
 

MODULE 5 
 

UNSTEADY STATE HEAT CONDUCTION  
 
5.1 Introduction 
To this point, we have considered conductive heat transfer problems in which the 
temperatures are independent of time. In many applications, however, the temperatures are 
varying with time, and we require the understanding of the complete time history of the 
temperature variation.  For example, in metallurgy, the heat treating process can be controlled 
to directly affect the characteristics of the processed materials.  Annealing (slow cool) can 
soften metals and improve ductility.  On the other hand, quenching (rapid cool) can harden 
the strain boundary and increase strength.  In order to characterize this transient behavior, the 
full unsteady equation is needed: 
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where 
c

k


   is the thermal diffusivity. Without any heat generation and considering spatial 

variation of temperature only in x-direction, the above equation reduces to: 
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For the solution of equation (5.2), we need two boundary conditions in x-direction and one 
initial condition. Boundary conditions, as the name implies, are frequently specified along the 
physical boundary of an object; they can, however, also be internal – e.g. a known 
temperature gradient at an internal line of symmetry.  

 
5.2 Biot and Fourier numbers 
In some transient problems, the internal temperature gradients in the body may be quite small 
and insignificant. Yet the temperature at a given location, or the average temperature of the 
object, may be changing quite rapidly with time. From eq. (5.1) we can note that such could 
be the case for large thermal diffusivity  .  
 
A more meaningful approach is to consider the general problem of transient cooling of an 
object, such as the hollow cylinder shown in figure 5.1.  
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Fig. 5.1 
 



 

For very large ri, the heat transfer rate by conduction through the cylinder wall is 
approximately 
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where l is the length of the cylinder and L is the material thickness. The rate of heat transfer 
away from the outer surface by convection is 
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where h  is the average heat transfer coefficient for convection from the entire surface. 
Equating (5.3) and (5.4) gives 
 

k

Lh

TT

TT

s

si 





= Biot number     (5.5) 

 
The Biot number is dimensionless, and it can be thought of as the ratio 
 

flow heat external to resistance

flow heat internal to resistance
Bi   

 
Whenever the Biot number is small, the internal temperature gradients are also small and a 
transient problem can be treated by the “lumped thermal capacity” approach. The lumped 
capacity assumption implies that the object for analysis is considered to have a single mass-
averaged temperature.  
 
In the derivation shown above, the significant object dimension was the conduction path 
length, . In general, a characteristic length scale may be obtained by dividing the 

volume of the solid by its surface area: 
io rrL 
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Using this method to determine the characteristic length scale, the corresponding Biot 
number may be evaluated for objects of any shape, for example a plate, a cylinder, or a 
sphere. As a thumb rule, if the Biot number turns out to be less than 0.1, lumped capacity 
assumption is applied.  
 
In this context, a dimensionless time, known as the Fourier number, can be obtained by 
multiplying the dimensional time by the thermal diffusivity and dividing by the square of the 
characteristic length: 
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5.3 Lumped thermal capacity analysis 
The simplest situation in an unsteady heat transfer process is to use the lumped capacity 
assumption, wherein we neglect the temperature distribution inside the solid and only deal 
with the heat transfer between the solid and the ambient fluids.  In other words, we are 
assuming that the temperature inside the solid is constant and is equal to the surface 
temperature.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The solid object shown in figure 5.2 is a metal piece which is being cooled in air after hot 
forming. Thermal energy is leaving the object from all elements of the surface, and this is 
shown for simplicity by a single arrow. The first law of thermodynamics applied to this 
problem is  
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Now, if Biot number is small and temperature of the object can be considered to be uniform, 
this equation can be written as 
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Integrating and applying the initial condition iTT )0( , 
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Taking the exponents of both sides and rearranging, 
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where  
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Note:  In eq. 5.12, b is a positive quantity having dimension (time)-1. The 
reciprocal of b is usually called time constant, which has the dimension of 
time.  

 
 

Question: What is the significance of b?  
Answer: According to eq. 5.11, the temperature of a body approaches the 
ambient temperature T  exponentially. In other words, the temperature 
changes rapidly in the beginning, and then slowly. A larger value of b 
indicates that the body will approach the surrounding temperature in a shorter 
time. You can visualize this if you note the variables in the numerator and 
denominator of the expression for b. As an exercise, plot T vs. t for various 
values of b and note the behaviour. 

