +3], with —3 and + 3 being the extremely negative and extremely posi-
tive sentiment, respectively. The voted average of five assessors is taken as the sentiment for each
segment. Similar to the IEMOCAP dataset the experiments are conducted on positive and nega-
tive sentiment utterances. To assess the model the dataset is divided into train-test sets and Table 3
shows the train-test split of the CMU-MOSI dataset.

3.2 | TFeature extraction

The feature extraction from multiple modalities and features optimization are the important
requirements of the proposed method. This section describes the utterance or segment level
feature extraction from textual, audio and video modalities.

TABLE 2 Train-test split of IEMOCAP

Happy Angry Sad Neutral
dataset

Train 1194 933 839 1324
Test 433 157 238 380

TABLE 3 Train-test distribution of CMU-MOSI dataset ees q
Positive Negative

Train 709 738
Test 467 285
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3.2.1 | Textual feature extraction

Each video utterance is transcribed to get the textual transcription. Convolutional Neural Net-
work (CNN) model is used to extract the utterance level textual features.® The word2vec vectors
representation is used to extract the context from the textual data. The number of words in each
utterance is different; hence, either an utterance is truncated or padded with null data to prepare
the uniform feature vector. The three convolutional layers are used to process the wor2vec vec-
tor representation of utterances. Filters of size 4, 3, 2 and 50, 75 and 100 feature maps are used in
the three convolutional layers, respectively. Window size 2 x 2 with the max-pooling operation is
used in all three layers. A fully connected layer with 600 computational units with ReLU3! acti-
vation function is used between the convolutional layers and the softmax classifier. The output of
the CNN is considered as the textual features.

Let ¢; is the textual feature vector of i utterance and n is the number of utterances then, the
textual feature vector ¢ of the dataset is represented as,

t=<ty,ttz,...... S > (2)

3.2.2 | Audio feature extraction

The OpenSMILE?? is a cross-platform audio analysis toolkit used for speech preprocessing and
audio feature extraction in real-time. The utterance level audio features such as Mel-frequency
cepstral coefficients (MFCCs), voice intensity, pitch, root quadratic mean, skew-ness, amplitude
mean, arithmetic mean, SD, quartiles ranges, interquartile ranges, and linear regression slope are
extracted at a frame rate of 30 Hz and a sliding window of size 100 ms.

Let q; is the audio feature vector of i utterance and n is the number of utterances then, the
audio feature vector a of the dataset is represented as,

a=<a,0a,0as,... ... ,dn > . 3)

3.2.3 | Visual feature extraction

In the recent literature object detection, human action recognition and classification task are
successfully addressed using the 3D-CNN models.3>3* The results show that the 3D-CNN based
models outperform the standard baselines in object detection, object tracking, and video classi-
fication. The 3D-CNN model is used to extract frame-level visual features as well as temporal
features across frames.>> The study replicates the same process for extracting the temporal
features across frames and visual features at the frame level from visual modality.

Let v; is the visual feature vector of i utterance and » is the number of utterances then, the
video feature vector v of the dataset is represented as,

V=<V1,V3,V3,...... LV > . 4)

3.3 | Feature selection

Feature selection in machine learning is the process of identifying and selecting a subset of
important features, which enables the faster training of machine learning models, reduces
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the over-fitting problem with higher accuracy. GA and PSO are evolutionary computing based
optimization algorithms. These algorithms are widely used in many fields to address the problem
of optimization. This section discusses the evolutionary computing based three feature selection
methods such as GA, PSO, and G GA. In feature selection algorithm a subset of features is selected
and rest are discarded in every evolution. The model is evaluated using the selected features until
the stopping criterion or number of generations is reached. The binary strings are used to repre-
sent selected and unselected features. The selected features are represented with 1 and unselected
features with 0.

