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Abstract: Coalescence or overlap of graphs is a significant operation involving two graphs, due to a nice expression, for

its chromatic polynomial. The spectra of vertex (1 coalescence) and edge (2 coalescence) for a pair of complete graphs

are obtained by Jog, Kotambari in 2016. Here we generalise the concept and obtain the adjacency, Laplacian and signless

Laplacian spectra for a pair of complete graphs.
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1. Introduction

The basic symmetric matrices in Spectral graph theory we come across are, the adjacency, Laplacian and

signless Laplacian matrix. Their eigenvalues along with multiplicity giving spectra correspondingly. Due to

several applications, to various fields,it still remains as thrust area of research although in a different direction.

The chromatic polynomial, came into existence in a bid to solve, the famous four color conjecture. Recently

chromatic number of integer distance graphs is considered for analysis. One can refer [14] for nice connection

between chromatic number and set theory analysis, topology and number theory. Based on greedy coloring

there is also another coloring of graph known as first fit coloring [15].

Chromatic polynomial of coalescence, has a simple expression in terms of chromatic polynomials of

individual graphs [1]. In view of this, Jog and Kotambari deduced the adjacency, Laplacian and signless

Laplacian spectra of vertex and edge coalescence of complete graphs [13]. In this paper,we define k coalescence

and generalise all the results obtained in [13]. For detailed work on Laplacian spectra one can refer [2–7]. For

some work on the signless Laplacian spectra refer[8–10].

Another interesting connection of the coefficients of characteristic polynomials of an arbitrary matrix in

terms of bell polynomials are given in [16]

Example: G1 and G2 are non isomorphic coalescence’s of H1 and H2 in K4 .

1.1. On the k coalescence of complete graphs

Definition: The line graph L(G) of a graph G is a graph with vertex set as edge set of given graph and

two elements adjacent in it if they are incident (have a point in common) in G . If G has order n and size

m(number of edges), then L(G) has order m and size depending on structure of G .

Definition:The subdivision graph S(G) of a graph G is a graph obtained from G by inserting a vertex into
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every edge of G . If G has order n and size m (number of edges), then S(G) has order m+ n and size 2n .

Definition: k coalescence of graphs; For a pair of connected graphs G1 and G2 with n1 ,n2 vertices and

m1 ,m2 edges respectively having an induced complete graph of order k with n1, n2 ≥ k , the graph obtained

by merging k vertices on kC2 edges of induced Kk is called as k coalescence denoted by G1OkG2 . The graph

G1OkG2 is of order ′n1 + n2 − k′ with ′m1 +m2 − kC2 ’edges.

Now we consider k coalescence of complete graphs in particular. Let Kn1
and Kn2

be the complete

graphs of order n1 and n2 . The graph Kn1
OkKn2

is of order ′n1 + n2 − k′ with ′n1C2 + n2C2 − kC2 ’ edges.

It will have ′n1 − k′ vertices of degree ′n1 − 1′ , ′n2 − k′ vertices of degree ′n2 − 1′ and remaining ′k′ ’ vertices

of degree ′n1 + n2 − k − 1′ .

Example:

We denote the characteristic polynomial of G as, P (G : λ) and spectra of a graph having eigenvalue λi

with multiplicity mi as, 〈λm1
1 , λm2

2 , ...., 〉 . We require following Lemma.

Lemma 1.1. Let A, B,I(identity matrix) and J(matrix of all 1′s ) are square matrices of same order q , then

the block determinant of order pq ,

|AIp +B(Jp − Ip)| = |A−B|p−1|A+ (p− 1)B| .

Theorem 1.1. P (Kn1OkKn2 : λc) of the k coalescence Kn1OkKn2 is given by,

|λcI −A(Kn1
OkKn)| = (λc + 1)n1+n2−k−3[λ3c − (n1 + n2 − k − 3)λ2c + [(n1 − k − 1)(n2 − k − 1)

+(k−1)(n1+n2−2k−2)−k(n1+n2−2k)]λc+k(n1−k)(n2−k−1)+k(n2−k)(n1−k−1)−(k−1)(n1−k−1)(n2−k−1)]
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Proof. The adjacency matrix of Kn1OkKn2 has the form

A(Kn1OkKn2) =

 A(Kk) Jk×n1−k Jk×n2−k
Jn1−k×k A(Kn1−k) On1−k×k
Jn1−k×k On2−k×k A(Kn2−k)

 (1)

where A is adjacency matrix, J is a matrix with all elements 1′s and O is a matrix with all zeros.

