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Definition of Stress: 

Consider a small area  δA on the surface of a body (Fig. 1.1). The force acting on this area is  δF  

This force can be resolved into two perpendicular components 

 The component of force acting normal to the area called normal  force and is denoted by  δFn  

 The component of force acting along the plane of area is called tangential force and is denoted by 

δFt 

 

Fig 1.1 Normal and Tangential Forces on a surface  

When they are expressed as force per unit area they are called as normal stress and tangential stress 

respectively. The tangential stress is also called shear stress 

The normal stress  

 

(1.1) 

And shear stress  

 

(1.2) 

Definition of Fluid:  

 A fluid is a substance that deforms continuously in the face of tangential or shear stress, 

irrespective of the   magnitude of shear stress .This continuous deformation under the application 

of shear stress constitutes a flow. 

 In this connection fluid can also be defined as the state of matter that cannot sustain any shear 

stress.  

Example : Consider Fig 1.2  
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Fig 1.2 Shear stress on a fluid body  

If a shear stress τ is applied at any location in a fluid, the element 011' which is initially at rest, will move to 

022', then to 033'. Further, it moves to 044' and continues to move in a similar fashion. 

In other words, the tangential stress in a fluid body depends on velocity of deformation and vanishes as 

this velocity approaches zero. A good example is Newton's parallel plate experiment where 

dependence of shear force on the velocity of deformation  was established.  

Newton's Parallel Plate Experiment 

In this experiment, the apparatus consists of two horizontal parallel plates with a sufficiently large spacing 

(h) between them. The space is filled by a fluid. Now the top plate is moved with a velocity, U. The distance 

in the fluid affected by the motion of the upper plate is denoted by . The distance is the penetration 

depth in the fluid arising from a disturbance on its boundary (the plate movement).The force required to 

sustain the plate motion is given by,  

 

Now can be approximated as (which you will learn in later chapters). Here is coefficient of 

momentum transport (kinematic viscosity) that determines the extent of motion transport in a stationary fluid 

medium. The kinematic viscosity ( ) is related to dynamic viscosity ( ) as  

 

where is the density of the fluid.  

So, we can approximate as (upon considering the fluid incompressible). Hence, the force 

required can be reframed as,  

 

So, this experiment can be used to calculate the coefficient of dynamic viscosity of a fluid for a given value 

of density of the fluid , velocity of the plate, U and the area of the plate, A and the force applied, F.  

 

                                   u(y) is the velocity profile along the y-axis.  

Distinction between Solid and Fluid  

Solid  Fluid 
   

   

https://nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9-newton-parallel-plate.htm
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 More Compact Structure  

 Attractive Forces between the 

molecules  

are larger therefore more closely 

packed 

 Solids can resist tangential stresses 

in static condition 

 Whenever a solid is subjected to 

shear stress  

a. It undergoes a definite 

deformation α or breaks  

b. α is proportional to shear 

stress upto some limiting 

condition  

 Solid may regain partly or fully its 

original shape when the tangential 

stress is removed  

 

 Less Compact Structure  

 Attractive Forces between the 

molecules  

are smaller therefore more loosely 

packed 

 Fluids cannot resist tangential 

stresses in static condition. 

 Whenever a fluid is subjected to shear 

stress  

a. No fixed deformation 

b. Continious deformation takes 

place 

until the shear stress is applied  

 A fluid can never regain its original 

shape, once it has been distorded by 

the shear stress  

  

  

Fig 1.3 Deformation of a Solid Body  
 

Concept of Continuum  

 The concept of continuum is a kind of idealization of the continuous description of matter 

where the properties of the matter are considered as continuous functions of space variables. 

Although any matter is composed of several molecules, the concept of continuum assumes a 

continuous distribution of mass within the matter or system with no empty space, instead of 

the actual conglomeration of separate molecules.  

 Describing a fluid flow quantitatively makes it necessary to assume that flow variables 

(pressure , velocity etc.) and fluid properties vary continuously from one point to another. 

Mathematical description of flow on this basis have proved to be reliable and treatment of 

fluid medium as a continuum has firmly become established. For example density at a point 

is normally defined as  
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Here Δ  is the volume of the fluid element and m is the mass  

 If Δ  is very large ρ is affected by the inhomogeneities in the fluid medium. Considering 

another extreme if Δ  is very small, random movement of atoms (or molecules) would 

change their number at different times. In the continuum approximation point density is 

defined at the smallest magnitude of Δ , before statistical fluctuations become significant. 

This is called continuum limit and is denoted by Δ c.  

 

 One of the factors considered important in determining the validity of continuum model is 

molecular density. It is the distance between the molecules which is characterised by mean 

free path ( λ ). It is calculated by finding statistical average distance the molecules travel 

between two successive collisions. If the mean free path is very small as compared with some 

characteristic length in the flow domain (i.e., the molecular density is very high) then the gas 

can be treated as a continuous medium. If the mean free path is large in comparison to some 

characteristic length, the gas cannot be considered continuous and it should be analysed by 

the molecular theory.  

 A dimensionless parameter known as Knudsen number, K n = λ / L, where λ is the mean free 

path and L is the characteristic length. It describes the degree of departure from continuum.  

Usually when K n> 0.01, the concept of continuum does not hold good.  

Beyond this critical range of Knudsen number, the flows are known as  

slip flow (0.01 < K n < 0.1),  

transition flow (0.1 < K n < 10) and  

free-molecule flow (Kn > 10). 

However, for the flow regimes considered in this course , K n is always less than 0.01 and it 

is usual to say that the fluid is a continuum.  

Other factor which checks the validity of continuum is the elapsed time between collisions. 

The time should be small enough so that the random statistical description of molecular 

activity holds good.  

In continuum approach, fluid properties such as density, viscosity, thermal 

conductivity, temperature, etc. can be expressed as continuous functions of space and 

time.  
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Fluid Properties  

Characteristics of a continuous fluid which are independent of the motion of the fluid are called basic 

properties of the fluid. Some of the basic properties are as discussed below.  

Property Symbol Definition Unit 

Density  ρ 

The density p of a fluid is its mass per unit volume . If a fluid element 

enclosing a point P has a volume Δ  and mass Δm (Fig. 1.4), then density 

(ρ)at point P is written as  

 

  

However, in a medium where continuum model is valid one can write - 

 

(1.3) 

  

     

 

Fig 1.4 A fluid element enclosing point P  

  

kg/m
3
  

Specific 

Weight  
γ  

The specific weight is the weight of fluid per unit volume. The specific 

weight is given 

by     γ= ρg     (1.4) 

Where g is the gravitational acceleration. Just as weight must be clearly 

distinguished from mass, so must the specific weight be distinguished from 

density. 

N/m
3
 

Specific 

Volume  
v 

The specific volume of a fluid is the volume occupied by unit mass of fluid.  

Thus  

m
3
 

/kg  
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(1.5) 
 

Specific 

Gravity  
s  

For liquids, it is the ratio of density of a liquid at actual conditions to the 

density of pure water at 101 kN/m
2
 , and at 4°C. 

The specific gravity of a gas is the ratio of its density to that of either 

hydrogen or air at some specified temperature or pressure. 

However, there is no general standard; so the conditions must be stated 

while referring to the specific gravity of a gas.  

- 

        

 Viscosity ( μ ) :  

 Viscosity is a fluid property whose effect is understood when the fluid is in motion. 

 In a flow of fluid, when the fluid elements move with different velocities, each element will feel 

some resistance due to fluid  friction within the elements. 

  Therefore, shear stresses can be identified between the fluid elements with different velocities.  

 The relationship between the shear stress and the velocity field was given by Sir Isaac Newton.  

Consider a flow (Fig. 1.5) in which all fluid particles are moving in the same direction in such a way that the 

fluid layers move parallel with different velocities.  

 

Fig 1.5 Parallel flow of a fluid 
Fig 1.6 Two adjacent layers of a moving 

fluid.  

 The upper layer, which is moving faster, tries to draw the lower slowly moving layer along with it by 

means of a force F along the direction of flow on this layer. Similarly, the lower layer tries to retard 

the upper one, according to Newton's third law, with an equal and opposite force F on it (Figure 1.6). 

 Such a fluid flow where x-direction velocities, for example, change with y-coordinate is called shear 

flow of the fluid. 

 Thus, the dragging effect of one layer on the other is experienced by a tangential force F on the 

respective layers. If F acts over an area of contact A, then the shear stress τ is defined as 

τ = F/A  
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Viscosity ( μ ) :  

 Newton postulated that τ is proportional to the quantity Δu/ Δy where Δy  is the distance of 

separation of the two layers and Δu  is  the difference in their velocities. 

 In the limiting case of , Δu / Δy equals du/dy, the velocity gradient at a point in a direction 

perpendicular to the direction of the motion of the layer. 

 According to Newton τ and du/dy bears the relation 

 

(1.7) 

where, the constant of proportionality μ is known as the coefficient of viscosity or simply viscosity which is 

a property of the fluid and depends on its state. Sign of τ depends upon the sign of du/dy. For the profile 

shown in Fig. 1.5, du/dy is positive everywhere and hence, τ is positive. Both the velocity and stress are 

considered positive in the positive direction of the coordinate parallel to them.  

Equation  

 

  

defining the viscosity of a fluid, is known as Newton's law of viscosity. Common fluids, viz. water, air, 

mercury obey Newton's law of viscosity and are known as Newtonian fluids.  

Other classes of fluids, viz. paints, different polymer solution, blood do not obey the typical linear 

relationship, of τ and du/dy and are known as non-Newtonian fluids. In non-newtonian fluids viscosity 

itself may be a function of deformation rate as you will study in the next lecture. 

Causes of Viscosity          

 The causes of viscosity in a fluid are possibly attributed to two factors:  

(i) intermolecular force of cohesion 

(ii) molecular momentum exchange 

 Due to strong cohesive forces between the molecules, any layer in a moving fluid tries to drag the 

adjacent layer to move with an equal speed and thus produces the effect of viscosity as discussed 

earlier. Since cohesion decreases with temperature, the liquid viscosity does likewise.  

 

Fig 1.7 Movement of fluid molecules between two adjacent moving layers  

https://nptel.ac.in/courses/112104118/lecture-1/hyperlink/1-9a-newton-parallel-plate.htm
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 Molecules from layer aa in course of continous thermal agitation migrate into layer bb  

 Momentum from the migrant molecules from layer aa is stored by molecules of layer bb by way of 

collision 

 Thus layer bb as a whole is speeded up 

 Molecules from the lower layer bb arrive at aa and tend to retard the layer aa  

 Every such migration of molecules causes forces of acceleration or deceleration to drag the layers so 

as to oppose the differences in velocity between the layers and produce the effect of viscosity.  

Causes of Viscosity - contd from previous slide...          

 As the random molecular motion increases with a rise in temperature, the viscosity also increases 

accordingly. Except for very special cases (e.g., at very high pressure) the viscosity of both liquids 

and gases ceases to be a function of pressure.  

 For Newtonian fluids, the coefficient of viscosity depends strongly on temperature but varies very 

little with pressure. 

 For liquids, molecular motion is less significant than the forces of cohesion, thus viscosity of liquids 

decrease with increase in temperature. 

 For gases,molecular motion is more significant than the cohesive forces, thus viscosity of gases 

increase with increase in temperature. 

 

Fig 1.8: Change of Viscosity of Water and Air under 1 atm  

 No-slip Condition of Viscous Fluids  

https://nptel.ac.in/courses/112104118/lecture-1/animation/demonstration1.htm
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 It has been established through experimental observations that the relative velocity between the solid 

surface and the adjacent fluid particles is zero whenever a viscous fluid flows over a solid surface. 

This is known as no-slip condition.  

 This behavior of no-slip at the solid surface is not same as the wetting of surfaces by the fluids. For 

example, mercury flowing in a stationary glass tube will not wet the surface, but will have zero 

velocity at the wall of the tube. 

 The wetting property results from surface tension, whereas the no-slip condition is a consequence of 

fluid viscosity.  

Ideal Fluid: 

 Consider a hypothetical fluid having a zero viscosity ( μ = 0). Such a fluid is called an ideal fluid and 

the resulting motion is called as ideal or inviscid flow. In an ideal flow, there is no existence of 

shear force because of vanishing viscosity. 

 

 All the fluids in reality have viscosity (μ > 0) and hence they are termed as real fluid and their 

motion is known as viscous flow.  

 Under certain situations of very high velocity flow of viscous fluids, an accurate analysis of flow 

field away from a solid surface can be made from the ideal flow theory.  

  Non-Newtonian Fluids  

 There are certain fluids where the linear relationship between the shear stress and the deformation 

rate (velocity gradient in parallel flow) as expressed by the   is not valid. For these fluids 

the viscosity varies with rate of deformation.  

 Due to the deviation from Newton's law of viscosity they are commonly termed as non-Newtonian 

fluids. Figure 2.1 shows the class of fluid for which this relationship is nonlinear. 
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Figure 2.1   Shear stress and deformation rate relationship of different fluids  

 The abscissa in Fig. 2.1 represents the behaviour of ideal fluids since for the ideal fluids the 

resistance to shearing deformation rate is always zero, and hence they exhibit zero shear stress under 

any condition of flow. 

 The ordinate represents the ideal solid for there is no deformation rate under any loading condition. 

 The Newtonian fluids behave according to the law that shear stress is linearly proportional to 

velocity gradient or rate of shear strain . Thus for these fluids, the plot of shear stress 

against velocity gradient is a straight line through the origin. The slope of the line determines the 

viscosity.  

 The non-Newtonian fluids are further classified as pseudo-plastic, dilatant and Bingham plastic. 

Classification of non-Newtonian fluids 

 Many mathematical models are available to describe the nonlinear "shear-stress vs deformation-rate" 

relationship of non Newtonian fluids. But no general model can describe the constitutive equation 

("shear stress vs rate of deformation" relationship) of all kinds of non-Newtonian fluids. However, 

the mathematical model for describing the mechanistic behaviour of a variety of commonly 

used non-Newtonian fluids is the Power-Law model which is also known as Ostwald-de Waele 

model (the name is after the scientist who proposed it). According to Ostwald-de Waele model 

 

 (2.1) 

 

where, m is known as the flow consistency index and n is the flow behavior index.  

Hence viscosity for the Power-law fluids (as per Power Law model) can be described as:  

 μ =   
(2.2) 

https://nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-3-classification-non-newtonian.htm
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It can be observed from above that the viscosity of non-Newtonian fluid is function of deformation rate and 

is often termed as apparent or effective viscosity.  

 When n = 1, m equals , the model identically satisfies Newtonian model as a special case.  

When n < 1, the model is valid for pseudoplastic fluids, such as gelatine, blood, milk etc. 

 

When n > 1, the model is valid for dilatant fluids, such as sugar in water, aqueous suspension of rice starch 

etc. 

 There are some substances which require a yield stress for the deformation rate (i.e. the flow) to be 

established, and hence their constitutive equations do not pass through the origin thus violating the 

basic definition of a fluid. They are termed as Bingham plastic. For an ideal Bingham plastic, the 

shear stress- deformation rate relationship is linear.  

Compressibility: 

 Compressibility of any substance is the measure of its change in volume under the action of external 

forces. 

 The normal compressive stress on any fluid element at rest is known as hydrostatic pressure p and 

arises as a result of innumerable molecular collisions in the entire fluid.  

 The degree of compressibility of a substance is characterized by the bulk modulus of elasticity E 

defined as  

 

(2.3) 

  

Where Δ  and Δp are the changes in the volume and pressure respectively, and is the initial 

volume. The negative sign (-sign) is included to make E positive, since increase in pressure would 

decrease the volume i.e for Δp>0 , Δ <0) in volume.  

 For a given mass of a substance, the change in its volume and density satisfies the relation 

m = 0,    ρ  ) = 0     

 

(2.4) 

 

using   
  

we get  

 

(2.5) 
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 Values of E for liquids are very high as compared with those of gases (except at very high pressures). 

Therefore, liquids are usually termed as incompressible fluids though, in fact, no substance is 

theoretically incompressible with a value of E as . 

 For example, the bulk modulus of elasticity for water and air at atmospheric pressure are 

approximately 2 x 10
6
 kN/m 

2
 and 101 kN/m 

2
 respectively. It indicates that air is about 20,000 times 

more compressible than water. Hence water can be treated as incompressible.  

 

 For gases another characteristic parameter, known as compressibility K, is usually defined , it is the 

reciprocal of E 

 

(2.6) 

 K is often expressed in terms of specific volume .  

 For any gaseous substance, a change in pressure is generally associated with a change in volume and 

a change in temperature simultaneously. A functional relationship between the pressure, volume 

and temperature at any equilibrium state is known as thermodynamic equation of state for the 

gas.  
 

For an ideal gas, the thermodynamic equation of state is given by 

p = ρRT (2.7) 

  

 where T is the temperature in absolute thermodynamic or gas temperature scale (which are, in fact, 

identical), and R is known as the characteristic gas constant, the value of which depends upon a 

particular gas. However, this equation is also valid for the real gases which are thermodynamically 

far from their liquid phase. For air, the value of R is 287 J/kg K.  

 K and E generally depend on the nature of process 

Nature of Process: 

 The relationship between the pressure p and the volume V for any process undergone by a gas 

depends upon the nature of the process. A general relationship is usually expressed in the form of  

             

 

(2.8) 

 

This is an equation of state of a polytropic process. For a constant temperature (isothermal) process 

of an ideal gas, x= 1.  

 If there is no heat transfer to or from the gas, the process is known as adiabatic. A frictionless 

adiabatic process is called an isentropic process and x equals to the ratio of specific heat at constant 

pressure to that at constant volume.  

The equation PV
x
=constant can be written in a differential form as  

https://nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-5-process.htm
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(2.9) 

Using the relations  

 

  

      and 
(2.10) 

 

(2.11) 

We get  

 

  

 

Therefore, the compressibility K, or bulk modulus of elasticity E for gases depends on the 

nature of the process through which the pressure and volume change. 

 

Fig 2.2 State Change of Perfect Gas  

 For an isothermal process of an ideal gas (x = 1), i.e. E = p or K = 1/p . 

 The value of E for air quoted earlier is the isothermal bulk modulus of elasticity at normal 

atmospheric pressure and hence the value equals to the normal atmospheric pressure. 

 

Distinction between an Incompressible and a Compressible Flow  
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 In order to know, if it is necessary to take into account the compressibility of gases in fluid flow 

problems, we need to consider whether the change in pressure brought about by the fluid motion 

causes large change in volume or density. 

 

Using Bernoulli's equation  

 

p + (1/2)ρV
2
= constant (V being the velocity of flow), change in pressure, Δp, in a flow field, is of 

the order of (1/2)ρV
2 
(dynamic head).  

Invoking this relationship into  

 

  

  we get ,   

 

(2.12) 

           

So if Δρ/ρ is very small, the flow of gases can be treated as incompressible with a good degree 

of approximation. 

 According to Laplace's equation, the velocity of sound is given by  

 

  

 Hence                

 

  

        

where, Ma is the ratio of the velocity of flow to the acoustic velocity in the flowing medium at the 

condition and is known as Mach number. So we can conclude that the compressibility of gas in a 

flow can be neglected if Δρ/ρ is considerably smaller than unity, i.e. (1/2)Ma
2
<<1.  

