Sub:Automotive Engineering Sub code:10me844 8th sem

Introduction to IC Engine Components

Dept of Mechanical Engg Hirasugar Institute of Technology Nidasoshi

Objectives

- Explain the principles of internal combustion engine operation
- Identify internal combustion engine parts by name
- Describe the function of engine parts

Introduction

- First chapter of this gave a basic description of engine operation
- This chapter covers more in-depth information
- Later chapters cover firing orders, valve adjustment, oil pressure testing, etc.

Basic Engine Operation

- Simple reciprocating engine parts
 - Cylinder and piston
 - Connecting rod and crankshaft
- Spark-ignited internal combustion engine
 - Fuel must be an easily vaporized liquid or flammable gas
 - When air-fuel mixture compressed and burned it pushes the piston down in a cylinder
 - Turns a crankshaft that powers the vehicle

Basic Engine Operation (cont'd.)

- Flywheel
 - Bolted to rear of crankshaft
 - Weight blends power pulses into one continuous crankshaft output
- Cylinder head
 - Has intake valve port for each cylinder
 - Allows air and fuel into the cylinder
 - Exhaust valve port allows burned gases to flow out and is sealed by a poppet valve
 - Valve is opening controlled by the camshaft

Four-Stroke Engine Operation

- Piston travel
 - Upper limit is top dead center
 - Lower limit is bottom dead center
- Piston strokes
 - Intake
 - Compression
 - Power
 - Exhaust

Intake Stroke

- Characteristics
 - Gasoline will not burn unless mixed with air
 - Crankshaft turns and pulls the rod and piston down into the cylinder
 - Creates a low-pressure suction
 - Atmospheric pressure pushes air-fuel mixture
 - Stoichiometric mixture: 15:1 air to fuel ratio
 - Air volume: measured at standard temperature and pressure of 25° C at sea level
 - Individual cylinder volume
 - Engine displacement divided by cylinders

Intake Stroke (cont'd.)

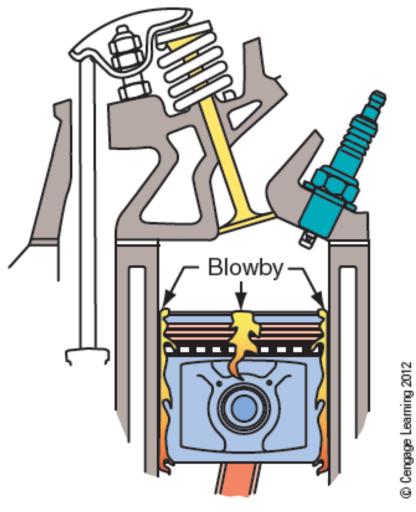
- One mole of air is one ounce
 - One mole of nitrogen is 28 grams
 - One mole of oxygen is 32 grams
- One pound of air takes up 98 gallons
 Slightly less than two 55-gallon drums
- Engine displacement measured in cubic centimeters or liters
 - Convert cubic centimeters to inches: divide by 16.4 and then divide the result by 1728

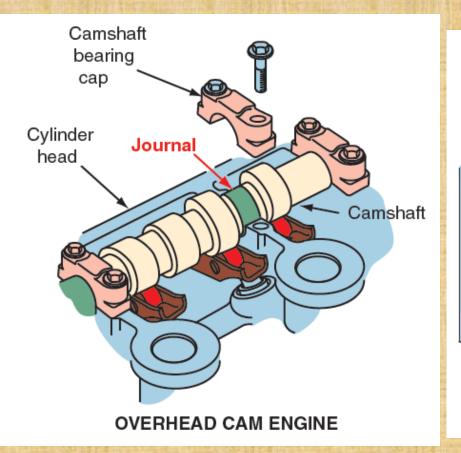
Compression Stroke

- Begins at BDC after intake stroke completes
 - Intake valve closes during compression stroke as the piston moves up in the cylinder
 - Compresses air-fuel mixture
 - Compressing the air-fuel mixture heats it
 - Makes it easier to burn

Power Stroke

- Air-fuel mixture becomes flammable as the piston approaches TDC
 - Ignition system produces a spark at the spark plug and ignites the air-fuel mixture
- Air-fuel mixture expands as it burns
 - Forces the piston down until it reaches BDC
 - Action of the piston turns the crankshaft
- Blowby causes pressure around the crankshaft




Figure 15.4 Leakage of gases past the rings is known as blowby.