P (Kn1
OkKn2

: λc) is given by,

|λcI −A(Kn1
OkKn2

)| =

∣∣∣∣∣∣
λcI −A(Kk) −Jk×n1−k −Jk×n2−k
−Jn1−k×k λcI −A(Kn1−k) On1−k×k
−Jn1−k×k Ok×n1−k λcI −A(Kn2−k)

∣∣∣∣∣∣
Adding to first k columns addition of next n1 columns multiplied by 1

λc−(n1−k−1) , followed by addition of next

n2 columns multiplied by 1
λc−(n2−k−1) we get,

|λcI −A(Kn1
OkKn2

)| =

∣∣∣∣∣∣
B −Jk×n1−k −Jk×n2−k
O λcI −A(Kn1−k) On1−k×k
O Ok×n1−k λcI −A(Kn2−k)

∣∣∣∣∣∣
where B stands for

B = λcI − n1−k
λc−(n1−k−1) + n2−k

λc−(n2−k−1)A(Kk);

On direct diagonal expansion we have,

|λcI −A(Kn1
OkKn2

)|
= |λcI−A(Kn1−k)||λcI−A(Kn2−k)|[|λc− n1−k

λc−(n1−k−1)
n2−k

λc−(n2−k−1)Ik|−|1+ n1−k
λc−(n1−k−1) + n2−k

λc−(n2−k−1) (Jk−Ik)|]

On applying Lemma 1.1 and simplifying we finally arrive at the result.

Theorem 1.2. The Laplacian spectrum of the k coalescence Kn1
OkKn2

is given by

Lspec(Kn1OkKn2) = 〈01, k1, (n1 + n2 − k)k, nn1−k−1
1 , nn2−k−1

2 〉 .

Proof. The Laplacian matrix of Kn1
OkKn2

has the form

L(Kn1OkKn2) =

 A B C
BT E F
CT FT I


where A,B,C,E,F, and I stands for

A = (n1 +n2−k)Ik−A(Kk); B = −Jk×n1−k ; C = −Jk×n2−k ; E = (n1−1)In1−k−A(Kn1−k); F = On1−k×k ;

I = (n2 − 1)In1−k −A(Kn2−k)

The characteristic polynomial of L(Kn1
OkKn2

) is the Laplacian polynomial is given by

|µcI − L(Kn1
OkKn2

)| =

∣∣∣∣∣∣
A′ −B −C
−BT E′ −F
−CT −FT I ′

∣∣∣∣∣∣
where A′ = [µc− (n1 +n2− k)]Ik −A(Kk); E′ = [µc− (n1− 1)]In1−k +A(Kn1−k); I ′ = [µc− (n2− 1)]In1−k +
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A(Kn2−k)

Subtracting from each of first k columns addition of next n1 − k columns multiplied by 1
µc−k , followed by

addition of next (n2 − k) columns multiplied by 1
µc−k we get,

|µcI − L(Kn1OkKn2)| =

∣∣∣∣∣∣
A′′ B′′ C ′′

−B′′ E′′ F ′′

−C ′′ −F ′′ I ′′

∣∣∣∣∣∣
where

A′′ = [µc − (n1 + n2 − k)Ik − n1+n2−2k
µc−k ]Ik − n1+n2−2k

µc−k + A(Kk); B′′ = Jk×n1−k ; C ′′ = Jk×n2−k ; E′′ =

[µc − (n1 − 1)]In1−k +A(Kn1−k)] ; F ′′ = On1−k×k ; I ′′ = [µc − (n2 − 1)]In2−k +A(Kn2−k)]

On diagonal expansion and simplification in a similar manner we arrive at,

|µcI − L(Kn1
OkKn2

)| = [µc − (n2 + n1 − k)]k−1[µc − (n2 + n1 − k − 1) − n1+n2−2k
µc−k k + (k − 1)][µc − k]2[µc −

n1]n1−k−1[µc − n2]n2−k−1

= µc[µc − k][µc − (n2 + n1 − k)]k][µc − n1]n1−k−1[µc − n2]n2−k−1

Hence the theorem.