 
 
 
 
 
 
 
 
 
 
 
Rate of convection heat transfer at any given time t: 

  TtThAtQ s )()(  

 
Total amount of heat transfer between the body and the surrounding from t=0 to t: 

 iTtTmcQ  )(  

Maximum heat transfer (limit reached when body temperature equals that of the 
surrounding): 

 iTTmcQ    

 
 
 
5.4 Numerical methods in transient heat transfer: The Finite Volume Method 
 
Consider, now, unsteady state diffusion in the context of heat transfer, in which the 

temperature, T, is the scalar. The corresponding partial differential equation is: 
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The term on the left hand side of eq. (5.13) is the storage term, arising out of 

accumulation/depletion of heat in the domain under consideration. Note that eq. (5.13) is a 

partial differential equation as a result of an extra independent variable, time (t). The 

corresponding grid system is shown in fig. 5.3. 

 



 

 

Fig. 5.3: Grid system of an unsteady one-dimensional computational domain 

 

In order to obtain a discretized equation at the nodal point P of the control volume, 

integration of the governing eq. (5.13) is required to be performed with respect to time as 

well as space. Integration over the control volume and over a time interval gives 
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Rewritten, 
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If the temperature at a node is assumed to prevail over the whole control volume, applying 

the central differencing scheme, one obtains: 
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Now, an assumption is made about the variation of TP, TE and Tw with time. By generalizing 

the approach by means of a weighting parameter f  between 0 and 1: 
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Repeating the same operation for points E and W, 
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Upon re-arranging, dropping the superscript “new”, and casting the equation into the standard 

form: 
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where 
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The time integration scheme would depend on the choice of the parameter f. When f = 0, the 

resulting scheme is “explicit”; when 0 < f ≤ 1, the resulting scheme is “implicit”; when f = 1, 

the resulting scheme is “fully implicit”, when f = 1/2, the resulting scheme is “Crank-

Nicolson” (Crank and Nicolson, 1947). The variation of T within the time interval ∆t for the 

different schemes is shown in fig. 5.4. 

 

 

T 

t+t

TP 
old 

t 
TP 

new 

f=0

f=1 

f=0.5 

t  

Fig. 5.4: Variation of T within the time interval ∆t for different schemes 

 

Explicit scheme 

Linearizing the source term as  and setting  f = 0 in eq. (5.19), the explicit 

discretisation becomes: 
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The above scheme is based on backward differencing and its Taylor series truncation error 

accuracy is first-order with respect to time. For stability, all coefficients must be positive in 

the discretized equation. Hence,  
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The above limitation on time step suggests that the explicit scheme becomes very expensive 

to improve spatial accuracy. Hence, this method is generally not recommended for general 

transient problems. Nevertheless, provided that the time step size is chosen with care, the 

explicit scheme described above is efficient for simple conduction calculations. 

 

Crank-Nicolson scheme 

Setting  f = 0.5 in eq. (5.19), the Crank-Nicolson discretisation becomes: 
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The above method is implicit and simultaneous equations for all node points need to be 

solved at each time step. For stability, all coefficient must be positive in the discretized 

equation, requiring 
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The Crank-Nicolson scheme only slightly less restrictive than the explicit method. It is based 

on central differencing and hence it is second-order accurate in time.  

 

The fully implicit scheme 

Setting  f = 1 in eq. (5.19), the fully implicit discretisation becomes: 

old
PPWWEEPP TaTaTaTa 0                                                                     (5.27) 

where ;   PWEPP Saaaa  0

t

x
caP 


 0 ;    
w

w
W x

k
a


 ;    

e

e
E x

k
a


                   (5.28) 



 

A system of algebraic equations must be solved at each time level. The accuracy of the 

scheme is first-order in time. The time marching procedure starts with a given initial field of 

the scalar 0. The system is solved after selecting time step Δt. For the implicit scheme, all 

coefficients are positive, which makes it unconditionally stable for any size of time step. 

Hence, the implicit method is recommended for general purpose transient calculations 

because of its robustness and unconditional stability. 
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