 In other words, if the flow velocity is small as compared to the local acoustic velocity, 

compressibility of gases can be neglected. Considering a maximum relative change in density of 5 

per cent as the criterion of an incompressible flow, the upper limit of Mach number becomes 

approximately 0.33. In the case of air at standard pressure and temperature, the acoustic velocity is 

about 335.28 m/s. Hence a Mach number of 0.33 corresponds to a velocity of about 110 m/s. 

Therefore flow of air up to a velocity of 110 m/s under standard condition can be considered as 

incompressible flow.  

Surface Tension of Liquids  

 The phenomenon of surface tension arises due to the two kinds of intermolecular forces  

 

(i) Cohesion : The force of attraction between the molecules of a liquid by virtue of which they are 

bound to each other to remain as one assemblage of particles is known as the force of cohesion. This 

property enables the liquid to resist tensile stress.  
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(ii) Adhesion : The force of attraction between unlike molecules, i.e. between the molecules of 

different liquids or between the molecules of a liquid and those of a solid body when they are in 

contact with each other, is known as the force of adhesion. This force enables two different liquids to 

adhere to each other or a liquid to adhere to a solid body or surface.  

 

Figure 2.3 The intermolecular cohesive force field in a bulk of liquid with a free surface 

 

A and B experience equal force of cohesion in all directions, C experiences a net force interior of the 

liquid The net force is maximum for D since it is at surface  

 Work is done on each molecule arriving at surface against the action of an inward force. Thus 

mechanical work is performed in creating a free surface or in increasing the area of the surface. 

Therefore, a surface requires mechanical energy for its formation and the existence of a free surface 

implies the presence of stored mechanical energy known as free surface energy. Any system tries to 

attain the condition of stable equilibrium with its potential energy as minimum. Thus a quantity of 

liquid will adjust its shape until its surface area and consequently its free surface energy is a 

minimum. 

 

 

 The magnitude of surface tension is defined as the tensile force acting across imaginary short and 

straight elemental line divided by  the length of the line.  

 The dimensional formula is F/L or MT
-2

 . It is usually expressed in N/m in SI units. 

 Surface tension is a binary property of the liquid and gas or two liquids which are in contact with 

each other and defines the  interface. It decreases slightly with increasing temperature. The surface 

tension of water in contact with air at 20°C is about 0.073 N/m.  

 It is due to surface tension that a curved liquid interface in equilibrium results in a greater pressure at 

the concave side of the surface than that at its convex side.  

 

Surface Tension of Liquids  

Let us consider a spherical bubble of diameter d, with pressure p1 inside and outside pressure is p2. Let T be 

the surface tension.  

https://nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-8-surface-tension-greater_pressure.htm
https://nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-8-surface-tension-greater_pressure.htm
https://nptel.ac.in/courses/112104118/lecture-2/hyperlink/2-8-surface-tension-greater_pressure.htm


Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 17 

 

Balancing the forces on both sides considering a projected area of half sphere  

 

 Implies  

Therefore  

Therefore  

Where  

This also shows that internal pressure of the bubble is greater than its peripheral pressure.  

 

Capillarity 

 The interplay of the forces of cohesion and adhesion explains the phenomenon of capillarity. When a 

liquid is in contact with a    solid, if the forces of adhesion between the molecules of the liquid and 

the solid are greater than the forces of cohesion among the liquid molecules themselves, the liquid 

molecules crowd towards the solid surface. The area of contact between the liquid and solid 

increases and the liquid thus wets the solid surface. 

 The reverse phenomenon takes place when the force of cohesion is greater than the force of 

adhesion. These adhesion and cohesion properties result in the phenomenon of capillarity by which a 

liquid either rises or falls in a tube dipped into the liquid depending upon whether the force of 

adhesion is more than that of cohesion or not (Fig.2.4). 

 The angle θ as shown in Fig. 2.4, is the area wetting contact angle made by the interface with the 

solid surface.  
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Fig 2.4   Phenomenon of Capillarity 

 For pure water in contact with air in a clean glass tube, the capillary rise takes place with θ = 0 . 

Mercury causes capillary depression with an angle of contact of about 130
0
 in a clean glass in contact 

with air. Since h varies inversely with D as found from Eq. ( ), an appreciable capillary 

rise or depression is observed in tubes of small diameter only.  

 

Vapour pressure  

All liquids have a tendency to evaporate when exposed to a gaseous atmosphere. The rate of evaporation 

depends upon the molecular energy of the liquid which in turn depends upon the type of liquid and its 

temperature. The vapour molecules exert a partial pressure in the space above the liquid, known as vapour 

pressure. If the space above the liquid is confined (Fig. 2.5) and the liquid is maintained at constant 

temperature, after sufficient time, the confined space above the liquid will contain vapour molecules to the 

extent that some of  them will be forced to enter the liquid. Eventually an equilibrium condition will evolve 

when the rate at which the number of vapour molecules striking back the liquid surface and condensing is 

just equal to the rate at which they leave from the surface. The space above  the liquid then becomes 

saturated with vapour. The vapour pressure of a given liquid is a function of temperature only and is equal to 

the saturation pressure for boiling corresponding to that temperature. Hence, the vapour pressure increases 

with the increase in temperature. Therefore the phenomenon of boiling of a liquid is closely related to the 

vapour pressure. In fact, when the vapour pressure of a liquid becomes equal to the total pressure impressed 

on its surface, the liquid starts boiling. This concludes that boiling can be achieved either    by raising the 

temperature of the liquid, so that its vapour pressure is elevated to the ambient pressure, or by lowering the 

pressure of the ambience (surrounding gas) to the liquid's vapour pressure at the existing temperature.  
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Figure 2.5 To and fro movement of liquid molecules from an interface in a confined space as a closed 

surrounding  

Exercise Problems  -  Chapter 1 

1. A thin film of liquid flows down an inclined channel. The velocity distribution in the flow is given by  

 

where, h = depth of flow, α = angle of inclination of the channel to the horizontal, u = velocity at a depth h 

below the free surface, ρ = density of liquid, μ = dynamic viscosity of the fluid. Calculate the shear stress: 

(a) at the bottom of the channel (b) at mid-depth and (c) at the free surface. The coordinate y is measured 

from the free surface along its normal 

  
[(a) α,   (b) α ,   (c) 0]      

2. Two discs of 250 mm diameter are placed 1.5 mm apart and the gap is filled with an oil. A power of 500 

W is required to rotate the upper disc at 500 rpm while keeping the lower one stationary. Determine the 

viscosity of the oil.  

  [ 0. 71 kg/ms]     

3. Eight kilometers below the surface of the ocean the pressure is 100 MPa. Determine the specific weight of 

sea water at this depth if the specific weight at the surface is 10 kN/m
3
 and the average bulk modulus of 

elasticity of water is 2.30 GPa. Neglect the variation of g. 

  [ 10. 44 kN/m
3
 ]     

4. The space between two large flat and parallel walls 20 mm apart is filled with a liquid of absolute 

viscosity 0.8 Pas. Within this space a thin flat plate 200 mm × 200mm is towed at a velocity of 200 mm/s at 

a distance of 5 mm from one wall. The plate and its movement are parallel to the walls. Assuming a linear 

velocity distribution between the plate and the walls, determine the force exerted by the liquid on the plate. 

  [1. 71 N]     

https://nptel.ac.in/courses/112104118/lecture-2/animation/Demonstrationvapour_pressure.htm
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5.  What is the approximate capillary rise of water in contact with air (surface tension 0.073 N/m) in a clean 

glass tube of 5mm in diameter?  

  [ 5.95]  
 

Recap 

   In this chapter you have learnt the following  

  A fluid is a substance that deforms continuously when subjected to even an infinitesimal 

shear stress. Solids can resist tangential stress at static conditions undergoing a definite 

deformation while a fluid can do it only at dynamic conditions undergoing a continuous 

deformation as long as the shear stress is applied.  

  

  The concept of continuum assumes a continuous distribution of mass within the matter or 

system with no empty space. In the continuum approach, properties of a system can be 

expressed as continuous functions of space and time. A dimensionless parameter known as 

Knudsen number where λ is the mean free path and L is the characteristic length, 

aptly describes the degree of departure from continuum. The concept of continuum usually 

holds good when Kn< 0.01.  

  

  Viscosity is a property of a fluid by virtue of which it offers resistance to flow. The shear 

stress at a point in a moving fluid is directly proportional to the rate of shear strain. For a 

one dimensional flow, . The constant of proportionality μ is known as coefficient of 

viscosity or simply the viscosity. The relationship is known as the Newton's law of viscosity 

and the fluids which obey this law are known as Newtonian fluids.  

  

  The relationship between the shear stress and the rate of shear strain is known as the 

constitutive equation. The fluids whose constitutive equations are not linear through origin 

(do not obey the Newton's law of viscosity) are known as non-Newtonian fluids. For a 

Newtonian fluid, viscosity is a function of temperature only. With an increase in 

temperature, the viscosity of a liquid decreases, while that of a gas increases. For non-

Newtonian fluid, the viscosity depends not only on temperature but also on the deformation 

rate of the fluid. Kinematic viscosity v is defined as . 

  Compressibility of a substance is the measure of its change in volume or density under the 

action of external forces. It is usually characterized by the bulk modulus of elasticity  

 

  
   

 A flow is said to be incompressible when the change in its density due to the change in 

pressure brought about by the fluid motion is negligibly small. When the flow velocity is 

equal to or less than 0.33 times of the local acoustic speed, the relative change in density of 

the fluid, due to flow, becomes equal to or less than 5 per cent respectively, and hence the 

flow is considered to be incompressible  
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 The force of attraction between the molecules of a fluid is known as cohesion, while that 

between the molecules of a fluid and of a solid is known as adhesion. The interplay of these 

two intermolecular forces explains the phenomena of surface tension and capillary rise or 

depression. A free surface of the liquid is always under stretched condition implying the 

existence of a tensile force on the surface. The magnitude of this force per unit length of an 

imaginary line drawn along the liquid surface is known as the surface tension coefficient or 

simply the surface tension.  
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Forces on Fluid Elements 

Fluid Elements - Definition:  

Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from its 

surroundings. 

     Two types of forces exist on fluid elements  

 Body Force: distributed over the entire mass or volume of the element. It is usually expressed per 

unit mass of the element or medium upon which the forces act. 

Example: Gravitational Force, Electromagnetic force fields etc.  

 Surface Force: Forces exerted on the fluid element by its surroundings through direct contact at the 

surface. 

    Surface force has two components:  

 Normal Force: along the normal to the area 

 Shear Force: along the plane of the area. 

The ratios of these forces and the elemental area in the limit of the area tending to zero are called the normal 

and shear stresses respectively.  

The shear force is zero for any fluid element at rest and hence the only surface force on a fluid element is the 

normal component. 

Normal Stress in a Stationary Fluid  

Consider a stationary fluid element of tetrahedral shape with three of its faces coinciding with the coordinate 

planes x, y and z. 

 

 

Fig 3.1   State of Stress in a Fluid Element at Rest  
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Since a fluid element at rest can develop neither shear stress nor tensile stress, the normal stresses acting on 

different faces are compressive in nature.  

Suppose, ΣFx, ΣFy and ΣFz  are the net forces acting on the fluid element in positive x,y and z directions 

respectively. The direction cosines of the normal to the inclined plane of an area ΔA are cos α, cos β and cos 

 .Considering gravity as the only source of external body force, acting in the -ve z direction, the equations 

of static equlibrium for the tetrahedronal fluid element can be written as 

 

(3.1) 

 

(3.2) 

 

(3.3) 

where  = Volume of tetrahedral fluid element  

Pascal's Law of Hydrostatics 

Pascal's Law  

The normal stresses at any point in a fluid element at rest are directed towards the point from all directions 

and they are of the equal magnitude.  

 

Fig 3.2     State of normal stress at a point in a fluid body at rest  

Derivation:  

The inclined plane area is related to the fluid elements (refer to Fig 3.1) as follows 

 

    (3.4) 

 

    (3.5) 

 

    (3.6) 
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Substituting above values in equation 3.1- 3.3 we get  

 

(3.7) 

  

Conclusion: 

The state of normal stress at any point in a fluid element at rest is same and directed towards the point from 

all directions. These stresses are denoted by a scalar quantity p defined as the hydrostatic or thermodynamic 

pressure.  

Using "+" sign for the tensile stress the above equation can be written in terms of pressure as 

 

(3.8) 

 

 

Fundamental Equation of Fluid Statics 

The fundamental equation of fluid statics describes the spatial variation of hydrostatic pressure p in the 

continuous mass of a fluid. 

Derivation: 

Consider a fluid element at rest of given mass with volume V and bounded by the surface S. 

 

Fig 3.3 External Forces on a Fluid Element at Rest  

The fluid element stays at equilibrium under the action of the following two forces 

 The Resultant Body Force 
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(3.9) 

                              

 

: element of volume  

 

: mass of the element 

 

: body Force per unit  

  mass acting on the 

  elementary volume 
 

  

 The Resultant Surface Force 

    

 

(3.10) 

                              

dA : area of an element of surface 

  : the unit vector normal to  

     the elemental surface,taken 

     positive when directed outwards  
 

Using Gauss divergence theorem, Eq (3.10) can be written as  

 

  

 

 

(3.11) 

  Click here to see the derivation  

 Derivation 

We have,  

 

  

Actually, here p is a tensor (3x3 matrix) and so has 9 components as-  

 

  

However, as there are only normal stresses acting in the fluid on the body, we have -  

 

(i) 

https://nptel.ac.in/courses/112104118/lecture-3/hyperlink/derivation.html
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Now, invoking Gauss Divergence Theorem, Equation( 3.10) gives -  

 

  

In Tensorial form -  

 

  

Invoke Divergence Theorem =>  

 

  

 

 

  

Now,  

 

  

For an orthogonal coordinate system (x1,x2,x3).  

 

  

   

 

For unit vectors  

Relation (i) =>  

 

  

 

 

  

And We know,  

 

  

Further as the fluid is in steady state and equilibrium =>  
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   (say)   

Thus, Relation (i) =>  

 

  

Hence the relation is derived.  

  

For the fluid element to be in equilibrium , we have  

      
(3.12) 

The equation is valid for any volume of the fluid element, no matter how small, thus we get 

   

 

(3.13) 

  

This is the fundamental equation of fluid statics.  

 

 

Fundamental Fluid Static Equations in Scalar Form  

Considering gravity as the only external body force acting on the fluid element, Eq. (3.13) can be expressed 

in its scalar components with respect to a cartesian coordinate system (see Fig. 3.3) as  

       (in x direction)                           (3.13a) 

Xz: the external body force per unit mass 

in the positive direction of z (vertically 
upward), equals to the negative value of 

g (the acceleration due to gravity).  

        (in y direction)                          (3.13b) 

    ( in z direction)           (3.13c) 

From Eqs (3.13a)-(3.13c), it can be concluded that the pressure p is a function of z only.  

Thus, Eq. (3.13c) can be re-written as,  
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                                              (3.14)  

Constant and Variable Density Solution 

Constant Density Solution  

The explicit functional relationship of hydrostatic pressure p with z can be obtained by integrating the Eq. 

(3.14).  

For an incompressible fluid, the density  is constant throughout. Hence the Eq. (3.14) can be integrated 

and expressed  

as  

 

(3.15) 

where C is the integration constant.  

 

If we consider an expanse of fluid with a free surface, where the pressure is defined as p = p0 ,which is equal 

to atmospheric pressure. 

 

Fig 3.4 Pressure Variation in an Incompressible Fluid at rest with a Free Surface  

Eq. (3.15) can be written as,  

 

(3.16a) 

Therefore, Eq. (3.16a) gives the expression of hydrostatic pressure p at a point whose vertical depression 

from the free surface is h.  

Similarly, 

 

(3.16b) 
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Thus, the difference in pressure between two points in an incompressible fluid at rest can be expressed in 

terms of the vertical distance between the points. This result is known as Torricelli's principle, which is the 

basis for differential pressure measuring` devices. The pressure p0 at free surface is the local atmospheric 

pressure.  

Therefore, it can be stated from Eq. (3.16a), that the pressure at any point in an expanse of a fluid at rest, 

with a free surface exceeds that  of the local atmosphere by an amount gh, where h is the vertical depth of 

the point from the free surface. 

Variable Density Solution: As a more generalised case, for compressible fluids at rest, the pressure 

variation at rest depends on how the fluid density changes with height z and pressure p. For example this can 

be done for special cases of "isothermal and non-isothermal fluids" 

Isothermal and Non-Isothermal Fluids  

Isothermal Fluid (Constant Temperature Solution)  

Recap equation (1.7) 

 

  

The equation of state for a compressible system generally relates its density to its pressure and temperature. 

If the fluid is a perfect gas at rest at constant temperature, it can be written from eq (1.7) that  

Since ,                                                                   

 = constant   

 

(3.17) 

Where po and o are the pressure and density at some reference horizontal plane. With the help of Eq. 

(3.17), Eq. (3.14) becomes,  

 

(3.18) 

 

(3.19) 

where z and z0 are the vertical coordinates of the plane concerned for pressure p and the reference plane 

respectively from any fixed datum.  

Non-isothermal Fluid 

 

The temperature of the atmosphere up to a certain altitude is frequently assumed to decrease linearly with 

the altitude z as given by  

 

(3.20) 

where T0 is the absolute temperature at sea level and the constant  is known as lapse rate.  

For the standard atmosphere,  = 6.5 K/km and T0= 298 K.  

https://nptel.ac.in/courses/112104118/lecture-3/hyperlink/3-8_const_temp_sol.htm
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With the help of p =RT and (3.20), the Eq. (3.14) can be written as,  

 

(3.21) 

  Integration of Eq. (3.21) yields  

 

  

 

 

  Hence,  

 

(3.22) 

  

The altitude z in Eq. (3.22) is measured from the sea level where the pressure is po.  

Units and scales of Pressure Measurement  

Pascal (N/m
2
) is the unit of pressure .  

Pressure is usually expressed with reference to either absolute zero pressure (a complete vacuum)or local 

atmospheric pressure.  

 The absolute pressure: It is the difference between the value of the pressure and the absolute zero 

pressure. 

                             

 Gauge pressure: It is the diference between the value of the pressure and the local atmospheric 

pressure(patm) 

                               

 Vacuum Pressure: If p<patm then the gauge pressure becomes negative and is called the 

vacuum pressure.But one should always remember that hydrostatic pressure is always compressive 

in nature  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 32 

 

 

Fig 4.1 The Scale of Pressure  

At sea-level, the international standard atmosphere has been chosen as Patm = 101.32 kN/m
2
  

Piezometer Tube  

The direct proportional relation between gauge pressure and the height h for a fluid of constant density 

enables the pressure to be simply visualized in terms of the vertical height, .  

 

The height h is termed as pressure head corresponding to pressure p. For a liquid without a free surface in a 

closed pipe, the pressure head at a point corresponds to the vertical height above the point to which a 

free surface would rise, if a small tube of sufficient length and open to atmosphere is connected to the pipe  

 

Fig 4.2 A piezometer Tube  

Such a tube is called a piezometer tube, and the height h is the measure of the gauge pressure of the fluid in 

the pipe. If such a piezometer tube of sufficient length were closed at the top and the space above the liquid 

surface were a perfect vacuum, the height of the column would then correspond to the absolute pressure of 
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the liquid at the base. This principle is used in the well known mercury barometer to determine the local 

atmospheric pressure.  