Corollary 1.1. [7] The spanning tree count of Kn1
OkKn2

is given by,

τ(Kn1
OkKn2

) =
k(n1+n2−k)kn

n1−k−1
1 n

n2−k−1
2

n1+n2−k = k(n1 + n2 − k)k−1nn1−k−1
1 nn2−k−1

2 , where n1, n2 ≥ k + 1

Further if n1 = n2 = k + 1 we get the number of spanning trees in Kk+1OkKk+1 , as k(k + 2)k−1

Theorem 1.3. The signless Laplacian spectrum of Kn1OkKn2 is,

Qspec(Kn1
OkKn2

) = 〈(n1 + n2 − k − 2)k−1, (n1 − 2)n1−k−1, (n2 − 2)n2−k−1, α1
i , i = 1, 2, 3〉

where αi satisfy

[γ3c − (3n1 + 3n2− 2k− 7)γ2c + [(n1 +n2− 2)(2n1− k− 2) + (3n21 +2−k− 4)(2n2− k− 2)− k(n1− k)− k(n2−
k)]γc + [k(n1 − k)(2n1 − k − 2) + k(n2 − k)(2n2 − k − 2)− (n1 + n2 − 2)(2n1 − k − 2)(2n2 − k − 2)] = 0

Proof. The signless Laplacian matrix of Kn1
OkKn2

has the form

Q(Kn1
OkKn2

) =

 A B C
BT E F
CT FT I


where A,B,C,E,F, and I stands for

A = (n1 +n2−k−1)Ik +A(Kk); B = Jk×n1−k ; C = Jk×n2−k ; E = (n1−1)In1−k +A(Kn1−k); F = On1−k×k ;

I = (n2 − 1)In1−k +A(Kn2−k)

The characteristic polynomial of Q(Kn1OkKn2) is the signless Laplacian polynomial, given by

|γcI −Q(Kn1
OkKn2

)| =

∣∣∣∣∣∣
A′ −B −C
−BT E′ −F
−CT −FT I ′

∣∣∣∣∣∣ (2)

where A′ ,E′ and I ′ stand for

A′ = [γc− (n1 +n2−k−1)]Ik−A(Kk); B′ = −Jk×n1−k ; C ′ = Jk×n2−k ; E′ = [γc− (n1−1)]In1−k−A(Kn1−k);
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F ′ = On1−k×k ; I ′ = [γc − (n2 − 1)]In1−k −A(Kn2−k))

Adding to first k columns addition of next n1 − k columns multiplied by 1
γc−(2n1−k−2) , followed by addition

of next ′n2 − k′ columns multiplied by 1
γc−(2n2−k−2) we get,

|γcI −Q(Kn1OkKn2)| =

∣∣∣∣∣∣
A′′ B′′ C ′′

B′′T E′′ F ′′

C ′′T F ′′T I ′′

∣∣∣∣∣∣
where A′′ , B′′ , E′′ , F ′′ , and I ′′ stand for

A′′ = [γc−(n1+n2−k)− n1−k
γc−(2n1−k−2)−

n2−k
γc−(2n2−k−2) ]Ik−

n1−k
γc−(2n1−k−2)−

n2−k
γc−(2n2−k−2)−A(Kk); C ′′ = −Jk×n2−k ;

E′′ = [γc − (n1 − 1)]In1−k −A(Kn1−k); F ′′ = On1−k×k ; I ′′ = [γc − (n2 − 1)]In2−k −A(Kn2−k)

On diagonal expansion and simplification in a similar manner we arrive at,

|γcI −Q(Kn1OkKn2)| = [γc − (n2 + n1 − k − 2)]k−1[γc − (n1 − 2)]n1−k−1[γc − (n2 − 2)]n2−k−1[γc − (n1 + n2 −

2)− k(n1−k)
γc−(2n1−k−2) −

k(n2−k)
γc−(2n2−k−2) ]

Hence the theorem.

