
 

MODULE 2 
 

ONE DIMENSIONAL STEADY STATE 
HEAT CONDUCTION  

 
2.1 Objectives of conduction analysis: 
 
The primary objective is to determine the temperature field, T(x,y,z,t), in a body (i.e. how 
temperature varies with position within the body)  
T(x,y,z,t) depends on: 
 - Boundary conditions 
 - Initial condition 
 - Material properties (k, cp, ) 

- Geometry of the body (shape, size) 
 

Why we need T (x, y, z, t)? 
 - To compute heat flux at any location (using Fourier’s eqn.) 
 - Compute thermal stresses, expansion, deflection due to temp. Etc. 
 - Design insulation thickness 
 - Chip temperature calculation 
 - Heat treatment of metals 
 
 
2.2 General Conduction Equation 
     Recognize that heat transfer involves an energy transfer across a system boundary.  The 
analysis for such process begins from the 1st Law of Thermodynamics for a closed system: 
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The above equation essentially represents Conservation of Energy. The sign convention on 
work is such that negative work out is positive work in. 
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The work in term could describe an electric current flow across the system boundary and 
through a resistance inside the system.  Alternatively it could describe a shaft turning across 
the system boundary and overcoming friction within the system.  The net effect in either case 
would cause the internal energy of the system to rise.  In heat transfer we generalize all such 
terms as “heat sources”.  
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The energy of the system will in general include internal energy, U, potential energy, ½ mgz, 
or kinetic energy, ½ mv2.  In case of heat transfer problems, the latter two terms could often 
be neglected.  In this case, 

   E U m u m c T T V c T Tp ref p r            ef  



 

where Tref is the reference temperature at which the energy of the system is defined as zero.  
When we differentiate the above expression with respect to time, the reference temperature, 
being constant, disappears: 
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Consider the differential control element shown below.  Heat is assumed to flow through the 
element in the positive directions as shown by the 6 heat vectors. 
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In the equation above we substitute the 6 heat inflows/outflows using the appropriate sign: 
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Substitute for each of the conduction terms using the Fourier Law: 
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where q is defined as the internal heat generation per unit volume. 
The above equation reduces to: 
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Dividing by the volume (xyz), 
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which is the general conduction equation in three dimensions.  
 
In the case where k is independent of x, y and z then 
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Define the thermodynamic property, , the thermal diffusivity: 
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The vector form of this equation is quite compact and is the most general form.  However, we 
often find it convenient to expand the spatial derivative in specific coordinate systems: 
 
Cartesian Coordinates 
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Circular Coordinates 
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Spherical Coordinates 
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In each equation the dependent variable, T, is a function of 4 independent variables, (x,y,z,τ); 
(r, ,z,τ); (r,φ,θ,τ) and is a 2nd order, partial differential equation.  The solution of such 
equations will normally require a numerical solution.  For the present, we shall simply look at 
the simplifications that can be made to the equations to describe specific problems. 
 

 Steady State:  Steady state solutions imply that the system conditions are not changing 
with time.  Thus 0/  T . 

 One dimensional:  If heat is flowing in only one coordinate direction, then it follows 
that there is no temperature gradient in the other two directions.  Thus the two partials 
associated with these directions are equal to zero. 

 Two dimensional:  If heat is flowing in only two coordinate directions, then it follows 
that there is no temperature gradient in the third direction.  Thus, the partial derivative 
associated with this third direction is equal to zero. 

 No Sources:  If there are no volumetric heat sources within the system then the term, 

0


q . 
 
Note that the equation is 2nd order in each coordinate direction so that integration will result 
in 2 constants of integration.  To evaluate these constants two boundary conditions will be 
required  for each coordinate direction.   
 
 
2.3 Boundary and Initial Conditions  
 

• The objective of deriving the heat diffusion equation is to determine the temperature 
distribution within the conducting body.  



 

•  We have set up a differential equation, with T as the dependent variable. The solution 
will give us T(x,y,z). Solution depends on boundary conditions (BC) and initial 
conditions (IC).  

•  How many BC’s and IC’s ? 

-  Heat equation is second order in spatial coordinate. Hence, 2 BC’s needed 
for each   coordinate.  

    * 1D problem: 2 BC in x-direction      

* 2D problem: 2 BC in x-direction, 2 in y-direction    

* 3D problem: 2 in x-dir., 2 in y-dir., and 2 in z-dir. 

    -  Heat equation is first order in time. Hence one IC needed.  

 
 
2.4 Heat Diffusion Equation for a One Dimensional System  
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Consider the system shown above.  The top, bottom, front and back of the cube are insulated, 
so that heat can be conducted through the cube only in the x direction.  The internal heat 
generation per unit volume is q (W/m3). 
 