The Barometer 

Barometer is used to determine the local atmospheric pressure. Mercury is employed in the barometer 

because its density is sufficiently high for a relative short column to be obtained. and also because it has 

very small vapour pressure at normal temperature. High density scales down the pressure head(h) to repesent 

same magnitude of pressure in a tube of smaller height.  

 

 

 

Fig 4.3   A Simple Barometer 

Even if the air is completely absent, a perfect vacuum at the top of the tube is never possible. The space 

would be occupied by the mercury vapour and the pressure would equal to the vapour pressure of mercury at 

its existing temperature. This almost vacuum condition above the mercury in the barometer is known as 

Torricellian vacuum. 

 

The pressure at A equal to that at B (Fig. 4.3) which is the atmospheric pressure patm since A and B lie on the 

same horizontal plane. Therefore, we can write  

 

(4.1) 

The vapour pressure of mercury pv, can normally be neglected in comparison to patm. 

At 20
0
C,Pv is only 0.16 patm, where patm =1.0132 X10

5
 Pa at sea level. Then we get from Eq. (4.1)  

 

  

For accuracy, small corrections are necessary to allow for the variation of with temperature, the thermal 

expansion of the scale (usually made of brass). and surface tension effects. If water was used instead of 

mercury, the corresponding height of the column would be about 10.4 m provided that a perfect vacuum 

could be achieved above the water. However, the vapour pressure of water at ordinary temperature is 

appreciable and so the actual height at, say, 15°C would be about 180 mm less than this value. Moreover. 

with a tube smaller in diameter than about 15 mm, surface tension effects become significant.  

Manometers for measuring Gauge and Vacuum Pressure 

https://nptel.ac.in/courses/112104118/lecture-4/animation/Demonstration_barometer.htm
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Manometers are devices in which columns of a suitable liquid are used to measure the difference in pressure 

between two points or between a certain point and the atmosphere. 

Manometer is needed for measuring large gauge pressures. It is basically the modified form of the 

piezometric tube. A common type manometer is like a transparent "U-tube" as shown in Fig. 4.4.  

  

Fig 4.4 A simple manometer to measure gauge 

pressure 

Fig 4.5 A simple manometer to measure vacuum 

pressure 

One of the ends is connected to a pipe or a container having a fluid (A) whose pressure is to be measured 

while the other end is open to atmosphere. The lower part of the U-tube contains a liquid immiscible with 

the fluid A and is of greater density than that of A. This fluid is called the manometric fluid.  

 

The pressures at two points P and Q (Fig. 4.4) in a horizontal plane within the continuous expanse of same 

fluid (the liquid B in this case) must be equal. Then equating the pressures at P and Q in terms of the heights 

of the fluids above those points, with the aid of the fundamental equation of hydrostatics (Eq 3.16), we have  

 

  

Hence, 

 

  

 

where p1 is the absolute pressure of the fluid A in the pipe or container at its centre line, and patm is the local 

atmospheric pressure. When the pressure of the fluid in the container is lower than the atmospheric pressure, 

the liquid levels in the manometer would be adjusted as shown in Fig. 4.5. Hence it becomes,  

   

 

(4.2) 

 

Manometers to measure Pressure Difference  
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A manometer is also frequently used to measure the pressure difference, in course of flow, across a 

restriction in a horizontal pipe. 

 

Fig 4.6     Manometer measuring pressure difference  

The axis of each connecting tube at A and B should be perpendicular to the direction of flow and also for the 

edges of the connections to be smooth. Applying the principle of hydrostatics at P and Q we have, 

   

 

(4.3) 

where, ρ m is the density of manometric fluid and ρw is the density of the working fluid flowing through the 

pipe.  

 

We can express the difference of pressure in terms of the difference of heads (height of the working fluid at 

equilibrium). 

 

(4.4) 

Inclined Tube Manometer  

 For accurate measurement of small pressure differences by an ordinary u-tube manometer, it is 

essential that the ratio m/w should be close to unity. This is not possible if the working fluid is a 

gas; also having a manometric liquid of density very close to that of the working liquid and giving at 

the same time a well defined meniscus at the interface is not always possible. For this purpose, an 

inclined tube manometer is used.  

 If the transparent tube of a manometer, instead of being vertical, is set at an angle θ to the horizontal 

(Fig. 4.7), then a pressure difference corresponding to a vertical difference of levels x gives a 

movement of the meniscus s = x/sin along the slope.  
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Fig 4.7   An Inclined Tube Manometer  

 If θ is small, a considerable mangnification of the movement of the meniscus may be achieved. 

 Angles less than 5
0
 are not usually satisfactory, because it becomes difficult to determine the exact 

position of the meniscus. 

 One limb is usually made very much greater in cross-section than the other. When a pressure 

difference is applied across the manometer, the movement of the liquid surface in the wider limb is 

practically negligible compared to that occurring in the narrower limb. If the level of the surface in 

the wider limb is assumed constant, the displacement of the meniscus in the narrower limb needs 

only to be measured, and therefore only this limb is required to be transparent.  

 Inverted Tube Manometer  

 For the measurement of small pressure differences in liquids, an inverted U-tube manometer is used.  

 

 Fig 4.8 An Inverted Tube Manometer 

 Here and the line PQ is taken at the level of the higher meniscus to equate the pressures at 

P and Q from the principle of hydrostatics. It may be written that  

 

  

 where represents the piezometric pressure, (z being the vertical height of the point 

concerned from any reference datum). In case of a horizontal pipe (z1= z2) the difference in 

piezometric pressure becomes equal to the difference in the static pressure. If is 
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sufficiently small, a large value of x may be obtained for a small value of . Air is used as the 

manometric fluid. Therefore, is negligible compared with and hence,  

 

(4.5) 

 Micromanometer 

 When an additional gauge liquid is used in a U-tube manometer, a large difference in meniscus 

levels may be obtained for a very small pressure difference.  

 

 Fig 4.9     A Micromanometer  

 The equation of hydrostatic equilibrium at PQ can be written as 

 

 where and are the densities of working fluid, gauge liquid and manometric liquid 

respectively.  

From continuity of gauge liquid,  

 

(4.6) 

  

 

(4.7) 

 If a is very small compared to A 

 

(4.8) 

 With a suitable choice for the manometric and gauge liquids so that their densities are close 

a reasonable value of y may be achieved for a small pressure difference.  

Hydrostatic Thrusts on Submerged Plane Surface 
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Due to the existence of hydrostatic pressure in a fluid mass, a normal force is exerted on any part of a solid 

surface which is in contact with a fluid. The individual forces distributed over an area give rise to a resultant 

force.  

Plane Surfaces  

Consider a plane surface of arbitrary shape wholly submerged in a liquid so that the plane of the surface 

makes an angle θ with the free surface of the liquid. We will assume the case where the surface shown in the 

figure below is subjected to hydrostatic pressure on one side and atmospheric pressure on the other side. 

 

Fig 5.1   Hydrostatic Thrust on Submerged Inclined Plane Surface 

Let p denotes the gauge pressure on an elemental area dA. The resultant force F on the area A is therefore  

 

(5.1) 

According to Eq (3.16a) Eq (5.1) reduces to  

 

(5.2) 

Where h is the vertical depth of the elemental area dA from the free surface and the distance y is 

measured from the x-axis, the line of intersection between the extension of the inclined plane and the free 

surface (Fig. 5.1). The ordinate of the centre of area of the plane surface A is defined as  

  

 

(5.3) 

   

Hence from Eqs (5.2) and (5.3), we get  
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(5.4) 

where is the vertical depth (from free surface) of centre c of area . 

Equation (5.4) implies that the hydrostatic thrust on an inclined plane is equal to the pressure at its centroid 

times the total area of the surface, i.e., the force that would have been experienced by the surface if placed 

horizontally at a depth hc from the free surface (Fig. 5.2).  

 

Fig 5.2   Hydrostatic Thrust on Submerged Horizontal Plane Surface 

The point of action of the resultant force on the plane surface is called the centre of pressure . Let and 

be the distances of the centre of pressure from the y and x axes respectively. Equating the moment of the 

resultant force about the x axis to the summation of the moments of the component forces, we have  

 

(5.5) 

Solving for yp from Eq. (5.5) and replacing F from Eq. (5.2), we can write  

 

(5.6) 

In the same manner, the x coordinate of the centre of pressure can be obtained by taking moment about the 

y-axis. Therefore,  

 

  

From which, 
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(5.7) 

The two double integrals in the numerators of Eqs (5.6) and (5.7) are the moment of inertia about the x-axis 

Ixxand the product of inertia  Ixy about x and y axis of the plane area respectively. By applying the theorem of 

parallel axis 

 

(5.8) 

 

(5.9) 

where, and are the moment of inertia and the product of inertia of the surface about the centroidal 

axes , and are the coordinates of the center c of the area with respect to x-y axes. 

With the help of Eqs (5.8), (5.9) and (5.3), Eqs (5.6) and (5.7) can be written as  

 

(5.10a) 

 

(5.10b) 

The first term on the right hand side of the Eq. (5.10a) is always positive. Hence, the centre of pressure is 

always at a higher depth from the free surface than that at which the centre of area lies. This is obvious 

because of the typical variation of hydrostatic pressure with the depth from the free surface. When the plane 

area is symmetrical about the y' axis, , and . 

 

 

Hydrostatic Thrusts on Submerged Curved Surfaces  

On a curved surface, the direction of the normal changes from point to point, and hence the pressure forces 

on individual elemental surfaces differ in their directions. Therefore, a scalar summation of them cannot be 

made. Instead, the resultant thrusts in certain directions are to be determined and these forces may then be 

combined vectorially. An arbitrary submerged curved surface is shown in Fig. 5.3. A rectangular Cartesian 

coordinate system is introduced whose xy plane coincides with the free surface of the liquid and z-axis is 

directed downward below the x - y plane.  
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Fig 5.3   Hydrostatic thrust on a Submerged Curved Surface 

Consider an elemental area dA at a depth z from the surface of the liquid. The hydrostatic force on the 

elemental area dA is  

 

(5.11) 

and the force acts in a direction normal to the area dA. The components of the force dF in x, y and z 

directions are  

 (5.12a) 

 (5.12b) 

 

(5.13c) 

Where l, m and n are the direction cosines of the normal to dA. The components of the surface element dA 

projected on yz, xz and xy planes are, respectively  

 (5.13a) 

 (5.13b) 

 

(5.13c) 

  

Substituting Eqs (5.13a-5.13c) into (5.12) we can write  
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 (5.14a) 

 (5.14b) 

 

(5.14c) 

Therefore, the components of the total hydrostatic force along the coordinate axes are  

 

(5.15a) 

 

(5.15b) 

 

(5.15c) 

where zc is the z coordinate of the centroid of area Ax and Ay (the projected areas of curved surface on yz and 

xz plane respectively). If zp and yp are taken to be the coordinates of the point of action of Fx on the 

projected area Ax on yz plane, , we can write  

 

(5.16a) 

 

(5.16b) 

where Iyy is the moment of inertia of area Ax about y-axis and Iyz is the product of inertia of Ax with respect 

to axes y and z. In the similar fashion, zp
'
 and x p

'
 the coordinates of the point of action of the force Fy on area 

Ay, can be written as 

 

(5.17a) 

 

(5.17b) 

where Ixx is the moment of inertia of area Ay about x axis and Ixz is the product of inertia of Ay about the 

axes x and z.  

We can conclude from Eqs (5.15), (5.16) and (5.17) that for a curved surface, the component of hydrostatic 

force in a horizontal direction is equal to the hydrostatic force on the projected plane surface perpendicular 

to that direction and acts through the centre of pressure of the projected area. From Eq. (5.15c), the vertical 

component of the hydrostatic force on the curved surface can be written as  

 

(5.18) 

  

where is the volume of the body of liquid within the region extending vertically above the submerged 

surface to the free surfgace of the liquid. Therefore, the vertical component of hydrostatic force on a 
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submerged curved surface is equal to the weight of the liquid volume vertically above the solid surface of 

the liquid and acts through the center of gravity of the liquid in that volume. 

Buoyancy 

 When a body is either wholly or partially immersed in a fluid, a lift is generated due to the net 

vertical component of hydrostatic pressure forces experienced by the body. 

 This lift is called the buoyant force and the phenomenon is called buoyancy 

 Consider a solid body of arbitrary shape completely submerged in a homogeneous liquid as shown in 

Fig. 5.4. Hydrostatic pressure forces act on the entire surface of the body.  
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Fig 5.4     Buoyant Force on a Submerged Body 

To calculate the vertical component of the resultant hydrostatic force, the body is considered to be divided 

into a number of elementary vertical prisms. The vertical forces acting on the two ends of such a prism of 

cross-section dAz (Fig. 5.4) are respectively  

 (5.19a) 

 

(5.19b) 

Therefore, the buoyant force (the net vertically upward force) acting on the elemental prism of volume is 

- 

 

(5.19c) 

Hence the buoyant force FB on the entire submerged body is obtained as 

 

(5.20) 

Where is the total volume of the submerged body. The line of action of the force FB can be found by 

taking moment of the force with respect to z-axis. Thus  

 

(5.21) 

Substituting for dFB and FB from Eqs (5.19c) and (5.20) respectively into Eq. (5.21), the x coordinate of the 

center of the buoyancy is obtained as   

 

(5.22) 

which is the centroid of the displaced volume. It is found from Eq. (5.20) that the buoyant force FB equals 

to the weight of liquid displaced by the submerged body of volume . This phenomenon was discovered by 

Archimedes and is known as the Archimedes principle.  

ARCHIMEDES   PRINCIPLE 

The buoyant force on a submerged body 

 The Archimedes principle states that the buoyant force on a submerged body is equal to the weight 

of liquid displaced by the body, and acts vertically upward through the centroid of the displaced 

volume.  

 Thus the net weight of the submerged body, (the net vertical downward force experienced by it) is 

reduced from its actual weight by an amount that equals the buoyant force. 

The buoyant force on a partially immersed body  

 According to Archimedes principle, the buoyant force of a partially immersed body is equal to the 

weight of the displaced liquid.  

 Therefore the buoyant force depends upon the density of the fluid and the submerged volume of the 

body. 
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  For a floating body in static equilibrium and in the absence of any other external force, the buoyant 

force must balance the weight of the body.  

Let us do an example  

Solution: Forces acting on the Float are 

i. its weight w acting downwards 

ii. the buoyant force FB acting upward  

iii. the tension T in the rope acting downwards  

Taking moments about A we get - 

WXG -FBXB =0     where 

xG and xB are horizontal distances from A of the center of gravity and the center of buoyancy respectively.  

Example: For the float given below, find the specific gravity of the oil 

 

 

 

 

 

where Soil is the specific gravity of the oil.  

javascript:openpopup('hyperlink/examp_5_5.htm')
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(Note: In the above equations length of float perpendicular to the plane of paper cancels out). 

Now as mentioned earlier by moment balance. 

 

 

 

Stability of Unconstrained Submerged Bodies in Fluid  

 The equilibrium of a body submerged in a liquid requires that the weight of the body acting through 

its cetre of gravity should be colinear with an equal hydrostatic lift acting through the centre of 

buoyancy. 

  In general, if the body is not homogeneous in its distribution of mass over the entire volume, the 

location of centre of gravity G does not coincide with the centre of volume, i.e., the centre of 

buoyancy B.  
 Depending upon the relative locations of G and B, a floating or submerged body attains three 

different states of equilibrium- 

Let us suppose that a body is given a small angular displacement and then released. Then it will be said to be 

in  

 Stable Equilibrium: If the body  returns to its original position by retaining the originally vertical 

axis as vertical.  

 Unstable Equilibrium: If the body does not return to its original position but moves further from 

it. 

 Neutral Equilibrium: If the body  neither returns to its original position nor increases its 

displacement further, it will simply adopt its new position.  

Stable Equilibrium  

Consider a submerged body in equilibrium whose centre of gravity is located below the centre of buoyancy 

(Fig. 5.5a). If the body is tilted slightly in any direction, the buoyant force and the weight always produce a 

restoring couple trying to return the body to its original position (Fig. 5.5b, 5.5c).  
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Fig 5.5    A Submerged body in Stable Equilibrium  

Unstable Equilibrium 

On the other hand, if point G is above point B (Fig. 5.6a), any disturbance from the equilibrium position will 

create a destroying couple which will turn the body away from its original position (5.6b, 5.6c).  

 

 

Fig 5.6    A Submerged body in Unstable Equilibrium  

Neutral Equilibrium 

When the centre of gravity G and centre of buoyancy B coincides, the body will always assume the same 

position in which it is placed (Fig 5.7) and hence it is in neutral equilibrium.  

https://nptel.ac.in/courses/112104118/lecture-5/animation/demonstration_stable.htm
https://nptel.ac.in/courses/112104118/lecture-5/animation/demonstration_unstable.htm
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Fig 5.7    A Submerged body in Neutral Equilibrium  

Therefore, it can be concluded that a submerged body will be in stable, unstable or neutral equilibrium 

if its centre of gravity is below, above or coincident with the center of buoyancy respectively (Fig. 5.8).  

 

Fig 5.8   States of Equilibrium of a Submerged Body  

(a) STABLE EQUILIBRIUM    (B) UNSTABLE EQUILIBRIUM      (C) NEUTRAL EQUILIBRIUM 

 

Stability of Floating Bodies in Fluid  

 When the body undergoes an angular displacement about a horizontal axis, the shape of the 

immersed volume changes and so the centre of buoyancy moves relative to the body. 

  As a result of above observation stable equlibrium can be achieved, under certain condition, even 

when G is above B.  

Figure 5.9a illustrates a floating body -a boat, for example, in its equilibrium position. 

https://nptel.ac.in/courses/112104118/lecture-5/animation/demonstration_neutral.htm
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Fig 5.9     A Floating body in Stable equilibrium  

Important points to note here are 

a. The force of buoyancy FB is equal to the weight of the body W 

b. Centre of gravity G is above the centre of buoyancy in the same vertical line. 

c. Figure 5.9b shows the situation after the body has undergone a small angular displacement  with 

respect to the vertical axis. 

d. The centre of gravity G remains unchanged relative to the body (This is not always true for ships 

where some of the cargo may shift during an angular displacement). 

e. During the movement, the volume immersed on the right hand side increases while that on the left 

hand side decreases. Therefore the centre of buoyancy moves towards the right to its new position B'. 

Let the new line of action of the buoyant force (which is always vertical) through B' intersects the axis 

BG (the old vertical line containing the centre of gravity G and the old centre of buoyancy B) at M. For 

small values of  the point M is practically constant in position and is known as metacentre. For the body 

shown in Fig. 5.9, M is above G, and the couple acting on the body in its displaced position is a restoring 

couple which tends to turn the body to its original position. If M were below G, the couple would be an 

overturning couple and the original equilibrium would have been unstable. When M coincides with G, the 

body will assume its new position without any further movement and thus will be in neutral equilibrium. 