3.3.1 | Particle swarm optimization based feature selection

The PSO based feature selection algorithm considers every possible subset of features in the popu-
lation as a particle. The position of i particle (feature subset) at g generation is denoted by X;(¢).
For each generation, based on the fitness value or best position, the global best (gbest) for whole
swarm and local best (pbest) for particle are set. The movement of particles (feature subsets) is
controlled by global and local best particles. The velocity and position of the particles are updated
as:

Vir(@+ 1) =w s vi(g) + c1 * 11 * (Ibest —vi(g)) + ¢, * 1y * (gbset — X;(g)), (5)
X+ 1) =Xi(@ + Via(@g+ 1), (6)
i=1,2,3,...... ,N (Number of particles)

g is the number of generations

w is the inertia weight

0 <= c; and c; <= 2 are known as cognitive and social constants.

r1 and r, are uniformly distributed random numbers.

Vi(g) and X;(g) are the velocity and the position of i particle at g™ generation.

7

e ( h | Initialize ( N s

(" start )y Generate Particles _% Find Fitness

) ' Particl - Ibest, gbest Function

B o e articles P | Position | & N
-

)

Update

Stopping
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Position

-

Solution
o ¥

Return Best l

FIGURE 2 Stepsin particle swarm optimization based feature selection
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TABLE 4 Particle
Input: The training data set with N attributes and K examples swarm optimization based

Output: Feature subset feature selection
Initialize Parameters
Initialize Population

while (The stopping criterion is not met or the Number of
generations) then

do
for (i = 1 to number of particles)
do
if the fitness of X;(g) is greater than the fitness of lbest then
do
update lbest = X;(g)
end if
if the fitness of X;(g) is greater than the fitness of gbest then
do
update gbest = X;(g)
end if
Update velocity
Update particle position
Next particle
end for
Next-generation

end while

Through experience, the values of w and constants (c¢; and ¢,) are set to 0.01 and 0.02, respec-
tively. Figure 2 shows the basic steps in the proposed PSO algorithm for feature selection and is
summarized in Table 4.

3.3.2 | Genetic algorithm based feature selection

The genetic algorithm starts with initializing the population. Crossover is performed over two
randomly selected individuals (features) from the population followed by the mutation depending
on the mutation rate. The fitness function gives the relative importance of each feature. A group
of best features is selected based on the fitness function to form the new population for the next
generation. Fixed number generations are used as the stopping criteria for the GA. Figure 3 shows
the flowchart for the GA based feature selection and is summarized in Table 5.

3.3.3 | Greedy search based genetic algorithm for feature selection

In every generation, a GA based feature selection algorithm calculates the fitness values for both
parents and children (offspring). Hence, the computational time for every generation is two times
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TABLE 5 Genetic algorithm
based feature selection Input: The training data set with N attributes and K examples

Output: Feature subset
Initialize Parameters
Initialize Population

while (the number of generations)

do
Randomly select two individuals at a time from
the population and perform crossover and mutation.
Calculate the fitness of two parents and two children.
Based on the fitness value select the top two individuals
to form the new population for the next generation.
end while

longer than the time taken by particle swarm optimization. To overcome this disadvantage, a
greedy search based GA for feature selection is proposed. The steps in the proposed algorithm are
shown in Figure 4 and summarized in Table 6.

3.3.4 | Fitness evaluation

To evaluate the selected features using a feature selection algorithm, two classifiers are used,
namely a decision tree and logistic regression. 10-fold cross-validation is performed with each of
these classifiers to calculate the fitness value for the generation. In 10-fold cross-validation, the
dataset is divided into 10 parts, nine parts are used for training the model and one part is used for
testing the model 10 times. Finally, an average of 10 iterations is considered as the fitness value
for the generation.

3.4 | Multimodal fusion

The extraction of contextual information among the neighboring utterances of multimodal
data and multimodal fusion are the challenges of multimodal sentiment analysis and affective
computing. These steps are discussed in detail in this section.
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TABLE 6 Greedy search based genetic algorithm for feature selection

Input: The training data set with N attributes and K examples

Output: Feature subset

Initialize two parents, first parent with all selected and second parent with all unselected.

P1=[1,1,1,...... ,1]

P2=10,0,0, ... ... ,0]

while (the number of generations)

do
Perform crossover on two parents P1 and P2 to generate the cross-over group.
Randomly select two individuals from the crossover group and perform mutation.