Consider the heat flow through a differential element of the cube.   
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From the 1st Law we write for the element: 
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If k is a constant, then         
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• For T to rise, LHS must be positive (heat input is positive) 

•  For a fixed heat input, T rises faster for higher  

•  In this special case, heat flow is 1D. If sides were not insulated, heat flow could be 
2D, 3D. 

 

 

2.5 One Dimensional Steady State Heat Conduction  
 

The plane wall:  

 

 

 

 

 

 

 

 



 

The differential equation governing heat diffusion is:  0
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With constant k, the above equation may be integrated twice to obtain the general solution:  
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where C1 and C2 are constants of integration. To obtain the constants of integration, we apply 
the boundary conditions at x = 0 and x = L, in which case 
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Once the constants of integration are substituted into the general equation, the temperature 
distribution is obtained: 
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The heat flow rate across the wall is given by: 
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Thermal resistance (electrical analogy): 

Physical systems are said to be analogous if that obey the same mathematical equation.  The 
above relations can be put into the form of Ohm’s law: 

V=IRelec 

 

 

 

 

 

Using this terminology it is common to speak of a thermal resistance: 
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A thermal resistance may also be associated with heat transfer by convection at a surface. 
From Newton’s law of cooling, 
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the thermal resistance for convection is then  
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Applying thermal resistance concept to the plane wall, the equivalent thermal circuit for the 
plane wall with convection boundary conditions is shown in the figure below 



 

 

 

 

 

 

 

 

 

 

 

 

The heat transfer rate may be determined from separate consideration of each element in the 
network. Since qx is constant throughout the network, it follows that 
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In terms of the overall temperature difference , and the total thermal resistance Rtot, 

the heat transfer rate may also be expressed as  
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Composite walls:  

Thermal Resistances in Series: 
Consider three blocks, A, B and C, as shown.  They are insulated on top, bottom, front and 
back.  Since the energy will flow first through block A and then through blocks B and C, we 
say that these blocks are thermally in a series arrangement. 

 

 

 

 

 

 

 

 

 

 

The steady state heat flow rate through the walls is given by: 
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where 
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  is the overall heat transfer coefficient. In the above case, U is expressed as 
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Series-parallel arrangement: 

 

 

 

 

 

 

 

 

 

 

 

 

The following assumptions are made with regard to the above thermal resistance model: 

1) Face between B and C is insulated. 

2) Uniform temperature at any face normal to X. 

 

1-D radial conduction through a cylinder:  

One frequently encountered problem is that of heat flow through the walls of a pipe or 
through the insulation placed around a pipe.  Consider the cylinder shown.  The pipe is either 
insulated on the ends or is of sufficient length, L, that heat losses through the ends is 
negligible.  Assume no heat sources within the wall of the tube.  If T1>T2, heat will flow 
outward, radially, from the inside radius, R1, to the outside radius, R2.  The process will be 
described by the Fourier Law. 
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The differential equation governing heat diffusion is:  0
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With constant k, the solution is  

 

The heat flow rate across the wall is given by: 
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Hence, the thermal resistance in this case can be expressed as:  
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Composite cylindrical walls: 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

Critical Insulation Thickness : 
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Insulation thickness : ro-ri 



 

 

Objective :                  decrease q , increase   
totR

Vary ro  ; as ro  increases, first term increases, second term decreases. 

This is a maximum – minimum problem. The point of extrema can be found by setting 
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In order to determine if it is a maxima or a minima, we make the second derivative zero: 
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Minimum q at ro =(k/h) = rcr (critical radius) 

 

 

 

 

 

 

 

 

 

 

 

1-D radial conduction in a sphere: 
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2.6 Summary of Electrical Analogy 
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2.7 One-Dimensional Steady State Conduction with Internal Heat 
Generation 
 

Applications:      current carrying conductor, chemically reacting systems, nuclear reactors. 

Energy generated per unit volume is given by 
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Plane wall with heat source: Assumptions: 1D, steady state, constant k, uniform q 
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Note: From the above expressions, it may be observed that the solution for temperature is no 
longer linear. As an exercise, show that the expression for heat flux is no longer independent 
of x. Hence thermal resistance concept is not correct to use when there is internal heat 
generation.  

 

 

Cylinder with heat source: Assumptions: 1D, steady state, constant k, uniform q 

 

Start with 1D heat equation in cylindrical co-ordinates 
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Exercise:  Ts may not be known. Instead, T∞ and h may be specified. Eliminate Ts, using T∞ 
and h. 
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