Therefore, for a floating body, the stability is determined not simply by the relative position of B and 

G, rather by the relative position of M and G. The distance of metacentre above G along the line BG is 

known as metacentric height GM which can be written as  

GM = BM -BG  

Explanation GM=BM-BG 

https://nptel.ac.in/courses/112104118/lecture-5/5-8_stability_floating_examp.htm
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For equilibrium  

Due to symmetry of the situation, displaced volume remains unaltered and hence the buoyancy force  

Thus,  

For couple calculation, can be equivalently taken as a sum of  

i.   (upward) due to added volume of fluid RQQ
'
  

ii.   (downward) due to decreased volume RPP
'
 

Let C be the couple due to these forces. Taking an element of area dA on the surface RQQ
'
 at a distance x 

from the center line (as shown in fig (c) ). Corresponding volume element is x θdA and the buoyant force 

is ρgxθ dA. This produces the couple 2ρgx θdA (due to symmetrically located element on RP
'
 ) 

Therefore, Integrating      

Now we have    where r is moment arm of   about B.  

Therefore,  

Now from fig (d) ;  
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Thus    

This is the metacentric height  

Example; 

 

A hollow cylinder open at both ends has an internal diameter of 20cm, a wall thickness of 10 cm, and a 

length of 80cm. Given that the weight of the cylinder is 60kgf, comment on the stability of the 

cylinder.  

 

Let 'h' be the depth of submersion, then displaced volume will be  

 

Assuming density of water to be 1000 kg/m
3
 , for equilibrium of the cylinder 

Weight of the cylinder = weight of the displaced water  

 

 

Therefore, 

 

 

 

 

Therefore Metacentric Height,  
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Therefore, MG<0  implies Cylinder is unstable  

 

 

Hence the condition of stable equilibrium for a floating body can be expressed in terms of metacentric 

height as follows:  

 

GM > 0 (M is above G)                                      Stable equilibrium  

GM = 0 (M coinciding with G)                          Neutral equilibrium  

GM < 0 (M is below G)                                      Unstable equilibrium  

The angular displacement of a boat or ship about its longitudinal axis is known as 'rolling' while that about 

its transverse axis is known as "pitching".  

Floating Bodies Containing Liquid 

If a floating body carrying liquid with a free surface undergoes an angular displacement, the liquid will also 

move to keep its free surface horizontal. Thus not only does the centre of buoyancy B move, but also the 

centre of gravity G of the floating body and its contents move  in the same direction as the movement of B. 

Hence the stability of the body is reduced. For this reason, liquid which has to be carried in a  ship is put into 

a number of separate compartments so as to minimize its movement within the ship.  

Period of Oscillation  

The restoring couple caused by the buoyant force and gravity force acting on a floating body displaced from 

its equilibrium placed from its equilibrium position is (Fig. 5.9 ). Since the torque equals to 

mass moment of inertia (i.e., second moment of mass) multiplied by angular acceleration, it can be written 

 

(5.23) 

Where IM represents the mass moment of inertia of the body about its axis of rotation. The minus sign in the 

RHS of Eq. (5.23) arises since the torque is a retarding one and decreases the angular acceleration. If θ is 

small, sin θ=θ and hence Eq. (5.23) can be written as 

  

 

(5.24) 

 

Equation (5.24) represents a simple harmonic motion. The time period (i.e., the time of a complete 

oscillation from one side to the other and back again) equals to . The oscillation of the 

body results in a flow of the liquid around it and this flow has been disregarded here. In practice, of course, 

viscosity in the liquid introduces a damping action which quickly suppresses the oscillation unless further 

disturbances such as waves cause new angular displacements. 
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Exercise Problems   

1. For the system shown in Fig 5.10,determine the air pressure pA which will make the pressure at N one 

fourth of that 

at M.  

  

 

Fig 5.10  

2. Consider the pipe and manometer system as shown in Fig 5.11. The pipe contains water. Find the value of 

manometer reading h, and the difference in pressure between A and B if there is no flow. If there is a flow 

from A towards B and the manometer reading is h = 60 mm, then determine the static pressure difference pA 

- pB  

  

 

Fig 5.11  

  [3.33 kPa]    

  [0, 2.94 kPa; 3.53 kPa]    
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3. Determine the air pressure above the water surface in the tank if a force of 8 kN is required to hold the 

hinged door in position as shown in Fig 5.12.  

  

 

Fig 5.12  

  

4. The profile of the inner face of a dam takes the form of a parabola with the equation 18y = x
2
 , where y is 

the height above the base and x is the horizontal distance of the face from the vertical reference line. The 

water level is 27m above the base. Determine the thrust on the dam (per meter with) due to the water 

pressure, its inclination to the vertical and the point where the line of action of this force intersects the free 

water surface  

   

 

5. A solid uniform cylinder of length 150 mm and diameter 75 mm is to float upright in water. Determine 

the limits 

within which 

its mass 

should lie.  

  

6. A long prism, the cross-section of which is an equilateral traingle of side a, floats in water with one side 

horizontal and submerged to a depth h. Find 

      (a) h/a as a function of the specific gravity, S of the prism. 

      (b) The metacentric height in terms of side a, for small angle of rotation if specific gravity, S=0.8.  

7.  A metal sphere of volume , specific gravity and fully immersed in water is attached 

by a flexible wire to a buoy of volume and specific gravity . Calculate the tension T in 

the wire and volume of the buoy that is submerged. Refer to Fig 5.13.  

  [10.76 kPa]    

  
[ 5.28 MN/m, 42

o
 33', 30.29 m from 

face ]   

  [ 0.641 kg and 0.663 kg]  
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Fig 5.13  
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Kinematics of Fluids 
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Introduction:  

Kinematics is the geometry of Motion.  

Kinematics of fluid describes the fluid motion and its consequences without consideration of the nature of forces causing the 

motion.  

The subject has three main aspects:  

 

Scalar and Vector Fields 

 Scalar: Scalar is a quantity which can be expressed by a single number representing its magnitude.  

              Example: mass, density and temperature.  

Scalar  Field 

If at every point in a region, a scalar function has a defined value, the region is called a scalar field.  

Example:  Temperature distribution in a rod. 

 

 Vector: Vector is a quantity which is specified by both magnitude and direction. 

              Example: Force, Velocity and Displacement.  

Vector Field 

If at every point in a region, a vector function has a defined value, the region is called a vector field.  

Example: velocity field of a flowing fluid .  
  

Flow Field  

The region in which the flow parameters i.e. velocity, pressure etc. are defined at each and every point at any instant of time is 

called a flow field.  

Thus a flow field would be specified by the velocities at different points in the region at different times. 
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Description of Fluid Motion   

 A.  Lagrangian Method  

 Using Lagrangian method, the fluid motion is described by tracing the kinematic behaviour of each  particle 

constituting the flow.  
 Identities of the particles are made by specifying their initial position (spatial location) at a given time. The position of a 

particle at any other instant of time then becomes a function of its identity and time.  

                              Analytical expression of the last statement : 

  
is the position vector of a particle (with respect to a fixed point 

of reference) at a time t. 

is its initial position at a given time t =t0  

(6.1) 

                 Equation (6.1) can be written into scalar components with respect to a rectangular cartesian frame of coordinates as:  

 x = x(x0,y0,z0,t)           
(where, x0,y0,z0 are  the initial coordinates and x, y, z are 

the coordinates at a time t of the particle.) 
 

(6.1a) 

 y = y(x0,y0,z0,t)             (6.1b) 

 z = z(x0,y0,z0,t)           (6.1c) 

                 Hence in can be expressed as  

 

 , , and are the unit vectors along x, y and z axes 
respectively.  

 velocity and acceleration 

The velocity and acceleration of the fluid particle can be obtained from the material derivatives of the position of the 

particle with respect to time. Therefore,  

 

 (6.2a)  

In terms of scalar components,  

 

(6.2b) 

 

(6.2c) 

 

(6.2d) 

   where u, v, w are the components of velocity in x, y, z directions respectively.  

Similarly, for the acceleration,        
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(6.3a) 

    and hence,  

  

(6.3b)  

 

(6.3c) 

 

(6.3d) 

  

   where ax, ay, az are accelerations in x, y, z directions respectively.  

Advantages of Lagrangian Method: 

1. Since motion and trajectory of each fluid particle is known, its history can be traced.  

2. Since particles are identified at the start and traced throughout  their motion, conservation of mass is 

inherent.  

Disadvantages of Lagrangian Method: 

1. The solution of the equations presents appreciable mathematical difficulties except certain special 

cases and therefore, the method is rarely suitable for practical applications.  

2. B.  Eulerian Method 

3. The method was developed by Leonhard Euler. 
4. This method is of greater advantage since it avoids the determination of the movement of each individual fluid particle in 

all details.  

5. It seeks the velocity and its variation with time t at each and every location ( ) in the flow field.  
6. In Eulerian view, all hydrodynamic parameters are functions of location and time.  

7. Mathematical representation of the flow field in Eulerian method: 

 

(6.4) 

8. where 

          and                

9.            

10.                                                                 Therefore, 

u = u (x, y, z, t) 

v = v (x, y, z, t)  

w = w (x, y, z, t)  

11.   
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Relation between Eulerian and Lagrangian Method 

  The Eulerian description can be written as : 

 

(6.5) 

                                  or  

 

  

 

  

 

  

The integration of Eq. (6.5) yields the constants of integration which are to be found from the initial coordinates of the fluid 

particles.  

  Hence, the solution of Eq. (6.5) gives the equations of Lagrange as,  

 

  

                                                                      or  

 

   Above relation are same as Lagrangian formulation. 

    In principle,  the Lagrangian method of description can always be derived from the Eulerian method.  

Let us do an example  

Problem 

In a one-dimensional flow field, the velocity at a point may be given in the Eulerian system by u=x+2t. 

Determine the displacement of a fluid particle whose initial position is x0 at initial time to in the 

Lagrangian system. 

Solution 

https://nptel.ac.in/courses/112104118/lecture-6/hyperlink/eulerian_lagrangian_examp.htm
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  Given u=x+2t 

 

  

gives on integration  

 
  

 

(A) 

where, c is the constant of integration. C can be found by initial conditions- 

For  

Therefore,   

 

  

 

(B) 

Putting value of c from (B) into (A) 

 

  

This equation represents the Lagrangian version of the fluid particle having the identity at  

Variation of Flow Parameters in Time and Space 
  

Hydrodynamic parameters like pressure and density along with flow velocity may vary from one point to another and also from 

one instant to another at a fixed point. 

According to type of variations, categorizing the flow:  

Steady and Unsteady Flow 

 Steady Flow 
A steady flow is defined as a flow in which the various hydrodynamic parameters and fluid properties at any point do not 

change with time.  

          In Eulerian approach, a steady flow is described as,  

 

          and 
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        Implications:  

1. Velocity and acceleration are functions of space coordinates only. 

2. In a steady flow, the hydrodynamic parameters may vary with location, but the spatial distribution of these parameters 

remain invariant with time.  

        In the Lagrangian approach, 

1. Time is inherent in describing the trajectory of any particle. 

2. In steady flow, the velocities of all particles passing through any fixed point at different times will be same. 

3. Describing  velocity as a function of time for a given particle will show the velocities at different points through which 

the particle has passed providing the information of velocity as a function of spatial location as described by Eulerian 

method. Therefore, the Eulerian and Lagrangian approaches of describing fluid motion become identical under this 

situation.  

 Unsteady Flow 

An unsteady Flow is defined as a flow in which the hydrodynamic parameters and fluid properties changes with time.  

Uniform and Non-uniform Flows 

 Uniform Flow 

The flow is defined as uniform flow when in the flow field the velocity and other hydrodynamic parameters do not change 

from point to point at any instant of time. 

For a uniform flow, the velocity is a function of time only, which can be expressed in Eulerian description as 

 

         Implication:  

1. For a uniform flow, there will be no spatial distribution of hydrodynamic and other parameters. 

2. Any hydrodynamic parameter will have a unique value in the entire field, irrespective of whether it   

             changes with time − unsteady uniform flow   OR  

             does not change with time − steady uniform flow. 

3. Thus ,steadiness of flow and uniformity of flow does not necessarily go together. 

  Non-Uniform Flow 

           When the velocity and other hydrodynamic parameters changes from one point to another the flow is defined as 

non-uniform. 

           Important points: 

           1. For a non-uniform flow, the changes with position may be found either in the direction of flow or in directions 

perpendicular to it.  

           2.Non-uniformity in a direction perpendicular to the flow is always encountered near solid boundaries past which the fluid 

flows. 
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Reason: All fluids possess viscosity which reduces the relative velocity (of the fluid w.r.t. to the wall) to zero at a solid boundary. 

This is known as no-slip condition. 

Four possible combinations 

Type Example 

1. Steady Uniform flow 
Flow at constant rate through a duct of uniform cross-section (The 

region close to the walls of the duct is disregarded) 

2. Steady non-uniform flow 
Flow at constant rate through a duct of non-uniform cross-section 

(tapering pipe)  

3. Unsteady Uniform flow 
Flow at varying rates through a long straight pipe of uniform cross-

section. (Again the region close to the walls is ignored.) 

4. Unsteady non-uniform flow Flow at varying rates through a duct of non-uniform cross-section.  
 

Material Derivative and Acceleration 

 Let the position of a particle at any instant t in a flow field be given by the space coordinates (x, y, z) with respect 

to a rectangular cartesian frame of reference.  
 The velocity components u, v, w of the particle along x, y and z directions respectively can then be written in 

Eulerian form as  

u = u (x, y, z, t) 

v = v (x, y, z, t)  

w = w (x, y, z, t)  

 After an infinitesimal time interval t , let the particle move to a new position given by the coordinates (x + Δx, y +Δy , 

z + Δz). 

 Its velocity components at this new position be u + Δu, v + Δv and w +Δw.  
 Expression of velocity components in the Taylor's series form: 

 

 

 

The increment in space coordinates can be written as - 

 

  

Substituting the values of in above equations, we have 

   etc 
  

   In the limit   , the equation becomes 
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 Material Derivation and Acceleration...contd. from previous slide  

 The above equations tell that the operator for total differential with respect to time, D/Dt in a convective field is related 

to the partial differential as: 

 

 

       Explanation of equation 7.2 :  

 The total differential D/Dt is known as the material or substantial derivative with respect to time. 
 The first term t in the right hand side of is known as temporal or local derivative which expresses the rate of 

change with time, at a fixed position.  
 The last three terms in the right hand side of  are together known as convective derivative which represents the time 

rate of change due to change in position in the field.  

       Explanation of equation 7.1 (a, b, c):  

 The terms in the left hand sides of Eqs (7.1a) to (7.1c) are defined as x, y and z components of substantial or material 

acceleration.  
  The first terms in the right hand sides of Eqs (7.1a) to (7.1c) represent the respective local or temporal accelerations, 

while the other terms are   convective accelerations.  

          Thus we can write,  

 

 

 

(Material or substantial acceleration) = (temporal or local acceleration) + (convective acceleration)  

         Important points: 

1. In a steady flow, the temporal acceleration is zero, since the velocity at any point is invariant with time. 
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2. In a uniform flow, on the other hand, the convective acceleration is zero, since the velocity components are not the 

functions of space coordinates. 

3. In a steady and uniform flow, both the temporal and convective acceleration vanish and hence there exists no material 

acceleration.  

         Existence of the components of acceleration for different types of flow is shown in the table below. 

Type of Flow Material Acceleration  

Temporal Convective 

1. Steady Uniform flow 0 0 

2. Steady non-uniform flow 0 exists 

3. Unsteady Uniform flow exists 0 

4. Unsteady non-uniform flow exists exists 
 

  

Let us do an example  

Problem 

Given the velocity field 

 

  

Find the acceleration of fluid particle - 

a. as a function of x,y,z and t 

b. at (1,1,1) and time t=1 

Solution 

a)                        From Equation 6.7a to 6.7c we have 

 

  

 

  

 

  

   

From the given velocity field,  

 

  

  

https://nptel.ac.in/courses/112104118/lecture-7/hyperlink/material_deriv_examp.htm
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Therefore,  

 (i)  

 (ii) 

 

(iii) 

             

Combining (i), (ii) and   (iii) total acceleration is  

 

  

  

      b) At 1,1,1 and t=1 acceleration vector is -  

 

  

 

 In vector form, Components of Acceleration in Cylindrical Polar Coordinate System ( r, , z ) 

 

Fig 7.1 Velocity Components in a cylindrical Polar Coordinate System 

 In a cylindrical polar coordinate system (Fig. 7.1 ), the components of acceleration in r, θ and z directions can be written 

as 
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Explanation of the additional terms appearing in the above equation:     

1. The term appears due to an inward radial acceleration arising from a change in the 
direction of Vθ ( velocity component in the azimuthal direction ) with θ as shown in Fig. 7.1. This is known as 

centripetal acceleration.  
2. The term  VrVθ/r represents a component of acceleration in azimuthal direction caused by a change in the 

direction Vr of with θ 

 

Streamlines  

      Definition: Streamlines are the Geometrical representation of the of the flow velocity.    

      Description: 

  In the Eulerian method, the velocity vector is defined as a function of time and space coordinates.  
  If for a fixed instant of time, a space curve is drawn so that it is tangent everywhere to the velocity vector, then this 

curve is called a Streamline.  

  

          Therefore, the Eulerian method gives a series of instantaneous streamlines of the state of motion (Fig. 7.2a).  

 

Fig 7.2a    Streamlines 

 

       Alternative Definition:  

A streamline at any instant can be defined as an imaginary curve or line in the flow field so that the tangent to the curve at any 

point represents the direction of the instantaneous velocity at that point. 

       Comments: 

 In an unsteady flow where the velocity vector changes with time, the pattern of streamlines also changes from instant 

to instant.  
 In a steady flow, the orientation or the pattern of streamlines will be fixed.  
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From the above definition of streamline, it can be written as 

 

(7.3) 

        Description of the terms: 

        1. is the length of an infinitesimal line segment along a streamline at a point . 

        2.  is the instantaneous velocity vector.  

The above expression therefore represents the differential equation of a streamline. In a cartesian coordinate-system, 

representing 

                  
  

the above equation ( Equation 7.3 ) may be simplified as 

 

(7.4) 

Stream tube: 

A bundle of neighboring streamlines may be imagined to form a passage through which the fluid flows. This passage is known as 

a stream-tube.  

 

Fig 7.2b    Stream Tube 

        Properties of Stream tube: 

       1. The stream-tube is bounded on all sides by streamlines.  

       2. Fluid velocity does not exist across a streamline, no fluid may enter or leave a stream-tube except through its ends.  

       3. The entire flow in a flow field may be imagined to be composed of flows through stream-tubes arranged in some arbitrary 

positions.  

 

Path Lines  

        Definition:  A path line is the trajectory of a fluid particle of fixed identity as defined by Eq. (6.1). 
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Fig 7.3    Path lines 

         A family of path lines represents the trajectories of different particles, say, P1, P 2, P3, etc. (Fig. 7.3).  

       Differences between Path Line and Stream Line 

Path Line   Stream Line  
   

 This refers to a path followed by a fluid particle over a 

period of time. 
 

 This is an imaginary curve in a flow field for a 

fixed instant of time, tangent to which gives the 

instantaneous velocity at that point .  

 Two path lines can intersect each other as or a single 
path line can form a loop as different particles or even 

same particle can arrive at the same point at different 

instants of time.  
  

 Two stream lines can never intersect each other, 
as the instantaneous velocity vector at any 

given point is unique. 