Exhaust Stroke

- Exhaust valve opens and allows burned gases to escape
 - Expanding gases are forced through open valve
- Piston moves up in the cylinder
 - Forces remaining gases out
- Exhaust valve closes a few degrees past TDC
- One four-stroke cycle takes two 360-degree crankshaft revolutions
 - Intake and exhaust valves open once
 - Ignition occurs once

Engine Upper End

- Parts of the upper end of the engine
 Cylinder head(s) and valve train
- Valve train
 - Includes parts that open and close the valves
 - Cam: located either in block or cylinder head
 - Rocker arms: mounted on top of cylinder head
 - Pushrod engines: cam bearings are pressed into bores in the block
 - Overhead cam: cam journals ride in bores in the cylinder head

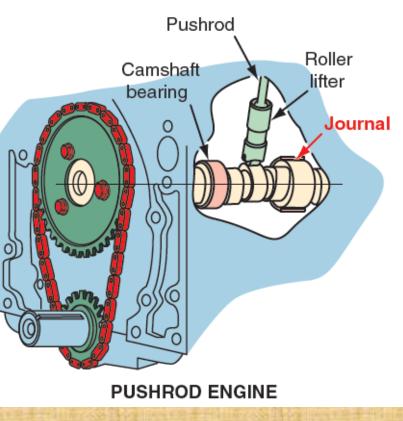
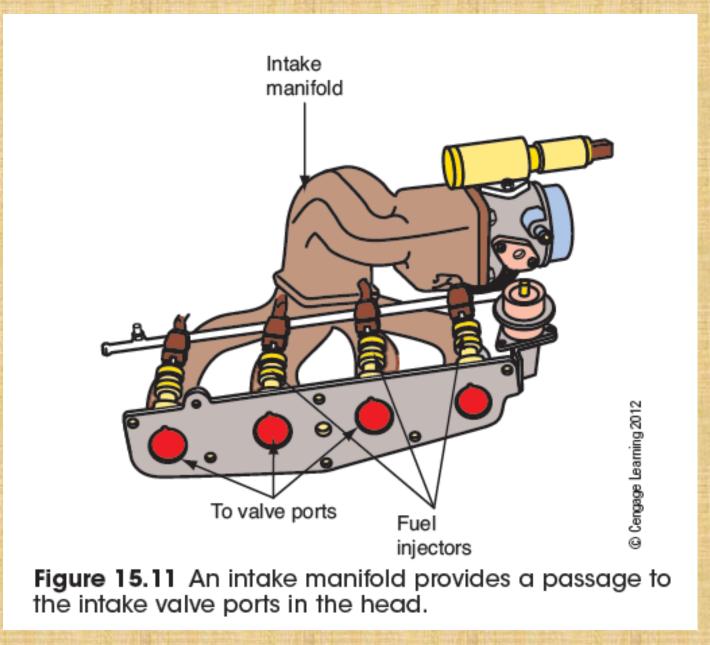



Figure 15.7 Cam journals ride inside of cam bearings to support the camshaft.

Cylinder Head


- Cylinder head: bolts to the top of the engine block, sealing off the cylinders
- Valve parts
 - Two valves per cylinder in combustion chambers
 - Intake valve is the larger
 - Several other valve parts
- Intake manifold: bolted to side of a head or between cylinder heads
- Exhaust manifold: bolted to cylinder head

Intake valve

Tim Gilles

Figure 15.8 Combustion chambers on the bottom side of a cylinder head.