Each time perform mutation on one bit from the randomly selected individuals
and save the result as mutation group.

Select an equal proportion of individuals from the mutation and crossover group.

Calculate the fitness value on the selected population and save the best and
second-best genes depending on the fitness value.

The first and second-best individuals are the two parents P1 and P2 for the next
generation, respectively.

end while

3.41 | TUnimodal feature vector

Once the features are extracted from audio, textual and video modalities, a subset of features is
selected using a GA, PSO, and GGA. The unimodal feature vector with a subset of features for
audio, textual and video modalities is denoted by T, As, and Vi and represented as:

Tfs =<T1,T5,T;s,...... , Ty >, (7)

Afs :<A1»A29A3,---,An >, (8)
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VfS =< V19V23 V39 cee 9Vn >, (9)

where n is the number of utterances and T;, A; and V; are the subset of features selected for it
utterance.

As the video is divided into small utterances as such they may not be complete sen-
tences and the effective opinion or emotion of an utterance may depend on the results of
neighboring utterances. Hence, after selecting the important subset of features, bidirectional
LSTM based model is used to extract the contextual information among the utterances and is
represents as:

Ty = bILSTM(T ). (10)

Afse = BILSTM(A ). (11)

Ve = BILSTM(V 7). (12)
3.4.2 | Bimodal feature vector

The bimodal contextual feature vector is constructed by concatenating two of the unimodal con-
textual feature vectors at a time. The bimodal feature vector with a subset of features is represented
as,

TArs =<TA,,TA,TAs,..., TA, >, (13)
TV s =<TV 1, TV, TV3,...., TV >, (14)
AV ;s =< AV 1, AV, AV 3, ..., AV >, (15)

where XY; is the i utterance bimodal feature vector obtained by concatenating uni-
modal contextual feature vector with a subset of features of X and Y modalities and is

represented by,
XY; = Concatenate(Xj, Y;). (16)

Furthermore, as in the case of unimodal feature vector construction, the biLSTM based
model is used to extract the bimodal contextual information among the utterances and is

represented as,

T Ay = biLSTM(T Ay). (17)
TV sy = ILSTM(TV /). (18)

AV ;i = bILSTM(AV ). (19)



&I—Wl LEYﬂ (omputational HUDDAR ET AL.

Intelligence

3.4.3 | Trimodal feature vector

The trimodal (audio-text-video) contextual feature vector is formed by concatenating the three
modalities. Hence, bimodal contextual feature vectors are fused to get the trimodal contextual
feature vector and is represented as,

TAV ;s =<TAV,TAV,,TAV;,..., TAV , >, (20)

where XYZ; is the i'" utterance trimodal feature vector obtained by concatenating bimodal con-
textual feature vector with a subset of features of X, Y, and Z modalities and is represented by,

XY Z; = Concatenate(X;, Y;, Z;). (21)

Similar to unimodal and bimodal feature vector construction, the biLSTM based model is used
to extract the trimodal contextual information among the utterances and is represented as,

TAV ;,. = biLSTM(T AV ). (22)

3.5 | Weighted feature ensemble

The unimodal subset of features is selected using evolutionary computing based feature selection
algorithms such as GA, PSO, and GGA. The weighted ensemble feature vector is constructed in
three steps. The first union of a unimodal feature vector that is a feature pool is formed. Second,
the frequency of each feature is calculated. Finally, the weighted feature vector is constructed
using the feature pool and weight of each time.

The union of feature vector is represented as,

fu =<f1’f2’f3’ ------ ’fn >, (23)

where n is the number of features in the union of features and f €{T, A, V}. The weighted
ensemble feature vector is represented as,

n
fo= D wixf; (24)
i=0
where w; is the weight of each feature in the feature pool.