 

Note: In a steady flow path lines are identical to streamlines  as the Eulerian and Lagrangian versions become the same.  

Lets Do Some Examples  

Problem1:   

A velocity field is given by  

 

  

      a) Find the equation of the streamline at t =t0 passing through the point (x0,y0).  

      b) Obtain the path line of a fluid element which comes to (x0, y0) at t=t0.  

      c) Show that, if A=0 and B=0 (i.e. steady flow), the streamline and path line coincide. 

Solution: 

a)      Streamline: Here Ux=(1+At +Bt2) and Uy=x. 

 Since the slope of the streamline (dy/dx) is the same as the slope (Uy/Ux) of the velocity vector. 

Therefore       

 Integrating this with the condition x=x0, y=y0 gives the Streamline 

https://nptel.ac.in/courses/112104118/lecture-7/streamline_examp.htm
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 b)      Path line: Consider a fluid element passing through (x0, y0) at t=t0. Its co-ordinates (x,y) at other values of t (which 

define the pathline) can  

                be expressed as 

 

  

          Since,      

 

  

And,               

 

  

Integrating  the first equation gives, 

 

Now,      

 

                  These equations of x, y are parametric equation of path line.  

                  The time t can be eliminated between them to give an equation for y in terms of x.  

        c)    When A=B=0, then the equation of streamline becomes  

 

  

and the parametric equations of the path line becomes; 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 71 

 

  

Therefore,       

 

  

which is equivalent to streamline. 

  

Problem2: 

A two-dimensional flow field is defined as  

 

  

Define the equation of Streamline passing through the point (1,0) 

Solution: 

The equation of Streamline is  

 

  

or,   

 

  

Hence,     

 

  

or, 
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Integration of equation above gives 

 

  

where k is constant  

  

For stream line passing through (1,0) ,  

Hence, the required equation is:  

 

 

 

Streak Lines  

Definition: A streak line is the locus of the temporary locations of all particles that have passed though a fixed point in the flow 

field at any instant of time. 

      Features of a Streak Line:  

 While a path line refers to the identity of a fluid particle, a streak line is specified by a fixed point in the flow field.  
 It is of particular interest in experimental flow visualization.  
 Example:  If dye is injected into a liquid at a fixed point in the flow field, then at a later time t, the dye will indicate the 

end points of the path lines of particles which have passed through the injection point.  
 The equation of a streak line at time t can be derived by the Lagrangian method.  

If a fluid particle passes through a fixed point in course of  time t, then the Lagrangian method of description gives the 

equation 
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(7.5) 

Solving for , 

 

(7.6) 

If the positions of the particles which have passed through the fixed point are determined, then a streak line can be 

drawn through these points.  

        Equation: The equation of the streak line at a time t is given by 

 

(7.7) 

Substituting Eq. (7.5) into Eq. (7.6) we get the final form of equation of the streak line, 

 

(7.8) 

Difference between Streak Line and Path Line  

 

Fig 7.4    Description of a Streak line 

            Above diagram can be described by the following points: 

           Describing a Path Line: 

           a)  Assume P be a fixed point in space through which particles of different identities pass at different times.  

           b) In an unsteady flow, the velocity vector at P will change with time and hence the particles arriving at P at different 

times will traverse  

               different paths like PAQ,  PBR and PCS which represent the path lines of the particle.  

           Describing a Streak Line: 

           a) Let at any instant these particles arrive at points Q, R and S. 

           b) Q, R and S represent the end points of the trajectories of these three particles at the instant. 

           c) The curve joining the points S, R, Q and the fixed point P will define the streak line at that instant.  
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           d) The fixed point P will also lie on the line, since at any instant, there will be always a particle of some identity at that 

point.  

           Above points show the differences. 

           Similarities: 

           a) For a steady flow, the velocity vector at any point is invariant with time  

           b) The path lines of the particles with different identities passing through P at different times will not differ 

           c) The path line would coincide with one another in a single curve which will indicate the streak line too.  

           Conclusion: Therefore, in a steady flow, the path lines, streak lines and streamlines are identical.  

One, Two and Three Dimensional Flows 

 Fluid flow is three-dimensional in nature.  

 This means that the flow parameters like velocity, pressure and so on vary in all the three coordinate directions. 

     Sometimes simplification is made in the analysis of different fluid flow problems by:  

 Selecting the appropriate coordinate directions so that appreciable variation of the hydro dynamic parameters take place 

in only two directions or even in only one.  

        One-dimensional flow 

 All the flow parameters may be expressed as functions of time and one space coordinate only. 

 The single space coordinate is usually the distance measured along the centre-line (not necessarily straight)  in which the 

fluid is flowing. 

 Example: the flow in a pipe is considered one-dimensional when variations of pressure and velocity occur along the 

length of the pipe, but any variation over the cross-section is assumed negligible. 

 In reality, flow is never one-dimensional because viscosity causes the velocity to decrease to zero at the solid boundaries. 

 If however, the non uniformity of the actual flow is not too great, valuable results may often be obtained from a "one 

dimensional analysis". 

 The average values of the flow parameters at any given section (perpendicular to the flow) are 

assumed to be applied to the entire flow at that section.  

 

        Two-dimensional flow 

  All the flow parameters are functions of time and two space coordinates (say x and y). 

  No variation in z direction. 

 The same streamline patterns are found in all planes perpendicular to z direction at any instant.  

 

        Three dimensional flow 

 The hydrodynamic parameters are functions of three space coordinates and time.  
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Translation of a Fluid Element 

      The movement of a fluid element in space has three distinct features simultaneously. 

 Translation 
 Rate of deformation 
 Rotation.  

Figure 7.4 shows the picture of a pure translation in absence of rotation and deformation of a fluid element in a two-dimensional 

flow described by a rectangular cartesian coordinate system.  

       In absence of deformation and rotation, 

      a)  There will be no change in the length of the sides of the fluid element.  

      b) There will be no change in the included angles made by the sides of the fluid element.  

      c) The sides are displaced in parallel direction.  

This is possible when the flow velocities u (the x component velocity) and v (the y component velocity) are neither a function of x 

nor of y, i.e., the flow field is totally uniform.  

 

 

Fig 8.1     Fluid Element in pure translation 

If a component of flow velocity becomes the function of only one space coordinate along which that velocity component is 

defined.  

        For example, 

 if  u = u(x) and v = v(y), the fluid element ABCD  suffers a change in its linear dimensions along with translation  
 there is no change in the included angle by the sides as shown in Fig. 7.5.  

https://nptel.ac.in/courses/112104118/lecture-8/animation/demonstration_pure_translation.htm
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Fig 8.2  Fluid Element in Translation with Continuous Linear Deformation 

         The relative displacement of point B with respect to point A per unit time in x direction is  

  

        Similarly, the relative displacement of D with respect to A per unit time in y direction is 

 

Translation with Linear Deformations 

         Observations from the figure: 

       Since u is not a function of y and v is not a function of x 

 All points on the linear element AD move with same velocity in the x direction. 

 All points on the linear element AB move with the same velocity in y direction. 

 Hence the sides move parallel from their initial position without changing the included angle. 

       This situation is referred to as translation with linear deformation.  

       Strain rate: 

The changes in lengths along the coordinate axes per unit time per unit original lengths are defined as the components of linear 

deformation or strain rate in the respective directions.  

       Therefore, linear strain rate component in the x direction  

 

  

and, linear strain rate component in y direction 

https://nptel.ac.in/courses/112104118/lecture-8/animation/demonstration_linear_translation.htm


Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 77 

 

  

Rate of Deformation in the Fluid Element  

         Let us consider both the velocity component u and v are functions of x and y, i.e.,  

u = u(x,y) 
  

v = v(x,y)   

Figure 8.3 represent the above condition 

        Observations from the figure: 

 Point B has a relative displacement in y direction with respect to the point A. 
 Point D has a relative displacement in x direction with respect to point A. 
 The included angle between AB and AD changes. 
 The fluid element suffers a continuous angular deformation along with the linear deformations in course of its motion. 

          Rate of Angular deformation: 

The rate of angular deformation is defined as the rate of change of angle between the linear segments AB and AD which were 

initially perpendicular to each other.  

 

 

Fig 8.3   Fluid element in translation with simultaneous linear and angular deformation rates  

           From the above figure rate of angular deformation,  

 

(8.1) 

From the geometry 

 

(8.2a)  

https://nptel.ac.in/courses/112104118/lecture-8/animation/demonstration_deform.htm
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(8.2b) 

Hence,  

 

(8.3) 

Finally  

 

(8.4) 

 
Rotation 

           Figure 8.3 represent the situation of rotation 

          Observations from the figure: 

 The transverse displacement of B with respect to A and the lateral displacement of D with respect to A (Fig. 8.3) can be 

considered as the rotations of the linear segments AB and AD about A. 

 This brings the concept of rotation in a flow field. 

         Definition of rotation at a point:          

The rotation at a point is defined as the arithmetic mean of the angular velocities of two perpendicular linear segments meeting 

at that point.  

         Example: The angular velocities of AB and AD about A are 

  

           and    respectively. 

  

Considering the anticlockwise direction as positive, the rotation at A can be written as,  
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(8.5a) 

or  

 

(8.5b) 

The suffix z in ω represents the rotation about z-axis.  

When u = u (x, y) and v = v (x, y) the rotation and angular deformation of a fluid element exist simultaneously.  

          Special case : Situation of pure Rotation   

 ,        and      

          Observation:  

 The linear segments AB and AD move with the same angular velocity (both in magnitude and direction). 

 The included angle between them remains the same and no angular deformation takes place. This situation is known as 

pure rotation.  

Vorticity 

Definition: The vorticity Ω in its simplest form is defined as a vector which is equal to two times the rotation vector  

 

(8.6) 

For an irrotational flow, vorticity components are zero. 

        Vortex line: 

If tangent to an imaginary line at a point lying on it is in the direction of the Vorticity vector at that point , the line is a vortex line. 

        The general equation of the vortex line can be written as, 

 

(8.6b) 

 
In a rectangular cartesian cartesian coordinate system, it becomes  

 

(8.6c) 

 where,  
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Vorticity components as vectors:           

The vorticity is actually an anti symmetric tensor and its three distinct elements transform like the components of a vector in 

cartesian coordinates.  

This is the reason for which the vorticity components can be treated as vectors.  

 Existence of Flow 

  A fluid  must obey the law of conservation of mass in course of its flow as it is a material body.  
  For a Velocity field to exist in a fluid continuum, the velocity components must obey the mass conservation principle.  
 Velocity components which follow the mass conservation principle are said to constitute a possible fluid flow 
 Velocity components violating this principle, are said to describe an impossible flow.  
 The existence of a physically possible flow field is verified from the principle of conservation of mass.  

      The detailed discussion on this is deferred to the next chapter along with the discussion on principles of conservation of 

momentum and energy.  

Exercise Problems  -  Chapter 3  

1. The velocity field for a steady flow in a rectangular cartesian system is given by 

 What is the path line of the particle which is at (5, 3, 4) at t = 1s ?  

[ ]  

2. Verify whether the following flow fields are rotational. If so, determine the components of rotation about 

the coordinate axes  

           (i)  ,         (ii)  

           (iii)  

                               [(i) ; (ii) irrotational; (iii) ]  

3. For a steady two-dimensional incompressible flow through a nozzle, the velocity field is given by 

where x is the distance along the axis of the nozzle from its inlet plane and L is the 

length of the nozzle. Find  

           (i)  an expression of the acceleration of a particle flowing through the nozzle and  

          (ii)  the time required for a fluid particle to travel from the inlet to the exit of the nozzle  

                                                                           [ (i) , (ii) ]  

4. The velocity field for a steady two-dimensional flow in a cartesian coordinate system is given by 

, where a and b are constants. Find the equation of stream line passing through the point 

. Find also the condition for irrotationality of the flow.  
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                                                                             [  ]  

5. Show that the velocity field given by  of a fluid 

represents a rigid body motion. 

6. For a flow field  is given by . (a) Find , if it vanishes on   (b) Also find the 

stream function that will give these velocity components 

[ (a)   (b)  ] 

7. A two-dimensional flow field is given by . Find the velocity and acceleration in flow field at 

point A ( )  

Velocity =  

Acceleration=  

 

 

 

 

 

 

 

 

 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 82 

 

 

 

 

 

 

Conservation Equations and 

Analysis of Finite Control 

Volume 
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System  

      Definition  

 System: A quantity of matter in space which is analyzed during a problem. 

 Surroundings: Everything external to the system. 

 System Boundary: A separation present between system and surrounding.  

  
 Classification of the system boundary:- 
  

 Real solid boundary 
 Imaginary boundary 

  
 The system boundary may be further classified as:- 
  

 Fixed boundary or Control Mass System  
 Moving boundary or Control Volume System  

          The choice of boundary depends on the  problem being analyzed.  

 

Fig 9.1   System and Surroundings  

Classification of Systems  
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Types of System  

    Control Mass System (Closed System)  

1. Its a system of fixed mass with fixed identity.  
2. This type of system is usually referred to as "closed system". 

 

3. There is no mass transfer across the system boundary.  
4. Energy transfer may take place into or out of the system.   

 

Click to play the Demonstration  

Fig 9.2   A Control Mass System or Closed System  

   

Closed System (Control Mass System)  

[ See the Explanation Below ]    

  

  

  

  

  

  

  

Explanation: 

Here a 

submerged 

control mass 

(imaginary) 

is selected 

in a flowing 

fluid. It is 

evident that 

fluid (i.e. 

mass) 

cannot enter 

the closed 

system, 

https://nptel.ac.in/courses/112104118/lecture-9/animation/demonstration_close_system.htm
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though 

energy can 

enter.  

  Control Volume System (Open System)  

1. Its a system of  fixed volume.  
2. This type of system is usually referred to as "open system” or a "control volume" 
3. Mass transfer can take place across a control volume. 
4. Energy transfer may also occur into or out of the system. 
5. A control volume can be seen as  a fixed region across which mass and energy transfers are studied.   
6. Control Surface- Its the boundary of a control volume across which the transfer of both mass and energy takes place.  

7. The mass of a control volume (open system) may or may not be fixed.  
8. When the net influx of mass across the control surface equals  zero then the mass of the system is fixed and vice-versa.  
9. The identity of mass in a control volume always changes unlike the case for a control mass system (closed system). 

10. Most of the engineering devices, in general, represent an open system or control volume. 

Example:-  

 Heat exchanger - Fluid enters and leaves the system continuously with the transfer of heat across the system boundary.  
 Pump - A continuous flow of fluid takes place through the system with a transfer of mechanical energy from the 

surroundings to the system. 

   

 

Click to play the Demonstration  

Fig 9.3  A Control Volume System or Open System  

 

   

Open System (Control volume System)  

[ See the Explanation Below ]  

  

  

  

  

  

  

  

  

Explanation: This figure shows a fixed (imaginary) open system . The arrows represent flow of mass 

through the system, though the volume of fluid anytime inside the system remains constant. Hence it is also 

known as control volume system . Energy can also flow in and out of the system.  
 

 

https://nptel.ac.in/courses/112104118/lecture-9/animation/Demonstration_open_system.htm
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     Isolated System 

1. Its a system of fixed mass with same identity and fixed energy. 
2. No interaction of mass or energy takes place between the system and the surroundings.  
3. In more informal words an isolated system is like a closed shop amidst a busy market.  

  

 

Fig 9.4   An Isolated System  

Conservation of Mass - The Continuity Equation 

Law of conservation of mass  

The law states that mass can neither be created nor be destroyed. Conservation of mass is inherent to a control mass system 

(closed system). 

 The mathematical expression for the above law is stated as: 

∆m/∆t = 0,    where m = mass of the system 

 For a control volume (Fig.9.5), the principle of conservation of mass is stated as 

Rate at which mass enters = Rate at which mass leaves the region + Rate of accumulation of mass in the 

region 
 

OR 
 

Rate of accumulation of mass in the control volume  
                                                        + Net rate of mass efflux from the control volume = 0      (9.1) 

Continuity equation 

The above statement  expressed analytically in terms of velocity and density field of a flow is known as the equation of 

continuity. 
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Click to play the Demonstration  

Fig 9.5    A Control Volume in a Flow Field  

Continuity Equation - Differential Form 

   
    Derivation 

1. The point at which the continuity equation has to be derived, is enclosed by an elementary control volume. 

2. The influx, efflux and the rate of accumulation of mass is calculated across each surface within the control volume.  

  

 
  
Fig 9.6   A Control Volume Appropriate to a Rectangular Cartesian Coordinate System  
  

Consider a rectangular parallelopiped in the above figure as the control volume in a rectangular cartesian 

frame of coordinate axes.  

 Net efflux of mass along x -axis must be the excess outflow over inflow across faces normal to x -axis. 

https://nptel.ac.in/courses/112104118/lecture-9/animation/Demonstration_flow_field.htm
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 Let the fluid enter across one of such faces ABCD with a velocity u and a density ρ.The velocity and density with which 

the fluid will leave the face EFGH will be    and respectively (neglecting the higher order terms 

in δx).  

 Therefore, the rate of mass entering the control volume through face ABCD = ρu dy dz.  
 The rate of mass leaving the control volume through face EFGH will be 

 

  

 

(neglecting the higher order terms in dx) 
  

  

 Similarly influx and efflux take place in all y and z directions also.  

 Rate of accumulation for a point in a flow field 

 

  

 Using, Rate of influx = Rate of Accumulation + Rate of Efflux  

 

  

  Transferring everything to right side 

 

  

 

(9.2) 

  

     This is the Equation of Continuity for a compressible fluid in a rectangular cartesian coordinate system.  
 

Continuity Equation - Vector Form  

 The continuity equation can be written in a vector form as 

 

  

or,                                           
(9.3) 
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where   is the velocity of the point  

 In case of a steady flow, 

 

  

  Hence Eq. (9.3) becomes 

 

(9.4) 

           In a rectangular cartesian coordinate system 

 

(9.5) 

  Equation (9.4) or (9.5) represents the continuity equation for a steady flow.  

 In case of an incompressible flow, 
ρ = constant   

 Hence, 

 

  

  Moreover  

 

  

  Therefore, the continuity equation for an incompressible flow becomes 

 

(9.6) 

 

(9.7) 

 In cylindrical polar coordinates  eq.9.7 reduces to  

 

  

 

Continuity Equation- Cylindrical Polar Coordinate System  

    The continuity equation in any coordinate system can be derived in either of the two ways:- 

1. By expanding the vectorial form of general continuity equation, Eq. (9.3) with respect to the particular coordinate system. 

https://nptel.ac.in/courses/112104118/lecture-9/9-6a_cont_eqn_cylin_polar.htm
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2. By considering an elemental control volume appropriate to the reference frame of coordinates system and then by 

applying the fundamental principle of conservation of mass. 

 

Fig 9.7   A Cylindrical Polar Coordinate System  

     First Approach:- 

     The term in a cylindrical polar coordinate system (Fig. 9.7) can be written as  

 

(9.9) 

Therefore, the equation of continuity in a cylindrical polar coordinate system can be written as 

 

(9.10) 

     Second Approach:- 

     Consider the mass fluxes in the control volume shown in Fig. 9.8. 

