
 

MODULE 4 
 

MULTI-DIMENSIONAL STEADY STATE 
HEAT CONDUCTION  

 
4.1 Introduction 
We have, to this point, considered only One Dimensional, Steady State problems.  The reason 
for this is that such problems lead to ordinary differential equations and can be solved with 
relatively ordinary mathematical techniques.   
 
In general the properties of any physical system may depend on both location (x, y, z) and 
time ().  The inclusion of two or more independent variables results in a partial differential 
equation.  The multidimensional heat diffusion equation in a Cartesian coordinate system can 
be written as: 
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The above equation governs the Cartesian, temperature distribution for a three-dimensional 
unsteady, heat transfer problem involving heat generation. To solve for the full equation, it 
requires a total of six boundary conditions: two for each direction.  Only one initial condition 
is needed to account for the transient behavior. For 2D, steady state (/ t = 0) and without 
heat generation, the above equation reduces to: 
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Equation (2) needs 2 boundary conditions in each direction. There are three approaches to 
solve this equation: 

 Analytical Method: The mathematical equation can be solved using techniques like 
the method of separation of variables. 

 Graphical Method: Limited use.  However, the conduction shape factor concept 
derived under this concept can be useful for specific configurations.  (see Table 4.1 
for selected configurations) 

 Numerical Method: Finite difference or finite volume schemes, usually will be 
solved using computers. 

 

Analytical solutions are possible only for a limited number of cases (such as linear problems 
with simple geometry). Standard analytical techniques such as separation of variables can be 
found in basic textbooks on engineering mathematics, and will not be reproduced here. The 
student is encouraged to refer to textbooks on basic mathematics for an overview of the 
analytical solutions to heat diffusion problems. In the present lecture material, we will cover 
the graphical and numerical techniques, which are used quite conveniently by engineers for 
solving multi-dimensional heat conduction problems. 

 



 

 4.2 Graphical Method: Conduction Shape Factor 
 
This approach applied to 2-D conduction involving two isothermal surfaces, with all other 
surfaces being adiabatic.  The heat transfer from one surface (at a temperature T1) to the 
other surface (at T2) can be expressed as: q=Sk(T1-T2) where k is the thermal conductivity 
of the solid and S is the conduction shape factor.  

 

 The shape factor can be related to the thermal resistance:  

q=S.k.(T1-T2)=(T1-T2)/(1/kS)= (T1-T2)/Rt   

where Rt = 1/(kS) is the thermal resistance in 2D. Note that 1-D heat transfer can also use the 
concept of shape factor.  For example, heat transfer inside a plane wall of thickness L is 
q=kA(T/L), where the shape factor S=A/L. Common shape factors for selected 
configurations can be found in Table 4.1 

 

Example:  A 10 cm OD uninsulated pipe carries steam from the power plant across campus.  
Find the heat loss if the pipe is buried 1 m in the ground is the ground surface temperature is 
50 ºC.  Assume a thermal conductivity of the sandy soil as k = 0.52 w/m K. 
 
Solution:  
 

Z = 1 m 

T2 

T1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The shape factor for long cylinders is found in Table 4.1 as Case 2, with L >> D:   
 

S = 2L/ln(4z/D) 
 

Where z = depth at which pipe is buried.   
 

S = 21m/ln(40) = 1.7 m 
 

Then 
q' = (1.7m)(0.52 W/mK)(100 oC - 50 oC) 

 
q' = 44.2 W 



 

Table  4.1 
Conduction shape factors for selected two-dimensional systems [q = Sk(T1-T2)]
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4.3 Numerical Methods  
Due to the increasing complexities encountered in the development of modern technology, 
analytical solutions usually are not available. For these problems, numerical solutions 
obtained using high-speed computer are very useful, especially when the geometry of the 
object of interest is irregular, or the boundary conditions are nonlinear.  In numerical 
analysis, three different approaches are commonly used: the finite difference, the finite 
volume and the finite element methods. Brief descriptions of the three methods are as 
follows: 
The Finite Difference Method (FDM) 

This is the oldest method for numerical solution of PDEs, introduced by Euler in the 
18th century. It's also the easiest method to use for simple geometries. The starting point is 
the conservation equation in differential form. The solution domain is covered by grid. At 
each grid point, the differential equation is approximated by replacing the partial derivatives 
by approximations in terms of the nodal values of the functions. The result is one algebraic 
equation per grid node, in which the variable value at that and a certain number of neighbor 
nodes appear as unknowns. 
           In principle, the FD method can be applied to any grid type. However, in all 
applications of the FD method known, it has been applied to structured grids. Taylor series 
expansion or polynomial fitting is used to obtain approximations to the first and second 
derivatives of the variables with respect to the coordinates. When necessary, these methods 
are also used to obtain variable values at locations other than grid nodes (interpolation). 
          On structured grids, the FD method is very simple and effective. It is especially easy to 
obtain higher-order schemes on regular grids. The disadvantage of FD methods is that the 
conservation is not enforced unless special care is taken. Also, the restriction to simple 
geometries is a significant disadvantage. 