3.6 | Training and classification

The trimodal contextual feature vector with a subset of features TAV g is fed as input to a softmax
classifier. The softmax classifier predicts the label J for testing utterance. The softmax output
classifier is represented as,

py|U) = softmax (ws TAV 4 + b ), 25)

where wg and by are weight matrix and bias matrix, respectively.
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TABLE 7 Proposed multi-level feature optimization and multimodal contextual fusion

1: Procedure FeatureExtraction(U)
2: foriinltoNdo:

3: T; « textualFeatures(U;)

4:  A; < audioFeatures(U;)

5: V; < videoFeatures(U;)

6 : Procedure FeatureSelection(F)

7:  Fpy = fSelect(F)

8:  returen (Fg)

9 : Procedure ContextExtraction(F)
10:  Fg, < biLSTM(F)

11:  return (Fg)

12 : Procedure BimodalFusion(X,Y)
13: foriin1toNdo:

14: XY; = Cocatanate(X;,Y;)
15: XY « (XY ,XY,, ... ... ,XYN)
16: return(XY)

17: Procedure TrimodalFusion(X,Y, Z)

18: foriin1toNdo:

19: XYZ; = Concatenate(XY;,XZ;,YZ;)
20:  XYZ —(XYZ,XYZ,,...,XYZy)

21: return (XYZ)

22: Procedure Classification (F)

23: p(YI F) = softmax (w; F+b; )
24: y=arg max p QIF)

25:  return (y)

26 : FeatureExtraction(U)
27:forFe{T,A,V}

28: Fj = FeatureSelection(F)
29:forFe{T,A,V}

30: Fg < ContextExtraction(Fy,)

31: TAg < BimodalFusion( Tje, Age)
32: TV < BimodalFusion( T, V)
33: AV, < BimodalFusion( A, Vi)
34:for F e {TA, TV,AV}

35: Fp < ContextExtraction(Fp)

36 : TAVj, < TrimodalFusion(TAg, TV 5, AV )
37: TAV . < ContextExtraction(TAV g)
38:foriin1 to N do:

39: C « Classification (TAV )

Procedure to extract unimodal features

Procedure to extract unimodal subset of features
fSelect e{PSO, GA, GGA}

Procedure to extract unimodal context

Procedure for Bimodal fusion where X ! =Y €{T, A, V}

Procedure for Trimodal fusion
whereX! =Y! =Z€{T, A, V}

Procedure for classification of utterance into discrete
number of classes

Unimodal Feature Extraction

Feature Selection

Unimodal Context Extraction

Bimodal Fusion

Bimodal Context Extraction

Trimodal Fusion

Trimodal Context Extraction

Classification
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Let p is the probability of predicted distribution for the utterance classes, that is, happi-
ness, anger, neutral and sadness for affective classification and positive and negative polarity for
sentiment classification, then the predicted label y for the utterance is defined as,

y =arg max (p @IU)). (26)

Given the multimodal data, the proposed model is tested by using the cross-entropy loss
function L(6). The function (cross-entropy) is defined as,

L) = — ¥, log¥] + A Z 02, (27)

z|~
™M=
Mz

Il
—-
Il
—

J

where N is the number of utterances and M is a number of classes in the training data. y; is the
true label and 3, is the predicted label of the ™ utterance (the label is either positive or negative
for sentiment classification and happiness, anger, sadness or neutral for emotion classification).
A and 6 are L2-regularization and parameter set constants, respectively.

The steps in proposed multi-level feature optimization and multimodal contextual fusion are
summarized in Table 7.

4 | RESULT ANALYSIS AND DISCUSSION
4.1 | Experimental setup

The feature selection methods such as GA, PSO, and greedy search based GA are implemented
in python. The logistic regression and decision tree algorithm from Scikit-Learn Library is used
as a fitness function. Also, the multimodal fusion and classification are implemented in python
using Keras library with tensor-flow as backend. Experiments are conducted on Tesla K80 GPU
with 12GB RAM.

4.2 | Feature selection

Experiments are conducted on two publically available datasets such as IEMOCAP and
CMU-MOSI. Initially, accuracy is calculated using all features with decision tree and logistic
regression classifiers. The results are shown in Table 8. The textual modality obtains the max-
imum unimodal accuracy of 77.23% and 77.29% for IEMOCAP and CMU-MOSI dataset with
logistic regression as a classifier. The audio modality obtains the minimum accuracy of 55.69% and
65.62% for IEMOCAP and CMU-MOSI dataset with decision tree and logistic regression classifier,
respectively.