 

Fig 9.8   A control volume appropriate to a cylindrical polar coordinate system  
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 Rate of mass entering the control volume through face  

 Rate of mass leaving the control volume through the face  

 Therefore, the net rate of mass efflux in the r direction =     where      (the elemental volume)  
 

 The net rate of mass efflux from control volume in θ direction   = (Mass leaving through face ADHE) - (Mass entering 

through face BCGF) 

 It can be written as  

 The net rate of mass efflux in z direction can be written in a similar fashion as  

 The rate of increase of mass within the control volume becomes  
 

 
 Hence, the final form of continuity equation in a cylindrical polar coordinate system becomes 

 

  

or,   
  

 In case of an incompressible flow, 

 

(9.11) 

                                                                                                             

 The equation of continuity in a spherical polar coordinate system  can be written by expanding the term of Eq. (9.3) as 

 

(9.12) 

 For an incompressible flow, Eq. 9.12 reduces to 

 

(9.13) 

  

  

  
 Eq. (9.7) can be written in terms of the strain rate components as 

 

(9.8) 

  Strain Rate Components 

 Consider a fluid element of original lengths dx, dy and dz along the coordinate axes x, y and z respectively.  

https://nptel.ac.in/courses/112104118/lecture-9/9-6b_strain_rate_comp.htm
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 The rate of volumetric dilatation per unit original volume of the element can be written as 

     [  is a small interval of time]  
 

 

  

 The left hand side of the Eq. (9.7) or (9.8) can be physically identified as the rate of volumetric dilatation per unit volume 
of a fluid element in motion which is obviously zero for an incompressible flow. 

 Continuity Equation - A Closed System Approach 
 We know that the conservation of mass is inherent to the definition of a closed system as Dm/Dt = 0 (where m is the 

mass of the closed system).  
 However, the general form of continuity can be derived from the basic equation of mass conservation of a system. 
 Derivation :- 
  

Let us consider an elemental closed system of volume V and density ρ.  

 

  

 

  

 

  

 

  

Now  (dilation per unit volume)  
  

  

 

  

 

  

 

  

 In vector notation we can write this as 

 

  

 The above equations are same as that formulated from Control Volume approach  
 Stream Function 
 Let us consider a two-dimensional incompressible flow parallel to the x - y plane in a rectangular cartesian coordinate system. The 

flow field in this case is defined by 
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u = u(x, y, t) 

v = v(x, y, t) 

w = 0          

  

 The equation of continuity is 

 

(10.1) 

 If a function ψ(x, y, t) is defined in the manner  

 

(10.2a) 

 

(10.2b) 

 so that it automatically satisfies the equation of continuity (Eq. (10.1)), then the function is known as 

stream function.  

Note that for a steady flow, ψ is a function of two variables x and y only. 

  

Constancy of ψ on a Streamline 
 Since ψ is a point function, it has a value at every point in the flow field. Thus a change in the stream 

function ψ can be written as 

 

  

 The equation of a streamline is given by  

 

  

 It follows that dψ = 0 on a streamline.This implies the value of ψ is constant along a streamline. Therefore, the equation of a streamline 
can be expressed in terms of stream function as  

ψ(x, y) = constant      (10.3) 

 Once the function ψ is known, streamline can be drawn by joining the same values of ψ in the 

flow field. 

  Stream function for an irrotational flow 
 In case of a two-dimensional irrotational flow 
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 Conclusion drawn:For an irrotational flow, stream function satisfies the Laplace’s equation  
 Physical Significance of Stream Funtion ψ 

 Figure 10.1 illustrates a two dimensional flow.  

  
 Fig 10.1   Physical Interpretation of Stream Function  

 Let A be a fixed point, whereas P be any point in the plane of the flow. The points A and P are joined 

by the arbitrary lines ABP and ACP. For an incompressible steady flow, the volume flow rate across 

ABP into the space ABPCA (considering a unit width in a direction perpendicular to the plane of the 

flow) must be equal to that across ACP. A number of different paths connecting A and P (ADP, 

AEP,...) may be imagined but the volume flow rate across all the paths would be the same. This 

implies that the rate of flow across any curve between A and P depends only on the end points A 

and P. 

 Since A is fixed, the rate of flow across ABP, ACP, ADP, AEP (any path connecting A and P) is 

a function only of the position P. This function is known as the stream function ψ.  

 The value of ψ at P represents the volume flow rate across any line joining P to A.  

The value of ψ at A is made arbitrarily zero. If a point P’ is considered (Fig. 10.1b),PP’ being along a 

streamline, then the rate of flow across the curve joining A to P’ must be the same as across AP, 

since, by the definition of a streamline, there is no flow across PP' 

 The value of ψ thus remains same at P’ and P. Since P’ was taken as any point on the streamline 

through P, it follows that ψ is constant along a streamline. Thus the flow may be represented by a 

series of streamlines at equal increments of ψ. 

 In fig (10.1c) moving from A to B net flow going past the curve AB is 
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 The stream function, in a polar coordinate system is defined as 

 

  

 The expressions for Vr and Vθ in terms of the stream function automatically satisfy the equation of 

continuity given by 

 
Stream Function in Three Dimensional and Compressible Flow 

Stream Function in Three Dimensional Flow  

In case of a three dimensional flow, it is not possible to draw a streamline with a single stream function. 

An axially symmetric three dimensional flow is similar to the two-dimensional case in a sense that the flow 

field is the same in every plane containing the axis of symmetry.  

The equation of continuity in the cylindrical polar coordinate system for an incompressible flow is given by 

the following equation 

 

  

For an axially symmetric flow (the axis r = 0 being the axis of symmetry),  the term =0 ,and 

simplified equation is satisfied by  functions defined as  

 

(10.4) 

The function ψ , defined by the Eq.(10.4) in case of a three dimensional flow with an axial symmetry, is 

called the stokes stream function.  

Stream Function in Compressible Flow  

For compressible flow, stream function is related to mass flow rate instead of volume flow rate because of 

the extra density term in the continuity equation (unlike incompressible flow) 

The continuity equation for a steady two-dimensional compressible flow is given by 
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Hence a stream function ψ is defined which will satisfy the above equation of continuity as 

 

  

           [where ρ0 is a reference density]  
(10.5) 

  

ρ0 is used  to retain the unit of ψ same as that in the case of an incompressible flow. Physically, the 

difference in stream function between any two streamlines multiplied by the reference density ρ0 will give 

the mass flow rate through the passage of unit width formed by the streamlines. 

Continuity Equation: Integral Form 

Let us consider a control volume   bounded by the control surface S. The efflux of mass across the control 

surface S is given by 

 

  

where is the velocity vector at an elemental area( which is treated as a vector by considering its positive 

direction along the normal drawn outward from the surface). 

 

Fig 10.2  A Control Volume for the Derivation of Continuity Equation (integral form)  

The rate of mass accumulation within the control volume becomes 

 

  

where d  is an elemental volume, ρ is the density and is the total volume bounded by the control surface S. 

Hence, the continuity equation becomes (according to the statement given by Eq. (9.1)) 

 

(10.6) 
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The second term of the Eq. (10.6) can be converted into a volume integral by the use of the Gauss 

divergence theorem as 

 

  

Since the volume does not change with time, the sequence of differentiation and integration in the first 

term of Eq.(10.6) can be interchanged.  

Therefore Eq. (10.6) can be written as 

 

(10.7) 

Equation (10.7) is valid for any arbitrary control volume irrespective of its shape and size. So we can write 

 

(10.8) 

  

Conservation of Momentum:  Momentum Theorem  

In Newtonian mechanics, the conservation of momentum is defined by Newton’s second law of motion. 

 

Newton’s Second Law of Motion  

 The rate of change of momentum of a body is proportional to the impressed action and takes place in 

the direction of the impressed action.  

 If a force acts on the body ,linear momentum is implied. 

 If a torque (moment) acts on the body,angular momentum is implied. 

Reynolds Transport Theorem 

A study of fluid flow by the Eulerian approach requires a mathematical modeling for a control volume either 

in differential or in integral form. Therefore the physical statements of the principle of conservation of mass, 

momentum and energy with reference to a control volume become necessary. 

 This is done by invoking a theorem known as the Reynolds transport theorem which relates the control 

volume concept with that of a control mass system in terms of a general property of the system.  

Statement of  Reynolds Transport Theorem 

The theorem states that "the time rate of increase of property N within a control mass system is equal to the 

time rate of increase of property N within the control volume plus the net rate of efflux of the property N 

across the control surface”.  

Equation of  Reynolds Transport Theorem 

After deriving  Reynolds Transport Theorem according to the above statement we get 

 

(10.9) 

https://nptel.ac.in/courses/112104118/lecture-10/10-5a_deriv_reynold_theorem.htm
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In this equation  

N - flow property which is transported 

η - intensive value of the flow property 

Derivation of Reynolds Transport Theorem  

To formulate the relation between the equations applied to a control mass system and those applied to a 

control volume, a general flow situation is considered in Fig. 10.3 where the velocity of a fluid is given 

relative to coordinate axes ox, oy, oz. At any time t, a control mass system consisting of a certain mass of 

fluid is considered to have the dotted-line boundaries as indicated. A control volume (stationary relative to 

the coordinate axes) is considered that exactly coincides with the control mass system at time t (Fig. 10.3a). 

At time t+δt, the control mass system has moved somewhat, since each particle constituting the control mass 

system moves with the velocity associated with its location.  

 

Fig 10.3 Relationship between Control Mass system and control volume concepts in the analysis of a flow 

field  

Consider, N to be the total amount of some property (mass, momentum, energy) within the control mass 

system at time t, and let η be the amount of this property per unit mass throughout the fluid. The time rate of 

increase in N for the control mass system is now formulated in terms of the change in N for the control 

volume. Let the volume of the control mass system and that of the control volume be 1at time t with both 

of them coinciding with each other (Fig. 10.3a). At time t + δt, the volume of the control mass system 

changes and comprises volumes III and IV(Fig. 10.3b). Volumes II and IV are the intercepted regions 

between the control mass system and control volume at time t+δt. The increase in property N of the control 

mass system in time δt is given by 
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where,d  represents an element of volume. After adding and subtracting  

 

to the right hand side of the equation and then dividing throughout by δt, we have  

 

                                (10.9) 

The left hand side of Eq.(10.9) is the average time rate of increase in N within the control mass system 

during the time δt.  

In the limit as δt approaches zero, it becomes dN/dt (the rate of change of N within the control mass system 

at time t ).  

 

In the first term of the right hand side of the above equation the first two integrals are the amount of N in the 

control volume at time t+δt, while the third integral is the amount N in the control volume at time t. In the 

limit, as δt approaches zero, this term represents the time rate of increase of the property N within the 

control volume and can be written as  

 

The next term, which is the time rate of flow of N out of the control volume may be written, in the limit 

as 

 

  

In which is the velocity vector and is an elemental area vector on the control surface. The sign of 

vector  is positive if its direction is outward normal (Fig. 10.3c). Similarly, the last term of the Eq.(10.9) 

is the rate of flow of N into the control volume is, in the limit δt → 0 
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0 

The minus sign is needed as  is negative for inflow. The last two terms of Eq.(10.9) may be combined 

into a single one is an integral over the entire surface of the control volume and is written as . 

This term indicates the net rate of outflow N from the control lume. Hence, Eq.(10.9) can be written as 

 

(10.10) 

  

The Eq.(10.10) is known as Reynolds Transport Theorem  

Important Note: In the derivation of Reynolds transport theorem (Eq. 10.10), the velocity field was 

described relative to a reference frame xyz (Fig. 10.3) in which the control volume was kept fixed, and no 

restriction was placed on the motion of the reference frame xyz. This makes it clear that the fluid velocity in 

Eq.(10.10) is measured relative to the control volume. To emphasize this point, the Eq. (10.10) can be 

written as 

 

(10.11) 

where the fluid velocity , is defined relative to the control volume as 

 

(10.12) 

and are now the velocities of fluid and the control volume respectively as observed in a fixed frame of 

reference. The velocity of the control volume may be constant or any arbitrary function of time. 

Application of the Reynolds Transport Theorem to Conservation of Mass and Momentum  

Conservation of mass The constancy of mass is inherent in the definition of a control mass system and 

therefore we can write 

 

(10.13a) 

To develop the analytical statement for the conservation of mass of a control volume, the Eq. (10.11) is used 

with N = m (mass) and η = 1 along with the Eq. (10.13a). 

This gives 

 

(10.13b) 

  

The Eq. (10.13b) is identical to Eq. (10.6) which is the integral form of the continuity equation derived in 

earlier section. At steady state, the first term on the left hand side of Eq. (10.13b) is zero. Hence, it becomes  
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(10.13c) 

Conservation of Momentum or Momentum Theorem The principle of conservation of momentum as applied 

to a control volume is usually referred to as the momentum theorem. 

Linear momentum The first step in deriving the analytical statement of linear momentum theorem is to write 

the Eq. (10.11) for the property N as the linear - momentum and accordingly η as the velocity . 

Then it becomes  

 

(10.14) 

  

The velocity defining the linear momentum in Eq. (10.14) is described in an inertial frame of reference. 

Therefore we can substitute the left hand side of Eq. (10.14) by the external forces on the control mass 

system or on the coinciding control volume by the direct application of Newton’s law of motion. This gives 

 

(10.15) 

  

This Equation is the analytical statement of linear momentum theorem. 

In the analysis of finite control volumes pertaining to practical problems, it is convenient to describe all fluid 

velocities in a frame of coordinates attached to the control volume. Therefore, an equivalent form of 

Eq.(10.14) can be obtained, under the situation, by substituting N as and accordingly η as , we get  

 

(10.16) 

With the help of the Eq. (10.12) the left hand side of Eq. can be written as 

 

 

 

  

 where is the rectilinear acceleration of the control volume (observed in a fixed coordinate 

system) which may or may not be a function of time. From Newton’s law of motion 
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Therefore,  
(10.17) 

The Eq. (10.16) can be written in consideration of Eq. (10.17) as 

 

(10.18a) 

At steady state, it becomes  

 

(10.18b) 

In case of an inertial control volume (which is either fixed or moving with a constant rectilinear velocity), 

and hence Eqs (10.18a) and (10.18b) becomes respectively 

 

(10.18c) 

and    
(10.18d) 

  

The Eqs (10.18c) and (10.18d) are the useful forms of the linear momentum theorem as applied to an inertial 

control volume at unsteady and steady state respectively, while the Eqs (10.18a) and (10.18b) are the same 

for a non-inertial control volume having an arbitrary rectilinear acceleration. 

 

In general, the external forces in Eqs (10.14, 10.18a to 10.18c) have two components - the body force 

and the surface force. Therefore we can write 

 

(10.18e) 

where is the body force per unit volume and is the area weighted surface force. 

Angular Momentum  

The angular momentum or moment of momentum theorem is also derived from Eq.(10.10) in consideration 

of the property N as the angular momentum and accordingly η as the angular momentum per unit mass. 

Thus, 

 

(10.19) 
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where AControl mass system is the angular momentum of the control mass system. . It has to be noted that the 

origin for the angular momentum is the origin of the position vector  

The term on the left hand side of Eq.(10.19) is the time rate of change of angular momentum of a control 

mass system, while the first and second terms on the right hand side of the equation are the time rate of 

increase of angular momentum within a control volume and rate of net efflux of angular momentum across 

the control surface. 

 

The velocity  defining the angular momentum in Eq.(10.19) is described in an inertial frame of 

reference.Therefore, the term   can be substituted by the net moment ΣM applied to the system 

or to the coinciding control volume. Hence one can write Eq. (10.19) as 

 

(10.20a) 

   

At steady state  

 

  

 

(10.20b) 

Analysis Of Finite Control Volumes - the application of momentum theorem  

We'll see the application of momentum theorem in some practical cases of inertial and non-inertial control 

volumes. 

Inertial Control Volumes  

Applications of momentum theorem for an inertial control volume are described with reference to three 

distinct types of practical problems, namely 

 Forces acting due to internal flows through expanding or reducing pipe bends.  

 Forces on stationary and moving vanes due to impingement of fluid jets.  

 Jet propulsion of ship and aircraft moving with uniform velocity. 

Non-inertial Control Volume  

A good example of non-inertial control volume is a rocket engine which works on the principle of jet 

propulsion.  

We shalll discuss each example seperately in the following slides.  

Forces due to Flow Through Expanding or Reducing Pipe Bends  

Let us consider, a fluid flow through an expander shown in Fig. 11.1a below. The expander is held in a 

vertical plane. The inlet and outlet velocities are given by V1 and V2 as shown in the figure. The inlet and 

outlet pressures are also prescribed as p1 and p2. The velocity and pressure at inlet and at outlet sections are 

assumed to be uniform. The problem is usually posed for the estimation of the force required at the expander 

support to hold it in position. 
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Fig 11.1a   Flow of a fluid through an expander  

For the solution of this type of problem, a control volume is chosen to coincide with the interior of the 

expander as shown in Fig. 11.1a. The control volume being constituted by areas 1-2, 2-3, 3-4, and 4-1 is 

shown separately in Fig.11.1b. 

The external forces on the fluid over areas 2-3 and 1-4 arise due to net efflux of linear momentum through 

the interior surface of the expander. Let these forces be Fx and Fy. Since the control volume 1234 is 

stationary and at a steady state, we apply Eq.(10.18d) and have for x and y components 

  
 

(11.1a) 

and 
 

(11.1b) 

or, 
 

(11.2a) 

and 
 

(11.2b) 

where = mass flow rate through the expander. Analytically it can be expressed as  

 

  

where A1 and A2 are the cross-sectional areas at inlet and outlet of the expander and the flow is considered 

to be incompressible.  

M represents the mass of fluid contained in the expander at any instant and can be expressed as 

  where is the internal volume of the expander.   

Thus, the forces Fx and Fy acting on the control volume (Fig. 11.1b) are exerted by the expander. According 

to Newton’s third law, the expander will experience the forces Rx (= − Fx) and Ry ( = − Fy) in the x and y 

directions respectively as shown in the free body diagram of the expander. in fig 11.1c. 
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Fig 11.1b   Control Volume Comprising the fluid 

contained in the expander at any instant 

Fig 11.1c    Free Body Diagram of the 

Expander  

 

 

The expander will also experience the atmospheric pressure force on its outer surface. This is shown 

separately in Fig. 11.2. 

  

 

Fig 11.2     Effect of atmospheric pressure on the expander  

From Fig.11.2 the net x and y components of the atmospheric pressure force on the expander can be written 

as 

 

  

 

 

  

The net force on the expander is therefore, 

 

(11.3a) 

 

(11.3b) 
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 or, 

 

(11.4a) 

 

(11.4b) 

Note: At this stage that if Fx and Fy are calculated from the Eqs (11.2a) and (11.2b) with p1 and p2 as the 

gauge pressures instead of the absolute ones the net forces on the expander Ex and Ey will respectively be 

equal to −Fx and −Fy. 

  

Dynamic Forces on Plane Surfaces due to the Impingement of Liquid Jets  

Force on a stationary surface Consider a stationary flat plate and a liquid jet of cross sectional area ”a” 

striking with a velocity V at an angle θ to the plate as shown in Fig. 11.3a. 