Engine Front

- Camshaft: driven by timing gears or sprockets
 Used with a timing chain or belt
- Timing cover: seals against oil leakage
 Keeps elements out of engines with a timing belt
- Vibration damper: minimizes vibrations in the crankshaft and prevents damage
 - Outer and inner ring are separated by thin rubber strip
 - Also called harmonic balancer

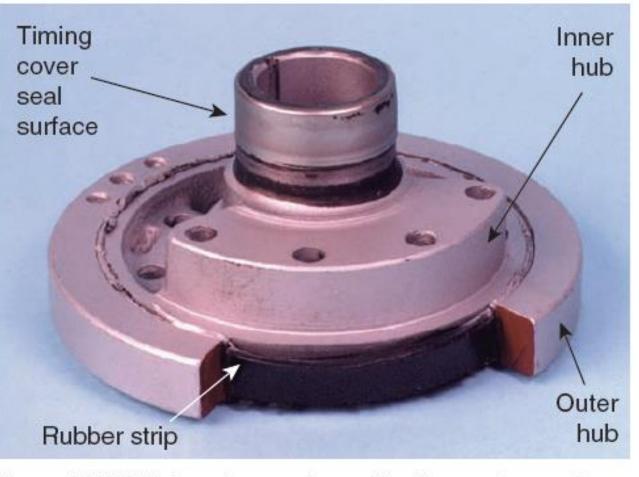


Figure 15.15 This cutaway shows the three pieces of a damper—the inner and outer hubs separated by a rubber strip—along with the timing cover seal surface.

Tim Gilles

Cylinder Block Assembly (Lower End)

- Cylinder block
 - Cast from iron or aluminum
 - Crankshaft and bearings are in the crankcase
 - Main bearing bores accommodate the crankshaft
 - Main bearing caps allow for installation and removal of the crankshaft
 - Cylinder head gasket fits between the head and the deck

Figure 15.16 A cylinder block casting.