Corollary 1.2. [9] If S(Kn1OkKn2) denotes subdivision graph of Kn1OkKn2 then P (S(Kn1OkKn2) is,

|λcI −S(Kn1
OkKn2

)| = λ
(n1C2+n2C2−kC2)−(n1+n2−k)
c [λ2c − (n1 +n2− k− 2)]k−1[λ2c − (n1− 2)]n1−k−1[λ2c − (n2−

k−1)]n2−k−1[λ6c− (3n1 +3n2−2k−7)]λ4c +[(n1 +n2−2)(2n1−k−2)+(3n1 +n2−k−4)(2n2−k−2)−k(n1−
k)− k(n2 − k)]λ2c + [k(n1 − k)(2n1 − k− 2) + k(n2 − k)(2n2 − k− 2)− (n1 + n2 − 2)(2n1 − k− 2)(2n2 − k− 2)] .

So that the adjacency spectra of S(Kn1
OkKn2

) is,

Aspec[S(Kn1
OkKn2

)] = 〈af , bg, ch, di, ej〉

where, a = 0 ;b = ±
√
n1 + n2 − k − 2 ;c = ±

√
n1 − 2 ;d = ±

√
n2 − 2 ;e = αi(i = 1, 2, ...6) ; f =

(n1C2 + n2C2 − kC2)− (n1 + n2 − k) ; g = k − 1 ; h = n1 − k − 1 ; i = n2 − k − 1 j = 1

Where αi (i = 1, 2, ....6) satisfy

λ6c − (3n1 + 3n2− 2k− 6)λ4c + [(n1 +n2− 2)(2n1− k− 2) + (3n1 +n2− k− 4)(2n2− k− 2)− k(n1− k)− k(n2−
k)]λ2c + [k(n1 − k)(2n1 − k − 2) + k(n2 − k)(2n2 − k − 2)− (n1 + n2 − 2)(2n1 − k − 2)(2n2 − k − 2)] = 0

Corollary 1.3. [8] If L(Kn1
OkKn2

) denotes line graph of Kn1
OkKn2

then P (L(Kn1
OkKn2

) : λc) ,

|λcI−L(Kn1
OkKn2

)| = (λc+ 2)(n1C2+n2C2−kC2)−(n1+n2−k)[λc− (n1 +n2−k−6)]k−1[λc− (n1−6)]n1−k−1[λc−
(n2−6)]n2−k−1[(λc+2)3−(3n1+3n2−2k−6)(λc+2)2]+[(n1+n2−2)(2n1−k−2)+(3n1+n2−k−4)(2n2−k−2)−
k(n1−k)−k(n2−k)](λc+2)+[k(n1−k)(2n1−k−2)+k(n2−k)(2n2−k−2)−(n1+n2−2)(2n1−k−2)(2n2−k−2)]

Hence the adjacency spectra of the line graph, L(Kn1OkKn2) is,

Aspec[L(Kn1
OkKn2

)] = 〈af , bg, ch, di, ej〉

where, a = −2 ;b = n1 + n2 − k − 2 ;c = n1 − 6 ;d = n2 − 6 ;e = αi(i = 1, 2, 3) ; f = (n1C2 + n2C2 −
kC2)− (n1 + n2 − k) ;g = k − 1 ;h = n1 − k − 1 ;i = n2 − k − 1 ;j = 1 , where αi (i = 1, 2, 3) satisfy

[(λc + 2)3− (3n1 + 3n2− 2k− 7)(λc + 2)2 + [(n1 +n2− 2)(2n1−k− 2) + (3n1 +n2−k− 4)(2n2−k− 2)−k(n1−
k)−k(n2−k)](λc+2)+[k(n1−k)(2n1−k−2)+k(n2−k)(2n2−k−2)−(n1+n2−2)(2n1−k−2)(2n2−k−2)] = 0
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