 

Fig 11.3 Impingement of liquid Jets on a Stationary Flat Plate  

To calculate the force required to keep the plate stationary, a control volume ABCDEFA (Fig. 11.3a) is 

chosen so that the control surface DE coincides with the surface of the plate. The control volume is shown 

separately as a free body in Fig. 11.3b. Let the volume flow rate of the incoming jet be Q and be divided into 

Q1 and Q2 gliding along the surface (Fig. 11.3a) with the same velocity V since the pressure throughout is 

same as the atmospheric pressure, the plate is considered to be frictionless and the influence of a gravity is 

neglected (i.e. the elevation between sections CD and EF is negligible).  

Coordinate axes are chosen as 0s and 0n along and perpendicular to the plate respectively. Neglecting the 

viscous forces. (the force along the plate to be zero),the momentum conservation of the control volume 

ABCDEFA in terms of s and n components can be written from Eq.(10.18d) as  

 

(11.5a) 

and 
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(11.5b) 

where Fs and Fn are the forces acting on the control volume along 0s and 0n respectively, 

From continuity,           

Q = Q1 + Q2   (11.6) 

With the help of Eqs (11.5a) and (11.6), we can write 

 

(11.7a) 

 

(11.7b) 

The net force acting on the control volume due to the change in momentum of the jet by the plate is Fn along 

the direction "On” and is given by the Eq. (11.7b) as 

 

(11.7c) 

Hence, according to Newton’s third law, the force acting on the plate is  

 

(11.8) 

If the cross-sectional area of the jet is ”a”, then the volume flow rate Q striking the plate can be written as Q 

= aV. Equation (11.8) then becomes  

 

(11.9) 

  

Let us solve another stationary vane problem  

Stationary vane problem  

Consider a jet that is deflected by a stationary vane, such as is given in Fig. 11.4. If the jet speed and 

diameter are 25 m/s and 25 cm, respectively and jet is deflected 60
0
, what force is exerted by the jet on the 

vane?  

 

https://nptel.ac.in/courses/112104118/lecture-11/hyperlink/stationary.htm
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Fig 11.4  

First solve for Fx , the x-component of force of the vane on the jet -  

 

  

Here, the final velocity in the x-direction is given as  

 

  

Hence,  

 

  

also,  

 

  

and 

 

  

Therefore, 

 

      
  

similarly determined, the y-component of force on the jet is  

 

      
  

Then the force on the vane will be the reactions to the forces of the vane on the jet, or  

 

  

 

 

Force on a moving surface     
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Fig 11.5   Impingement of liquid jet on a moving flat plate  

If the plate in the above problem moves with a uniform velocity u in the direction of jet velocity V (Fig. 

11.5). The volume of the liquid striking the plate per unit time will be  

Q = a(V − u)      (11.10) 

Physically, when the plate recedes away from the jet it receives a less quantity of liquid per unit time than 

the actual mass flow rate of liquid delivered, say by any nozzle. When u = V, Q = 0 and when u > V, Q 

becomes negative. This implies physically that when the plate moves away from the jet with a velocity being 

equal to or greater than that of the jet, the jet can never strike the plate. 

The control volume ABCDEFA in the case has to move with the velocity u of the plate. Therefore we have 

to apply Eq. (10.18d) to calculate the forces acting on the control volume. Hence the velocities relative to 

the control volume will come into picture. The velocity of jet relative to the control volume at its inlet 

becomes VR1 = V − u 

Since the pressure remains same throughout, the magnitudes of the relative velocities of liquid at outlets 

become equal to that at inlet, provided the friction between the plate and the liquid is neglected. Moreover, 

for a smooth shockless flow, the liquid has to glide along the plate and hence the direction of VR0, the 

relative velocity of the liquid at the outlets, will be along the plate. The absolute velocities of the liquid at 

the outlets can be found out by adding vectorially the plate velocity u and the relative velocity of the jet V - 

u with respect to the plate. This is shown by the velocity triangles at the outlets (Fig. 11.5). Coordinate axes 

fixed to the control volume ABCDEFA are chosen as ”0s” and ”0n” along and perpendicular to the plate 

respectively.  

The force acting on the control volume along the direction ”0s” will be zero for a frictionless flow. The net 

force acting on the control volume will be along ”0n” only. To calculate this force Fn, the momentum 

theorem with respect to the control volume ABCDEFA can be written as 
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Substituting Q from Eq (11.10), 

 

  

Hence the force acting on the plate becomes 

 

(11.11) 

If the plate moves with a velocity u in a direction opposite to that of V (plate moving towards the jet), the 

volume of liquid striking the plate per unit time will be Q = a(V + u) and, finally, the force acting on the 

plate would be 

 

(11.12) 

From the comparison of the Eq. (11.9) with Eqs (11.11) and (11.12), conclusion can be drawn that for a 

given value of jet velocity V, the force exerted on a moving plate by the jet is either greater or lower than 

that exerted on a stationary plate depending upon whether the plate moves towards the jet or-away from it 

respectively. 

The power developed due to the motion of the plate can be written (in case of the plate moving in the same 

direction as that of the jet) as 

P = Fp . U    

 

(11.13) 

Dynamic Forces on Curve Surfaces due to the Impingement of Liquid Jets  

The principle of fluid machines is based on the utilization of useful work due to the force exerted by a fluid 

jet striking and moving over a series of curved vanes in the periphery of a wheel rotating about its axis. The 

force analysis on a moving curved vane is understood clearly from the study of the inlet and outlet velocity 

triangles as shown in Fig. 11.6. 

The fluid jet with an absolute velocity V1 strikes the blade at the inlet. The relative velocity of the jet Vr1 at 

the inlet is obtained by subtracting vectorially the velocity u of the vane from V1. The jet strikes the blade 

without shock if β1 (Fig. 11.6) coincides with the inlet angle at the tip of the blade. If friction is neglected 

and pressure remains constant, then the relative velocity at the outlet is equal to that at the inlet  (Vr2 

= Vr1).  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 11

1 

 

Fig  11.6    Flow of Fluid along a Moving Curved Plane  

The control volume as shown in Fig. 11.6 is moving with a uniform velocity u of the vane.Therefore we 

have to use Eq.(10.18d) as the momentum theorem of the control volume at its steady state. Let Fc be the 

force applied on the control volume by the vane.Therefore we can write 

 

  

        

       

To keep the vane translating at uniform velocity, u in the direction as shown. the force F has to act opposite 

to Fc Therefore, 

 

(11.14) 

From the outlet velocity triangle, it can be written 

  
 

  

or, 
 

  

or, 
 

  

or, 
 

(11.15a) 

Similarly from the inlet velocity triangle. it is possible to write 

 

(11.15b) 
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Addition of Eqs (11.15a) and (11.15b) gives 

 

  

Power developed is given by 

 

(11.16) 

The efficiency of the vane in developing power is given by 

 

(11.17) 

Propulsion of a Ship  

Jet propulsion of ship is found to be less efficient than propulsion by screw propeller due to the large amount 

of frictional losses in the pipeline and the pump, and therefore, it is used rarely. Jet propulsion may be of 

some advantage in propelling a ship in a very shallow water to avoid damage of a propeller.  

Consider a jet propelled ship, moving with a velocity V, scoops water at the bow and discharges astern as a 

jet having a velocity Vr relative to the ship.The control volume is taken fixed to the ship as shown in Fig. 

11.7. 

 

Fig  11.7    A control volume for a moving ship  

 

Following the momentum theorem as applied to the control volume shown. We can write 
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Where Fc is the external force on the control volume in the direction of the ship’s motion. The forward 

propulsive thrust F on the ship is given by 

 

(11.18) 

Propulsive power is given by   

 

(11.19) 

Jet Engine  

A jet engine is a mechanism in which air is scooped from the front of the engine and is then compressed and 

used in burning of the fuel carried by the engine to produce a jet for propulsion. The usual types of jet 

engines are turbojet, ramjet and pulsejet. 

 

 

Fig 11.8    A Turbojet Engine  

 

Fig 11.9  An Appropriate Control Volume Comprising the Stream of 

Fluid Flowing through the Engine  

A turbojet engine consists essentially (Fig. 11.8) of - 

 a compressor, 

 a combustion chamber, 

 a gas turbine and  

 a nozzle. 

A portion of the thermal energy of the product of combustion is used to run the gas turbine to drive the 

compressor. The remaining part of thermal energy is converted into kinetic energy of the jet by a nozzle. At 

high speed fiight, jet engines are advantageous since a propeller has to rotate at high speed to create a large 

thrust. This will result in excessive blade stress and a decrease in the efficiency for blade tip speeds near and 

https://nptel.ac.in/courses/112104118/lecture-11/hyperlink/Demonstration_zet.htm
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above sonic level. In a jet propelled aircraft, the spent gases are ejected to the surroundings at high velocity 

usually equal to or greater than the velocity of sound in the fluid at that state.  

In many cases, depending upon the range of fight speeds, the jet is discharged with a velocity equal to sonic 

velocity in the medium and the pressure at discharge does not fall immediately to the ambient pressure. In 

these cases, the discharge pressure p2 at the nozzle exit becomes higher than the ambient pressure patm. 

Under the situation of uniform velocity of the aircraft, we have to use Eg. (10.18d) as the momentum 

theorem for the control volume as shown in Fig. 11.9 and can write 

 

  

 

  

where, Fx is the force acting on the control volume along the direction of the coordinate axis ”OX” fixed to 

the control volume, V is the velocity of the aircraft, u is the relative velocity of the exit jet with respect to the 

aircraft, and are the mass flow rate of air, and mass burning rate of fuel respectively. Usually is 

very less compared to usually varies from 0.01 to 0.02 in practice).  

The propulsive thrust on the aircraft can be written as 

 

(11.20) 

                                

The terms in the bracket are always positive. Hence, the negative sign in FT represents that it acts in a 

direction opposite to ox, i.e. in the direction of the motion of the jet engine. The propulsive power is given 

by 

 

(11.21) 

Non-inertial Control Volume  

Rocket engine  

Rocket engine works on the principle of jet propulsion.  

 The gases constituting the jet are produced by the combustion of a fuel and appropriate oxidant 

carried by the engine. Therefore, no air is required from outside and a rocket can operate 

satisfactorily in a vacuum.  

 A large quantity of oxidant has to be carried by the rocket for its operation to be independent of the 

atmosphere. 

 At the start of journey, the fuel and oxidant together form a large portion of the total load carried by 

the rocket. 

 Work done in raising the fuel and oxidant to a great height before they are burnt is wasted.  

 Therefore, to achieve the efficient use of the materials, the rocket is accelerated to a high velocity in 

a short distance at the start. This period of rocket acceleration is of practical interest. 
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Fig 11.10   A Control Volume for a Rocket Engine  

Let    be the rate at which spent gases are discharged from the rocket with a velocity u relative to the 

rocket (Fig. 11.10) Both  and u are assumed to be constant.  

Let M and V be the instantaneous mass and velocity (in the upward direction) of the rocket. The control 

volume as shown in Fig. 11.10 is an accelerating one. Therefore we have to apply Eq. (10.18b) as the 

momentum theorem of the control volume. This gives 

 

  

 

(11.22) 

where ΣF is the sum of the external forces on the control volume in a direction vertically upward. If pe and 

pa be the nozzle exhaust plane gas pressure and ambient pressure respectively and D is the drag force to the 

motion of the rocket, then one can write 

 

(11.23) 

Where, Ae is outlet area of the propelling nozzle. Then Eq. (11.22) can be written as 

 

  

In absence of gravity and drag, Eq (11.23) becomes 

 

  

 

Application of Moment of Momentum Theorem  
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Let us take an example of a sprinkler like turbine as shown in Fig. 12.2. The turbine rotates in a horizontal 

plane with angular velocity ω. The radius of the turbine is r. Water enters the turbine from a vertical pipe 

that is coaxial with the axis of rotation and exits through the nozzles of cross sectional area ’a’ with a 

velocity Ve relative to the nozzle. 

A control volume with its surface around the turbine is also shown in the fig below. 

 

Fig 12.1    A Sprinkler like Turbine  

Application of Moment of Momentum Theorem (Eq. 10.20b) gives 

 

(12.1) 

When Mzc  is the moment applied to the control volume. The mass flow rate of water through the turbine is 

given by 

 

  

The velocity must be referenced to an inertial frame so that 

 

  

 

(12.2) 

The moment Mz acting on the turbine can be written as 

 

(12.3) 

The power produced by the turbine is given by 

 

(12.4) 
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Euler’s Equation: The Equation of Motion of an Ideal Fluid 

This section is not a mandatory requirement. One can skip this section (if he/she does not like to spend time 

on Euler's equation) and go directly to Steady Flow Energy Equation. 

Using the Newton's second law of motion the relationship between the velocity and pressure field for a flow 

of an inviscid fluid can be derived. The resulting equation, in its differential form, is known as Euler’s 

Equation. The equation is first derived by the scientist Euler. 

Derivation: 

Let us consider an elementary parallelopiped of fluid element as a control mass system in a frame of 

rectangular cartesian coordinate axes as shown in Fig. 12.3. The external forces acting on a fluid element are 

the body forces and the surface forces. 

 

Fig 12.2  A Fluid Element appropriate to a Cartesian Coordinate System 

used for the derivation of Euler's Equation  

Let Xx, Xy, Xz be the components of body forces acting per unit mass of the fluid element along the 

coordinate axes x, y and z respectively. The body forces arise due to external force fields like gravity, 

electromagnetic field, etc., and therefore, the detailed description of Xx, Xy and Xz are provided by the laws 

of physics describing the force fields. The surface forces for an inviscid fluid will be the pressure forces 

acting on different surfaces as shown in Fig. 12.3. Therefore, the net forces acting on the fluid element along 

x, y and z directions can be written as 
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Since each component of the force can be expressed as the rate of change of momentum in the respective 

directions, we have 

 

(12.5a) 

 

(12.5b) 

 

(12.5c) 

s the mass of a control mass system does not change with time, is constant with time and can be 

taken common. Therefore we can write Eqs (12.5a to 12.5c) as  

 

(12.6a) 

 

(12.6b) 

 

(12.6c) 

Expanding the material accelerations in Eqs (12.6a) to (12.6c) in terms of their respective temporal and 

convective components, we get 

 

(12.7a) 

 

(12.7b) 

 

(12.7c) 

  

The Eqs (12.7a, 12.7b, 12.7c) are valid for both incompressible and compressible flow. By putting u = v = w 

= 0, as a special case, one can obtain the equation of hydrostatics .  

Equations (12.7a), (12.7b), (12.7c) can be put into a single vector form as 
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(12.7d) 

 

(12.7e) 

where the velocity vector and the body force vector per unit volume are defined as 

 

  

 

  

 Equation (12.7d) or (12.7e) is the well known Euler’s equation in vector form,  

while Eqs (12.7a) to (12.7c) describe the Euler’s equations in a rectangular Cartesian 

coordinate system. 

Euler’s Equation along a Streamline 

 

Fig 12.3  Force Balance on a Moving Element Along a Streamline  

Derivation 

Euler’s equation along a streamline is derived by applying Newton’s second law of motion to a fluid 

element moving along a streamline. Considering gravity as the only body force component acting vertically 

downward (Fig. 12.3), the net external force acting on the fluid element along the directions can be written 

as  

 

(12.8) 

where ∆A is the cross-sectional area of the fluid element. By the application of Newton’s second law of 

motion in s direction, we get     
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(12.9) 

From geometry we get 

 

  

Hence, the final form of Eq. (12.9) becomes 

 

  

 

(12.10) 

Equation (12.10) is the Euler’s equation along a streamline. 

Let us consider along the streamline so that 

 

  

Again, we can write from Fig. 12.3 

 

  

The equation of a streamline is given by 

 

  

or,      which finally leads to  

  

  

 

  

           

Multiplying Eqs (12.7a), (12.7b) and (12.7c) by dx, dy and dz respectively and then substituting the above 

mentioned equalities, we get  
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Adding these three equations, we can write 

 

=  

=    

Hence,     

This is the more popular form of Euler's equation because the velocity vector in a flow field is always 

directed along the streamline.  

Euler’s Equation in Different Conventional Coordinate System  

Euler’s equation in different coordinate systems can be derived either by expanding the acceleration and 

pressure gradient terms of Eq. (12.7d), or by the application of Newton’s second law to a fluid element 

appropriate to the coordinate system. 

Euler's Equation in Different Conventional Coordinate Systems  

Coordinate System  Euler's Equation (Equation of motion for an inviscid flow)  

Rectangular Cartesian coordinate 

                 

x direction  
 

y direction  
 

z direction  
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Cylindrical Polar Coordinate 

              

r direction  
 

θ direction 
 

z direction  
 

 

Spherical Polar Coordinate 

            

   

R direction  

 

θ direction 
 

υ direction 
 

 

 A Control Volume Approach for the Derivation of Euler’s Equation 

Euler’s equations of motion can also be derived by the use of the momentum theorem for a control volume. 

Derivation 

In a fixed x, y, z axes (the rectangular cartesian coordinate system), the parallelopiped which was taken 

earlier as a control mass system is now considered as a control volume (Fig. 12.4). 
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Fig 12.4   A Control Volume used for the derivation of Euler's Equation  

We can define the velocity vector and the body force per unit volume as  

 

  

 

  

The rate of x momentum influx to the control volume through the face ABCD is equal to ρu
2
 dy dz. The rate 

of x momentum efflux from the control volume through the face EFGH equals  

Therefore the rate of net efflux of x momentum from the control volume due to the faces perpendicular to 

the x direction (faces ABCD and EFGH) = where, , the elemental volume = dx dy dz. 

Similarly, 
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The rate of net efflux of x momentum due to the faces perpendicular to the y direction (face BCGF and 

ADHE) =   

The rate of net efflux of x momentum due to the faces perpendicular to the z direction (faces DCGH and 

ABFE) =  

Hence, the net rate of x momentum efflux from the control volume becomes 

 

  

The time rate of increase in x momentum in the control volume can be written as 

  (Since, , by the definition of control volume, is invariant with time) 

Applying the principle of momentum conservation to a control volume (Eq. 4.28b), we get 

 

(12.11a) 

The equations in other directions y and z can be obtained in a similar way by considering the y momentum 

and z momentum fluxes through the control volume as 

 

(12.11b) 

 

(12.11c) 

The typical form of Euler’s equations given by Eqs (12.11a), (12.11b) and (12.11c) are known as the 

conservative forms.  

  

Conservation of Energy  

The principle of conservation of energy for a control mass system is described by the first law of 

thermodynamics  

Heat Q added to a control mass system- the work done W by the control mass system = change in 

its internal energy E 

The internal energy depends only upon the initial and final states of the system. It can be written 

in the form of the equation as 

 

(13.1a) 

Equation (13.1a) can be expressed on the time rate basis as 
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(13.1b) 

Where δQ and δW are the amount of heat added and work done respectively during a time 

interval of δt. To develop the analytical statement for the conservation of energy of a control 

volume, the Eq. (10.10) is used with N = E (the internal energy) and η = e (the internal energy per 

unit mass) along with the Eq. (13.1b). This gives 

 

(13.2) 

The Eq. (13.2) is known as the general energy equation for a control volume. 

The first term on the right hand side of the equation is the time rate of increase in the internal 

energy within a control volume and the second term is the net rate of energy efflux from the 

control volume.  

Different forms of energy associated with moving fluid elements comprising a control volume are 

-  

1. Potential energy  
The concept of potential energy in a fluid is essentially the same as that of a solid mass. The 

potential energy of a fluid element arises from its existence in a conservative body force field. 