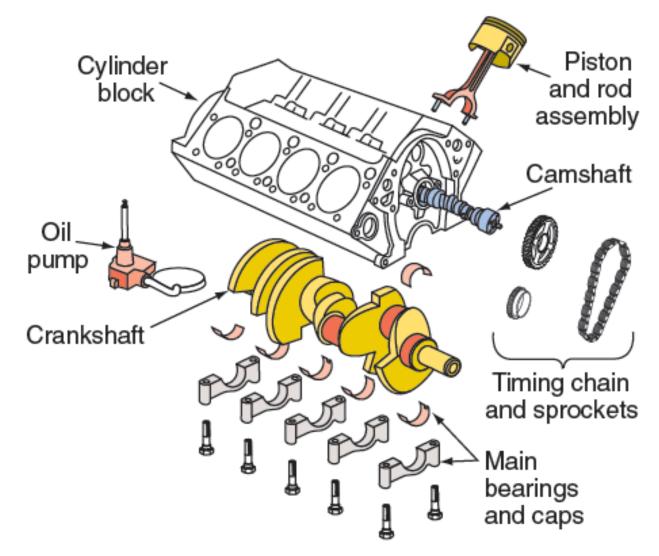
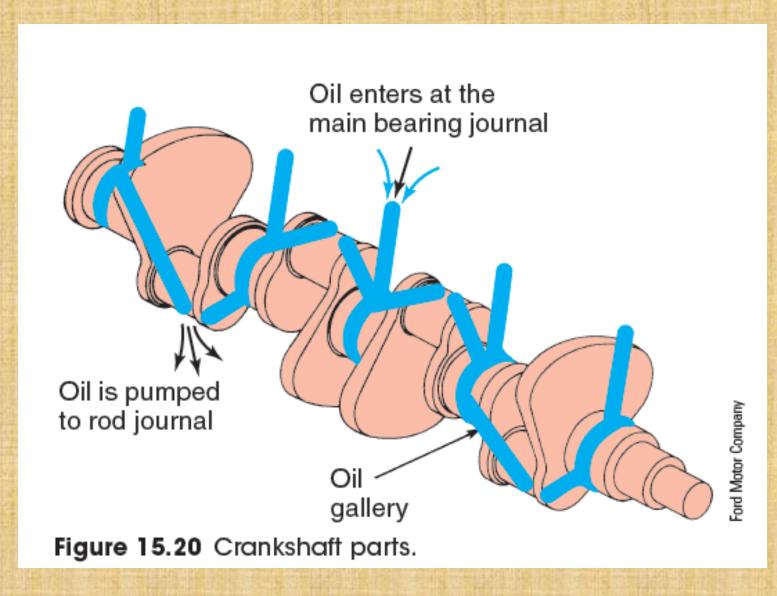
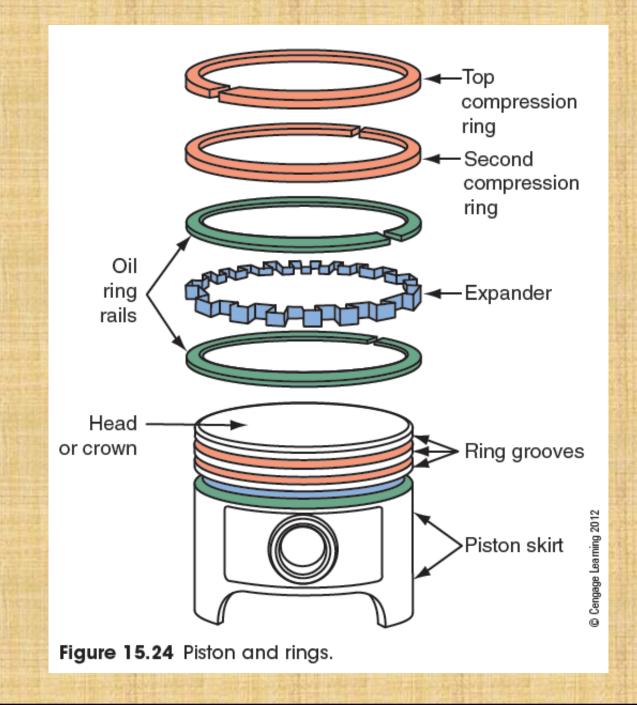
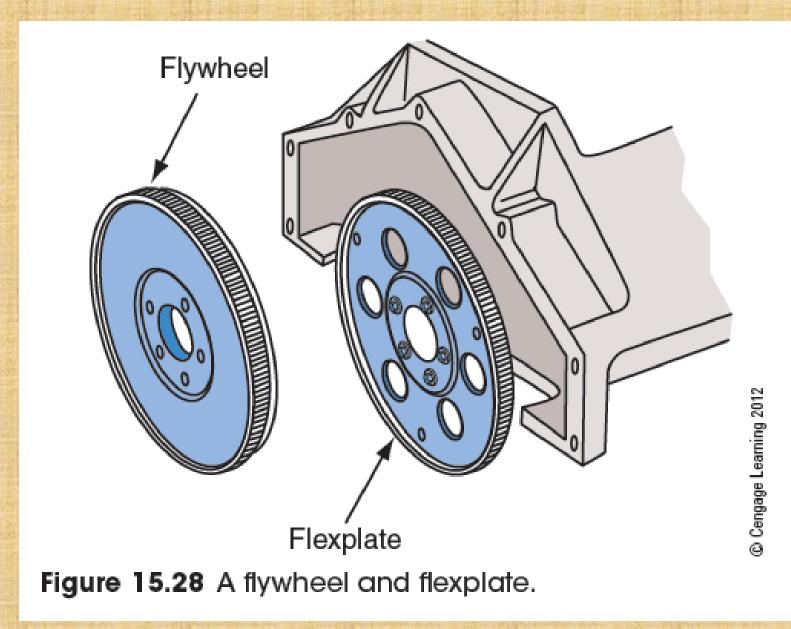



Figure 15.17 Lower end parts.