Next, a subset of features is selected using PSO, GA and GGA based features selection
methods. Decision tree and logistic regression classifiers are used as a fitness function. The
experimental results on IEMOCAP and CMU-MOSI datasets are shown in Table 9. Population
and generation per iteration are set to (30, 100). The results show that a subset of features
selected using evolutionary computing based feature selection methods performs better than the
unimodal models with all features in terms of classification accuracy. The maximum accuracy
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TABLE 8 Unimodal accuracy with all features

IEMOCAP dataset CMU-MOSI dataset
Modality Decision tree Logistic regression Decision tree Logistic regression
Text 72.22 77.23 66.07 77.29
Audio 55.69 60.76 66.85 65.62
Video 68.02 60.88 68.03 72.94

TABLE 9 Subset of features selected using evolutionary computing algorithms

IEMOCAP dataset CMU-MOSI dataset

Decision tree  Logistic regression = Decision tree  Logistic regression

Modality NFS Acc NFS Acc NFS Acc NFS Acc
PSO Text 53 70.76 51 77.14 31 74.14 58 77.27
Audio 22 58.47 27 61.52 22 68.73 26 66.55
Video 49 68.39 25 62.76 29 70.41 52 73.33
GA Text 53 72.72 61 77.22 43 73.76 47 77.36
Audio 52 63.04 45 61.67 47 68.73 45 66.55
Video 50 69.49 58 62.90 48 70.60 42 73.46
GGA Text 96 73.53 92 77.28 29 74.31 73 77.34
Audio 04 68.28 57 61.69 32 68.86 18 67.09
Video 11 69.31 52 62.80 42 70.93 44 73.30

Abbreviations: Acc, accuracy; NFS, no of features selected.

obtained by unimodal modalities is shown with bold letters. GGA based feature selection method
achieves maximum accuracy for textual and audio modalities and GA based approach for video
modality.

4.3 | Multimodal contextual fusion

The results of proposed multimodal contextual fusion with a subset of features are compared with
state-of-the-art baselines.*?” CNN based model, OpenSmile toolkit and CLM-Z model are used
to extract textual, audio, and visual features, respectively.* They construct bimodal and trimodal
feature vectors by concatenating the unimodal feature vectors. Multiple-kernel learning classi-
fier was used to classify the bimodal and trimodal feature vectors. Novel fusion technique was
proposed in Reference 27 called tensor fusion.

Tables 10 and 11 gives the comparison of results of proposed models with standard base-
lines on IEMOCAP and CMU-MOSI dataset, respectively. Tables 9-11 show that the bimodal and
trimodal models outperform the unimodal model by a huge margin in terms of classification
accuracy. Weighted feature ensemble approach achieves the maximum classification accuracy of
83.11% and 82.42% with text-audio and text-audio-video combination of modalities for IEMOCAP
and CMU-MOSI dataset, respectively.
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TABLE 10 Comparison of results of proposed models on IEMOCAP dataset

Proposed bi-LSTM models (Accuracy)

All features GA based FS PSO based FS GGA base FS

Modality Poriaetal* Zadeh et al?’ LR DT LR DT LR DT WFE
T+A 73.7 71.1 77.06 81.04 81.04 81.95 79.55 77.81 80.29 80.71
T+V 74.1 73.7 76.65 81.37 79.22 78.06 78.47 81.70 82.53 83.11
A+V 68.4 67.4 70.00 74.32 72.34 71.68 71.68 72.16 75.00 75.14
T+A+V 741 73.6 80.38 81.29 82.20 79.30 80.62 80.79 80.38  82.69

Abbreviations: A, audio; DT, decision tree; FS, feature selection; LR, logistic regression; T, text; V, video; WFE, weighted
feature ensemble.