 

 
Finite Volume Method (FVM) 

In this dissertation finite volume method is used. The FV method uses the integral 
form of the conservation equations as its starting point. The solution domain is subdivided 
into a finite number of contiguous control volumes (CVs), and the conservation equations are 
applied to each CV. At the centroid of each CV lies a computational node at which the 
variable values are to be calculated. Interpolation is used to express variable values at the CV 
surface in terms of the nodal (CV-center) values. As a result, one obtains an algebraic 
equation for each CV, in which a number of neighbor nodal values appear. The FVM method 
can accommodate any type of grid when compared to FDM, which is applied to only 
structured grids. The FVM approach is perhaps the simplest to understand and to program. 
All terms that need be approximated have physical meaning, which is why it is popular. 
           The disadvantage of FV methods compared to FD schemes is that methods of order 
higher than second are more difficult to develop in 3D. This is due to the fact that the FV 
approach requires two levels of approximation: interpolation and integration. 
 
Finite Element Method (FEM) 

The FE method is similar to the FV method in many ways. The domain is broken into 
a set of discrete volumes or finite elements that are generally unstructured; in 2D, they are 
usually triangles or quadrilaterals, while in 3D tetrahedra or hexahedra are most often used. 
The distinguishing feature of FE methods is that the equations are multiplied by a weight 
function before they are integrated over the entire domain. In the simplest FE methods, the 
solution is approximated by a linear shape function within each element in a way that 
guarantees continuity of the solution across element boundaries. Such a function can be 
constructed from its values at the corners of the elements. The weight function is usually of 
the same form. 
           This approximation is then substituted into the weighted integral of the conservation 
law and the equations to be solved are derived by requiring the derivative of the integral with 
respect to each nodal value to be zero; this corresponds to selecting the best solution within 
the set of allowed functions (the one with minimum residual). The result is a set of non-linear 
algebraic equations. 
           An important advantage of finite element methods is the ability to deal with arbitrary 
geometries. Finite element methods are relatively easy to analyze mathematically and can be 
shown to have optimality properties for certain types of equations. The principal drawback, 
which is shared by any method that uses unstructured grids, is that the matrices of the 
linearized equations are not as well structured as those for regular grids making it more 
difficult to find efficient solution methods. 
 
 
4.4 The Finite Difference Method Applied to Heat Transfer Problems: 
In heat transfer problems, the finite difference method is used more often and will be 
discussed here in more detail. The finite difference method involves: 
  Establish nodal networks 
  Derive finite difference approximations for the governing equation at both interior 

and exterior nodal points  
  Develop a system of simultaneous algebraic nodal equations 
  Solve the system of equations using numerical schemes  

 
The Nodal Networks: 



 

The basic idea is to subdivide the area of interest into sub-volumes with the distance between 
adjacent nodes by x and y as shown.  If the distance between points is small enough, the 
differential equation can be approximated locally by a set of finite difference equations.  Each 
node now represents a small region where the nodal temperature is a measure of the average 
temperature of the region.  
Example: 
 
 

x m,n+1 

m, m+1, n m-1,n 
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intermediate points 

m+½,n x=mx, y=ny 

 
 
Finite Difference Approximation: 
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Table 4.2 provides a list of nodal finite difference equation for various configurations. 

 

A System of Algebraic Equations 

• The nodal equations derived previously are valid for all interior points satisfying the 
steady state, no generation heat equation.  For each node, there is one such equation.  

For example: for nodal point m=3, n=4, the equation is 

T2,4 + T4,4 + T3,3 + T3,5 - 4T3,4 =0 

T3,4=(1/4)(T2,4 + T4,4 + T3,3 + T3,5) 

•  Nodal relation table for exterior nodes (boundary conditions) can be found in 
standard heat transfer textbooks.     

•  Derive one equation for each nodal point (including both interior and exterior points) 
in the system of interest.  The result is a system of N algebraic equations for a total of 
N nodal points.  

Matrix Form 
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Numerical Solutions 

Matrix form: [A][T]=[C].   

From linear algebra: [A]-1[A][T]=[A]-1[C],  [T]=[A]-1[C] 

where [A]-1 is the inverse of matrix [A].  [T] is the solution vector. 

•  Matrix inversion requires cumbersome numerical computations and is not efficient if 
the order of the matrix is high (>10)  

•  Gauss elimination method and other matrix solvers are usually available in many 
numerical solution package.  For example, “Numerical Recipes” by Cambridge 
University Press or their web source at www.nr.com.  

•  For high order matrix, iterative methods are usually more efficient.  The famous 
Jacobi & Gauss-Seidel iteration methods will be introduced in the following.  

 

Iteration 
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Replace (k) by (k-1) 
for the Jacobi iteration 



 

• (k) - specify the level of the iteration, (k-1) means the present level and (k) represents 
the new level.  

•  An initial guess (k=0) is needed to start the iteration. 

• • By substituting iterated values at (k-1) into the equation, the new values at iteration 
(k) can be estimated The iteration will be stopped when maxTi

(k)-Ti
(k-1)  , where  

specifies a predetermined value of acceptable error  

 


	MODULE 4