© Cengage Learning 2012


Short Block and Long Block

- Long block: complete block assembly with entire valve train
- Short block: cylinder block assembly without heads installed
- Crankshaft: converts reciprocating motion to rotating motion
- Connecting rod: shaped like an I-beam
 - Large bore connects rod journal
 - Rod cap is attached to bottom of the rod


Short Block and Long Block (cont'd.)

- Piston skirt: fits to cylinder bore
 - Typical piston has three ring grooves above
 - Two on top for compression rings
 - Bottom for oil control
- Piston pin: installed on connecting rod small end
 Pin bores provide a pivot point for the piston pin
- Piston rings: seal between piston ring grooves and cylinder wall
 - Keeps combustion pressure from entering crankcase

Short Block and Long Block (cont'd.)

- Oil seals: installed on the front and rear of crankshaft
- Oil pan: stamped sheet metal or plastic that encloses the crankcase
- Flywheel: used with manual transmission
 - Weight carries crankshaft beyond BDC
 - Ring gear provides a gear drive for the starter
 - Provides a surface for the clutch to work upon
- Torque converter and flexplate: replace flywheel
 in automatic transmissions

Summary

- One four-stroke cycle completes the intake, compression, power, and exhaust strokes
 - Camshaft turns once and crankshaft turns twice during one four-stroke cycle
- Piston motion is changed to rotary motion by the connecting rod and crankshaft
- Flywheel gives momentum to the crankshaft and smoothes impulses between power strokes
- Camshaft and valve train control the engine's intake and exhaust flow

Sub:Automotive Engineering Sub code:10me844 8th sem

Emission Control System Fundamentals

Dept of Mechanical Engg Hirasugar Institute of Technology Nidasoshi

Objectives

- Describe the different types of air pollution caused by motor vehicles
- Explain the fundamentals of the major emission control systems
- Label the parts of emission control systems
- Explain the operation of electronically controlled emission systems

Introduction

- Emission controls
 - Began to be included on cars in the 1960s
 - Complicated specialty area
 - Most states: emission specialists are required to be licensed to perform repairs

Air Pollution

- Photochemical smog
 - Hydrocarbons and oxides of nitrogen react with sunlight
 - Warm air inversion layer traps smog
- Pollution laws
 - Administered by the EPA
 - Vehicles manufactured today produce less than 5% of the air pollution of 1960s models

Automotive Emissions

- Sources of emissions
 - Exhaust pipe, crank-case, and vapors
- Hydrocarbon sources
 - Blowby gases
 - Skin effect
 - Raw gas in exhaust
 - Insufficient compression
 - Inadequate ignition spark

Automotive Emissions (cont'd.)

- Carbon monoxide emissions
 - Result when gasoline not completely burned
- Oxides of nitrogen
 - Produced when combustion temperatures are too high
- Particulates
 - Are airborne microscopic particles
- Carbon dioxide and oxygen
 - Used to diagnose combustion problems
 - Carbon dioxide is a greenhouse gas

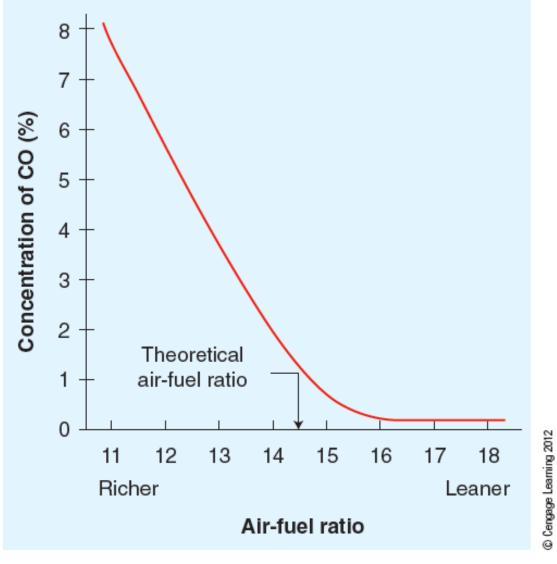


Figure 43.4 The amount of carbon monoxide (CO) in the exhaust varies with the air-fuel ratio.