TABLE 11 Comparison of results of proposed models on CMU-MOSI dataset

Proposed bi-LSTM models (Accuracy)

All features GA based FS PSO based FS GGA base FS

Modality Poria etal* Zadeh et al*’ LR DT LR DT LR DT WFE
T+A 77.3 77.0 78.85 80.31 78.98 78.98 79.52 78.85 78.85  80.05
T+V 77.8 77.1 79.12 79.65 79.12 79.38 80.18 79.65 79.12  79.38
A+V 57.9 56.5 65.44 68.06 68.97 65.75 68.65 64.83 68.96 69.54
T+A+V 78.7 77.2 79.52 80.84 80.70 81.22 81.63 80.94 81.49 82.42

TABLE 12 Comparison of the execution time of proposed models for IEMOCAP dataset

Proposed bi-LSTM based (time in seconds)

GA based FS PSO based FS GGA Base FS

Weighted feature
Modality  All features LR DT LR DT LR DT ensemble
T+A 108.47 77.83 76.51 83.47 90.65 82.01 81.91 89.26
T+V 106.48 78.50 78.49 82.54  89.90 80.75 82.32 90.61
A+V 103.63 77.85 79.00 83.48 93.67 84.71 82.13 91.56
T+A+V 135.03 103.94 105.9 88.77 104.16 87.80  88.32 97.73

Tables 12 and 13 shows the execution time of the proposed model with all features
and subset of features selected using evolutionary computing algorithms on IEMOCAP
and CMU-MOSI datasets, respectively. From the results, it can be observed that the exe-
cution time of the proposed models with a subset of features is less compared to all
features.

Figures 5 and 6 shows the comparison of experimental results on the IEMOCAP dataset for
emotion classification and CMU-MOSI dataset for sentiment classification.
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TABLE 13 Comparison of the execution time of proposed models for CMU-MOSI dataset

Proposed bi-LSTM based (time in seconds)

GA based FS PSO based FS GGA base FS

Weighted feature
Modality  All features LR DT LR DT LR DT ensemble
T+A 35.39 29.99 31.71 30.82 30.77 29.72  29.82 30.00
T+V 35.22 29.29 3159 3010 3098 30.50 29.84 30.11
A+V 37.30 30.89 3238 30.22 3121 3089 30.53 31.33
T+A+V 3946 32.83 3430 3242 3283 31.71 31.39 33.01

Comparison of Experimental Results of [IEMOCAP Dataset

Il Poria et al., 2016
I Zadeh et al., 2017
I All Features

I GA-LR

I GA-DT

[ PSO-LR

I PSO-DT

Il GGA-LR

I GGA-DT

I WFE

Accuracy

T+A T+V A+V T+A+V
Modality

FIGURE 5 Comparison of experimental results on IEMOCAP dataset [Color figure can be viewed at
wileyonlinelibrary.com]

Comparison of Experimental Results of CMU-MOSI Dataset

Il Poria et al., 2016
I Zadeh et al., 2017
I All Features

I GA-LR

I GA-DT

[ PSO-LR

I PSO-DT

Il GGA-LR

I GGA-DT

I WFE

Accuracy

T+A T+V A+V T+A+V
Modality

FIGURE 6 Comparison of experimental results on CMU-MOSI dataset [Color figure can be viewed at
wileyonlinelibrary.com]
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5 | CONCLUSION AND FUTURE WORK

The feature selection, context extraction, and multimodal fusion are the most important chal-
lenges in multimodal sentiment analysis and affective computing. The proposed multilevel
feature optimization and multimodal contextual fusion method address these issues. First, evo-
lutionary computing based features selection methods are proposed to select an important subset
of features from raw unimodal features. The contextual information among the utterance of mul-
timodal data is extracted using the biLSTM model. The bimodal and trimodal feature vector is
constructed by concatenating two-two modalities at a time and all modalities, respectively. After
every step, a subset of features and contextual information is extracted. Finally, the trimodal con-
textual feature vector with a subset of features is fed as an input to a softmax classifier. The model is
demonstrated on two publically available datasets [IEMOCAP and CMU-MOSI. Results show that
the classification accuracy of proposed models with a subset of features is higher than the model
with all features. Also, the execution time for models with a subset of features is less than a model
with all features. In the future, the work can be extended to improve the quality of unimodal
features and to select the class-specific features to improve the overall accuracy.
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