Pollution Control

- Early 1960s: California led emission control legislation
 - 1961: crankcase emission system required on all new cars in California
- 1963: crankcase emission system required on all new cars in U.S.
- 1966: exhaust emission systems required on new cars in California
- 1970: U.S. Congress passed Clean Air Act

Automobile Emission Control Systems

- Lower exhaust emissions
 - Engine design
 - Fuel and ignition system controls
 - Devices designed to control emissions
- Computers manage emission devices
 - Engine load
 - Engine temperature
 - $-O_2$ sensor

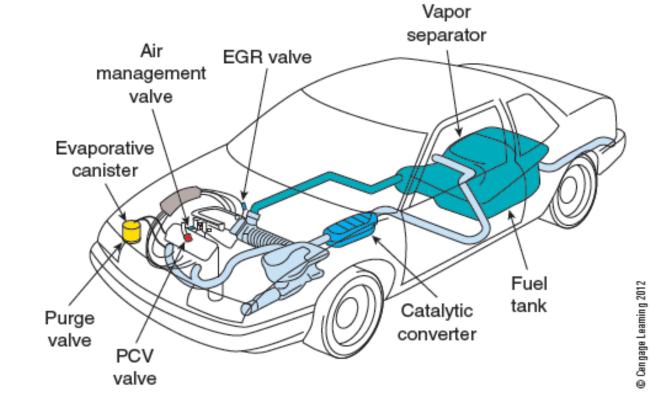
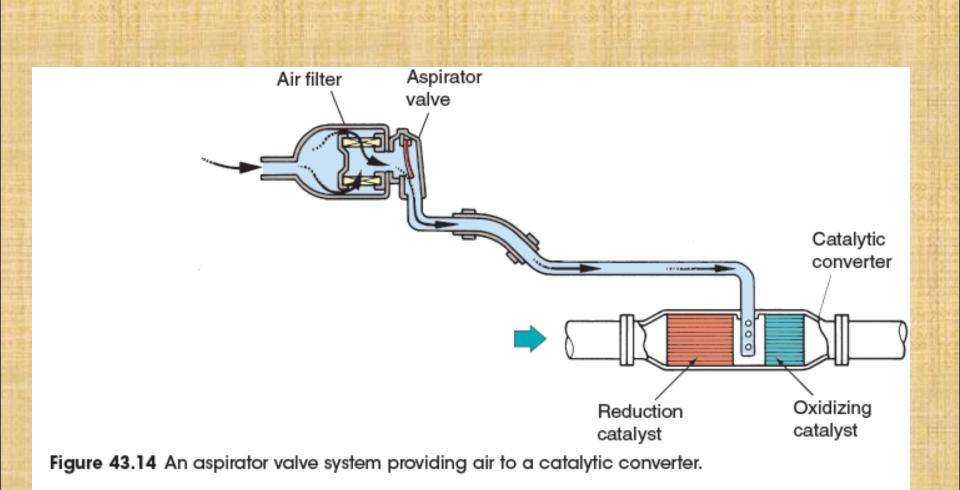


Figure 43.5 Typical emission control system.

Crankcase Ventilation

PCV system

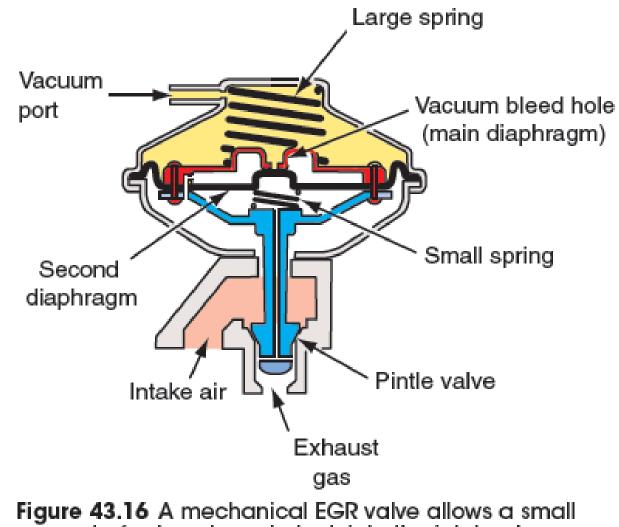

- Reintroduces blowby gases into combustion chambers
- Benefits of PCV system
 - Prevents emissions of HCs
 - Reduces sludge
 - Reduces oil leakage
- Closed ventilation system
 - Filtered intake air is supplied through hose from air cleaner

Air Injection System

- Feeds hot gases to keep them burning
 - Air is provided by belt-driven air pump, electric motor-driven pump, or non-pump pulse air system
- Functions
 - Provides low-pressure air supply
 - Provides air to catalytic converter
- Air injection system uses an air pump, control valves, and lines to manifolds
 - Some vehicles have electric air pumps

Aspirator Valve or Pulse Air System

- Momentary low-pressure condition (pulse) occurs at end of exhaust stroke
 - Aspirator valve or pulse air system uses pulses to blow fresh air into exhaust
 - Not efficient at high speeds
 - One-way check valve (i.e., aspirator valve) allows fresh air from cleaner
 - Flows when vacuum created by exhaust pulse
 - Closes when exhaust pressure builds



Exhaust Gas Recirculation

- Lean air-fuel mixtures and higher operating temperatures raise NO_X
 - Exhaust gas recirculation (EGR) system allows exhaust gas into air-fuel mixture
 - Diluting air-fuel mixture with exhaust gas lowers combustion temperature by 300° F
 - EGR improves fuel economy
 - Early EGR systems were often disabled to improve fuel economy

EGR System Operation

- Simple EGR system has an EGR valve operated by engine vacuum
 - Located on intake manifold
- Little NOX is formed at idle
 - EGR valve is closed at these times
- Exhaust backpressure is a good indicator of engine load
 - More EGR flow needed under load
- Thermal vacuum valve (TVV)
 - Prevents vacuum operation before engine is warm

amount of exhaust gas to leak into the intake stream. This EGR valve is in the *closed* position.

Computer-Controlled EGR Systems

- Today's cars have computer-controlled EGR systems
 - EGR valve is controlled by input signals of engine temperature and load
 - Vehicle speed signal or PRNDL switch
 - Position sensors on EGR valves: included in latemodel engines
 - Digital EGR valves: EGR flow regulated by computer using a series of solenoids
 - Linear EGR valves: include a stepper motor

Catalytic Converter

- Catalyst
 - Causes chemical reaction without changing itself
 - Chemical reaction only occurs in presence of catalyst or occurs faster because of one
- Catalytic converters
 - Must be hot to operate
 - Monolithic catalyst has thing coating of platinum applied to ceramic coated with alumina
 - Late-model vehicles have pre-catalysis which begin operating earlier

Types of Catalytic Converters

- Two-way catalyst; changes HC and CO into CO₂ and H₂O
- Three-way catalytic converter: used with oxygen sensor
 - Reduces NO_X and oxidizes HC and CO
 - Single or dual bed design
 - Dual bed catalytic converters include air switching valve and diverter
 - Use rhodium as a catalyst
 - Needs heat and regulated air-fuel mixture

Evaporative Controls

- Control emission of gasoline vapors from tank
 - Activated charcoal store gasoline vapors until they are drawn into the engine and burned
 - Emission of fuel vapors is controlled by sealing the fuel system
- Gasoline tanks allow for fuel expansion of 10%
 - Expansion dome and liquid/vapor separator
 - Expansion tank
 - Filler neck design
- Gas caps sealed or have pressure vacuum valve

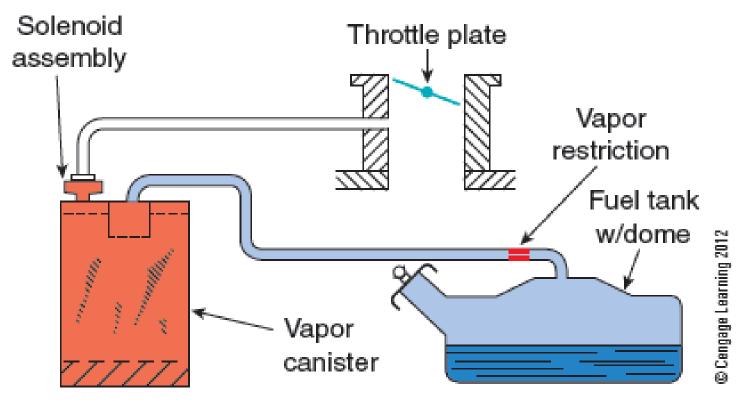


Figure 43.31 A simplified evaporative emission control system.

Other Parts of the Fuel Tank System

• Include:

- Liquid vapor separator keeps liquid fuel from being drawn into charcoal canister
- Charcoal canister stores vapors from fuel tank
- Thermostatic air cleaner (TAC) maintain consistent air-fuel mixture
- Manifold heat control valves were used to reduce exhaust emissions and improve drivability during engine warmup

On-Board Diagnostics

- 1988: on-board diagnostics regulations became law
 - Require computer to monitor engine's O2 sensor, EGR valve, and charcoal canister purge solenoid
 - Malfunction indicator light was also required
- Names of emission parts and connections for test equipment were standardized
 - Part of the OBD II regulations

Engine Emission Modifications

- Common modifications
 - As little as possible exposed surface area on the combustion chamber and top of piston
 - Engines run with higher cooling system temperatures
 - Advancing ignition timing can increase fuel economy
 - Changing cam design specifications results in different emissions
 - Domestic diesel light trucks and vans are now using urea selective catalyst reduction

Subject: Automotive Engineering

Sub Code:10ME844

Sem: 8th

Refer the following link for further information regarding the I C Engine and Its components

S.N	URL	S.N	URL
1	Engine basics parts and their functions_ a) <u>https://youtu.be/saPGX-1qC4M</u> b) https://youtu.be/zA_19bHxEYg	7	7. ignition systems_ https://youtu.be/W94iksaQwUo
2	2.engine cooling system_ https://youtu.be/y5p31F_dVJU	8	8.transmission systems_ a) <u>https://youtu.be/wCu9W9xNwtI</u> b) <u>https://youtu.be/QPaUJfA1KsY</u> c) https://youtu.be/devo3kdSPQY
3	3.engine lubrication system_ https://youtu.be/mmmcj53TNic	9	 9.Drive to wheels_ a) propeller shaft <u>https://youtu.be/lbXb_s7UomU</u> b) universal joint_ <u>https://youtu.be/LCMZz6YhbOQ</u> c) https://youtu.be/OezhCX4WBLs
4	 4.fuel supply system in SI and CI engines a)(CI engine) <u>https://youtu.be/Z5_vfZhMWOg</u> b) (SI engine) <u>https://youtu.be/m6-KZS19HDU</u> 	10	10.suspension system_a) https://youtu.be/nMQxqsyuJKE b) https://youtu.be/DKql4Is8Pas
5	5.function of superchargers_ a) <u>https://youtu.be/_vaw5zwnhrA</u> b) <u>https://youtu.be/fHRX3Uzppv4</u>	11	11.braking system_ a) <u>https://youtu.be/bMg_j5_AGMg</u> b)springs and suspensions_ <u>https://youtu.be/9nIaVjWeXsI</u>
6	6.function of turbochargers _ a) <u>https://youtu.be/RVnlRKnMjhk</u> b) <u>https://youtu</u> .be/DXNH3FD_Qa8	12	12.automotive emission control system_ a) <u>https://youtu.be/qBD2XjejCEI</u> b) https://youtu.be/W6dIsC_eGBI