This field may be a magnetic, electrical, etc. In the absence of any of such external force field, the 

earth’s gravitational effect is the only cause of potential energy. If a fluid mass m is stored in a 

reservoir and its C.G. is at a vertical distance z from an arbitrary horizontal datum plane, then the 

potential energy is mgz and the potential energy per unit mass is gz. The arbitrary datum does not 

play a vital role since the difference in potential energy, instead of its absolute value, is 

encountered in different practical purposes. 

2. Kinetic Energy 

If a quantity of a fluid of mass m flows with a velocity V, being the same throughout its mass, 

then the total kinetic energy is mV
2
/2 and the kinetic energy per unit mass is V

2
/2. For a stream of 

real fluid, the velocities at different points will not be the same. If V is the local component of 

velocity along the direction of flow for a fluid flowing through an open channel or closed conduit 

of cross-sectional area A, the total kinetic energy at any section is evaluated by summing up the 

kinetic energy flowing through differential areas as 

 

  

The average velocity at a cross-section in a flowing stream is defined on the basis of volumetric 

flow rate as, 

 

  

The kinetic energy per unit mass of the fluid is usually expressed as where α is known 

as the kinetic energy correction factor.  

Therefore, we can write 
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Hence,    

 

(13.3a) 

  

For an incompressible flow, 

 

(13.3b) 

  

3. Intermolecular Energy  

The intermolecular energy of a substance comprises the potential energy and kinetic energy of the 

molecules. The potential energy arises from intermolecular forces. For an ideal gas, the potential 

energy is zero and the intermolecular energy is, therefore, due to only the kinetic energy of 

molecules. The kinetic energy of the molecules of a substance depends on its temperature. 

4. Flow Work  

Flow work is the work done by a fluid to move against pressure. 

For a flowing stream, a layer of fluid at any cross-section has to push the adjacent neighboring 

layer at its downstream in the direction of flow to make its way through and thus does work on it. 

The amount of work done can be calculated by considering a small amount of fluid mass A1 ρ1 dx 

to cross the surface AB from left to right (Fig. 13.1). The work done by this mass of fluid then 

becomes equal to p1 A1 dx and thus the flow work per unit mass can be expressed as 

(where p1 is the pressure at section AB (Fig 13.1)  

 

Fig 13.1   Work done by a fluid to flow against pressure  

Therefore the flow work done per unit mass by a fluid element entering the control volume 

ABCDA (Fig. 13.1) is p1 /ρ1 Similarly, the flow work done per unit mass by a fluid element 
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leaving the control volume across the surface CD is p2/ρ1 

Important- In introducing an amount of fluid inside the control volume, the work done against the 

frictional force at the wall can be shown to be small as compared to the work done against the 

pressure force, and hence it is not included in the flow work. 

Although ’flow work’ is not an intrinsic form of energy, it is sometimes referred to as ’pressure 

energy’ from a view point that by virtue of this energy a mass of fluid having a pressure p at any 

location is capable of doing work on its neighboring fluid mass to push its way through. 

Steady Flow Energy Equation  

The energy equation for a control volume is given by Eq. (13.2). At steady state, the first term on the right 

hand side of the equation becomes zero and it becomes 

 

(13.4) 

In consideration of all the energy components including the flow work (or pressure energy) associated with a 

moving fluid element, one can substitute ’e’ in Eq. (13.4) as 

 

  

and finally we get 

 

(13.5) 

The Eq. (13.5) is known as steady flow energy equation. 

Bernoulli's Equation     

Energy Equation of an ideal Flow along a Streamline  

Euler’s equation (the equation of motion of an inviscid fluid) along a stream line for a steady flow with 

gravity as the only body force can be written as 

 

(13.6) 

Application of a force through a distance ds along the streamline would physically imply work interaction. 

Therefore an equation for conservation of energy along a streamline can be obtained by integrating the Eq. 

(13.6) with respect to ds as 

 

  

 

(13.7) 

Where C is a constant along a streamline. In case of an incompressible flow, Eq. (13.7) can be written as 
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(13.8) 

The Eqs (13.7) and (13.8) are based on the assumption that no work or heat interaction between a fluid 

element and the surrounding takes place. The first term of the Eq. (13.8) represents the flow work per unit 

mass, the second term represents the kinetic energy per unit mass and the third term represents the potential 

energy per unit mass. Therefore the sum of three terms in the left hand side of Eq. (13.8) can be considered 

as the total mechanical energy per unit mass which remains constant along a streamline for a steady inviscid 

and incompressible flow of fluid. Hence the Eq. (13.8) is also known as Mechanical energy equation.  

This equation was developed first by Daniel Bernoulli in 1738 and is therefore referred to as Bernoulli’s 

equation. Each term in the Eq. (13.8) has the dimension of energy per unit mass. The equation can also be 

expressed in terms of energy per unit weight as 

 

(13.9) 

In a fluid flow, the energy per unit weight is termed as head. Accordingly, equation 13.9 can be interpreted 

as 

Pressure head + Velocity head + Potential head =Total head (total energy per unit weight). 

Bernoulli's Equation with Head Loss  

The derivation of mechanical energy equation for a real fluid depends much on the information about the 

frictional work done by a moving fluid element and is excluded from the scope of the book. However, in 

many practical situations, problems related to real fluids can be analysed with the help of a modified form of 

Bernoulli’s equation as 

 

(13.10) 

where, hf represents the frictional work done (the work done against the fluid friction) per unit weight of a 

fluid element while moving from a station 1 to 2 along a streamline in the direction of flow. The term hf is 

usually referred to as head loss between 1 and 2, since it amounts to the loss in total mechanical energy per 

unit weight between points 1 and 2 on a streamline due to the effect of fluid friction or viscosity. It 

physically signifies that the difference in the total mechanical energy between stations 1 and 2 is dissipated 

into intermolecular or thermal energy and is expressed as loss of head hf in Eq. (13.10). The term head loss, 

is conventionally symbolized as hL instead of hf in dealing with practical problems. For an inviscid flow hL = 

0, and the total mechanical energy is constant along a streamline. 

 Exercise Problems   

1. Which of the following velocity fields are kinematically possible for an incompressible flow ?  

         (i)   u = x
2
 + y

2
 , v = y

2
 + z

2
 , w = -2 (x + y) z  

        (ii)    

        (iii)   
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       (iv)   

(k is a constant)                                                         [(i) yes, (ii) No, (iii) yes, (iv) No]  

 2. The x component of velocity in a two-dimensional incompressible flow is prescribed as u = By
3
 - Ax

4
 , 

where A and B are constants. Find out the y component of velocity. Assume that for all values of x, v = 0 at 

y = 0. Check whether the flow is irrotational.  

                                                                                             [ v = 4 Ax
3
y, No ]  

  3. Consider a vertical nozzle of inlet and outlet diameters of 0.6 m and 0.3 m respectively as shown in Fig 

13.2. The pressure at section 1 is 20 kPa (gauge), and the volume flow rate is 0. 6 m
3
 /s. Find  

      (i)  the velocities at section 1 and section 2,  

      (ii) total force acting on the walls of the nozzle.  

           [Neglect frictional resistance]  

     

     [(i) V1 = 2.12 m/s, V2 = 8.45 m/s 

      (ii) 0.517 kN (vertically upwards]  

  

 

Fig 13.2  

4. Water flows through a 5 m high conical vertical pipe whose diameter changes from 0.5m at the top end to 

1.5 m at the bottom end. Measurements indicate that when velocity at the smaller section is 18 m/s, the 

frictional head loss is 1m of water for flow in either direction. For a pressure of 1.8 m of water gauge at the 

smaller section, determine the pressure ( in meter of water gauge) at the larger section when the flow is (i) in 

the downward direction, (ii) in the upward direction. 

                                                                                          [ (i) 24. 11m, (ii) 26.11 m]  
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5. A force of 1 kN is required to hold the plate in position for a flow of oil of specific gravity of 0. 8 as 

shown in Fig.13.3. Find the velocity V of the flow of oil  

                                                                                        [42 m/s]  

   

Fig 13.3  

6. Water flows as two free jets from the tee attached to the pipe shown in Figure 13.4 below. The exit speed 

is 15 m/s. If viscous effects and gravity are negligible, determine the x and y components of the force that 

the pipe exerts on the tee.  

 

Fig 13.4 

7. A horizontal jet of water with velocity V and cross sectional area A impinges on a stationary vane, which 

deflects the jet through an angle θ (see Fig 13.5). Derive expressions for the horizontal and vertical force 

components X and Y acting on the vane. Neglect effects of gravity and friction.  

 

Fig 13.5 
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Bernoulli's Equation In Irrotational Flow 

In the previous lecture (lecture 13) we have obtained Bernoulli’s equation  

      

 This equation was obtained by integrating the Euler’s equation (the equation of motion) with respect 

to a displacement 'ds' along a streamline. Thus, the value of C in the above equation is constant only 

along a streamline and should essentially vary from streamline to streamline. 

 The equation can be used to define relation between flow variables at point B on the streamline and 

at point A, along the same streamline. So, in order to apply this equation, one should have 

knowledge of velocity field beforehand. This is one of the limitations of application of Bernoulli's 

equation. 

Irrotationality of flow field  

Under some special condition, the constant C becomes invariant from streamline to streamline and the 

Bernoulli’s equation is applicable with same value of C to the entire flow field. The typical condition is the 

irrotationality of flow field.  

Click here to play the demonstration 

Meaning of Irrotationality  

  

  

  

  

  

  

  

  

Explanation: 

One should 

note that the 

concept of 

irrotationality 

applies to a 

fluid element 

in a given 

flow than to 

flow itself. 

The flow may 

be a vortex 

where the 

streamlines 

are circular, 

but the fluid 

elements 

should not 

rotate or 

https://nptel.ac.in/courses/112104118/lecture-14/animation/Demonstration1.htm
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distort to 

make the flow 

rotational. 

In the above 

demonstration, 

flow past an 

aerofoil is 

shown. It 

should be 

noted that 

streamlines 

are distrorted 

but the fluid 

element only 

translates and 

does not 

change 

orientation 

making the 

flow 

irrotational. 

  

 

 

Proof: 

Let us consider a steady two dimensional flow of an ideal fluid in a rectangular Cartesian coordinate system. 

The velocity field is given by  

 

  

hence the condition of irrotationality is 

 

  

 

(14.1) 

The steady state Euler's equation can be written as    

 

(14.2a) 

 

(14.2b) 
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We consider the y-axis to be vertical and directed positive upward. From the condition of irrotationality 

given by the Eq. (14.1), we substitute in place of in the Eq. 14.2a and in place of in the Eq. 

14.2b. This results in  

 

(14.3a) 

 

(14.3b) 

Now multiplying Eq.(14.3a) by 'dx' and Eq.(14.3b) by 'dy' and then adding these two equations we have   

 

(14.4) 

The Eq. (14.4) can be physically interpreted as the equation of conservation of energy for an arbitrary 

displacement  

. Since, u, v and p are functions of x and y, we can write 

 

(14.5a) 

 

(14.5b) 

 

(14.5c) 

With the help of Eqs (14.5a), (14.5b), and (14.5c), the Eq. (14.4) can be written as 

 

  

 

  

 

  

 

(14.6) 

The integration of Eq. 14.6 results in       

 

(14.7a) 

For an incompressible flow, 
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(14.7b) 

The constant C in Eqs (14.7a) and (14.7b) has the same value in the entire flow field, since no restriction 

was made in the choice of dr which was considered as an arbitrary displacement in evaluating the work.  

Note: In deriving Eq. (13.8) the displacement ds was considered along a streamline. Therefore, the total 

mechanical energy remains constant everywhere in an inviscid and irrotational flow, while it is constant only 

along a streamline for an inviscid but rotational flow.  

The equation of motion for the flow of an inviscid fluid can be written in a vector form as 

 

where is the body force vector per unit mass  

Plane Circular Vortex Flows  

 Plane circular vortex flows are defined as flows where streamlines are concentric circles. Therefore, 

with respect to a polar coordinate system with the centre of the circles as the origin or pole, the 

velocity field can be described as 

 

  

where Vθ and Vr are the tangential and radial component of velocity respectively. 

 The equation of continuity for a two dimensional incompressible flow in a polar coordinate system is 

 

  

which for a plane circular vortex flow gives i.e. Vθ is not a function of θ. Hence, Vθ is a function 

of  r only.  

 We can write for the variation of total mechanical energy with radius as 

 

(14.8) 

    Click to see the Derivation  

Derivation Mechanical Energy 

If we denote H as total energy head per unit weight then,  

 

https://nptel.ac.in/courses/112104118/lecture-14/hyperlink/14-2a_deriv_mech_energy.htm.htm
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Along a streamline, the variation of H along the normal can be shown as,  

        (14.8) 

Now equation of motion for a streamline flow along the normal,  

 

Using this equation,  

 

Since, 

 

 

Now for a streamline we have , so  

 

 

Fig:  A part of a streamline traversed by a fluid particle  
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Free Vortex Flows  

 Free vortex flows are the plane circular vortex flows where the total mechanical energy remains 

constant in the entire flow field. There is neither any addition nor any destruction of energy in the 

flow field.  

 Therefore, the total mechanical energy does not vary from streamline to streamline. Hence from Eq. 

(14.8), we have, 

 

  

or,  
(14.9) 

  

 Integration of Eq 14.9 gives 

 

(14.10) 

 The Eq. (14.10) describes the velocity field in a free vortex flow, where C is a constant in the entire 

flow field. The vorticity in a polar coordinate system is defined by -  

 

  

  In case of vortex flows, it can be written as 

 

  

  For a free vortex flow, described by Eq. (14.10),Ω becomes zero. Therefore we conclude that a free vortex 

flow is irrotational, and hence, it is also referred to as irrotational vortex. 

 It has been shown before that the total mechanical energy remains same throughout in an irrotational 

flow field. Therefore, irrotationality is a direct consequence of the constancy of total mechanical 

energy in the entire flow field and vice versa.  

 The interesting feature in a free vortex flow is that as [Eq. (14.10)]. It 

mathematically signifies a point of singularity at r = 0 which, in practice, is impossible. In fact, the 

definition of a free vortex flow cannot be extended as r = 0 is approached. 

 In a real fluid, friction becomes dominant as r→0 and so a fluid in this central region tends to rotate 

as a solid body. Therefore, the singularity at r = 0 does not render the theory of irrotational vortex 

useless, since, in practical problems, our concern is with conditions away from the central core. 

Pressure Distribution in a Free Vortex Flow 

 Pressure distribution in a vortex flow is usually found out by integrating the equation of motion in 

the r direction. The equation of motion in the radial direction for a vortex flow can be written as 
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(14.11) 

 

(14.12) 

 Integrating Eq. (14.12) with respect to dr, and considering the flow to be incompressible we have, 

 

(14.13) 

  For a free vortex flow, 

 

  

 Hence Eq. 14.13 becomes 

 

(14.14) 

 If the pressure at some radius r = ra, is known to be the atmospheric pressure patm then equation 

(14.14) can be written as 

 

  

 

(14.15) 

where z and za are the vertical elevations (measured from any arbitrary datum) at r and ra. 

 Equation (14.15) can also be derived by a straight forward application of Bernoulli’s equation 

between any two points at r = ra and  r = r.  

 In a free vortex flow total mechanical energy remains constant. There is neither any energy 

interaction between an outside source and the flow, nor is there any dissipation of mechanical energy 

within the flow. The fluid rotates by virtue of some rotation previously imparted to it or because of 

some internal action.  

 Some examples are a whirlpool in a river, the rotatory flow that often arises in a shallow vessel when 

liquid flows out through a hole in the bottom (as is often seen when water flows out from a bathtub 

or a wash basin), and flow in a centrifugal pump case just outside the impeller. 

Cylindrical Free Vortex  

 A cylindrical free vortex motion is conceived in a cylindrical coordinate system with axis z directing 

vertically upwards (Fig. 14.1), where at each horizontal cross-section, there exists a planar free 

vortex motion with tangential velocity given by Eq. (14.10).  

 The total energy at any point remains constant and can be written as 
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(14.16) 

  

 The pressure distribution along the radius can be found from Eq. (14.16) by considering z as 

constant; again, for any constant pressure p, values of z, determining a surface of equal pressure, can 

also be found from Eq. (14.16). 

 If p is measured in gauge pressure, then the value of z, where p = 0 determines the free surface (Fig. 

14.1), if one exists. 

 

Fig 14.1 Cylindrical Free Vortex  

Forced Vortex Flows 

 Flows where streamlines are concentric circles and the tangential velocity is directly proportional to 

the radius of curvature are known as plane circular forced vortex flows.  

 The flow field is described in a polar coordinate system as, 

 (14.17a) 

and     (14.17b) 

      All fluid particles rotate with the same angular velocity ω like a solid body. Hence a forced vortex flow 

is termed as a solid body rotation.  

 The vorticity Ω for the flow field can be calculated as  
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 Therefore, a forced vortex motion is not irrotational; rather it is a rotational flow with a constant 

vorticity 2ω. Equation (14.8) is used to determine the distribution of mechanical energy across the 

radius as 

 

  

 Integrating the equation between the two radii on the same horizontal plane, we have, 

 

(14.18) 

   

 Thus, we see from Eq. (14.18) that the total head (total energy per unit weight) increases with an 

increase in radius. The total mechanical energy at any point is the sum of kinetic energy, flow work 

or pressure energy, and the potential energy.  

 Therefore the difference in total head between any two points in the same horizontal plane can be 

written as, 

 

  

 

  

  Substituting this expression of H2-H1 in Eq. (14.18), we get 

 

  

 The same equation can also be obtained by integrating the equation of motion in a radial direction as 

 

  

 

  

  To maintain a forced vortex flow, mechanical energy has to be spent from outside and thus an external 

torque is always necessary to be applied continuously.  

 Forced vortex can be generated by rotating a vessel containing a fluid so that the angular velocity is 

the same at all points.  

Losses Due to Geometric Changes  

 In case of flow of a real fluid, the major source for the loss of its total mechanical energy is the 

viscosity of fluid which causes friction between layers of fluid and between the solid surface and 

adjacent fluid layer.  
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Loss of Energy 

 It is the role of friction, as an agent, to convert a part of the mechanical energy into intermolecular 

energy. This part of the mechanical energy converted into the intermolecular energy is termed as the 

loss of energy. 

 When the path of the fluid is suddenly changed in course of its flow through a closed duct due to any 

abrupt change in the geometry of the duct then apart from the losses due to friction between solid 

surface and fluid layer past it, the loss of mechanical energy is also incurred. In long ducts, these 

losses are very small compared to the frictional loss, and hence they are often termed as minor 

losses. 

 But minor losses may, however, outweight the friction loss in short pipes or ducts. The source of 

these losses is usually confined to a very short length of the duct, but the turbulence produced may 

persist for a considerable distance downstream.  

Example of some minor Loss  

 Losses Due to Sudden Enlargement 

 Exit Loss 

 Losses Due to Sudden Contraction 

 Entry Loss  

Losses Due to Sudden Enlargement 

 If the cross-section of a pipe with fluid flowing through it, is abruptly enlarged (Fig. 14.2a) at certain 

place, fluid emerging from the smaller pipe is unable to follow the abrupt deviation of the boundary.  

 The streamline takes a typical diverging pattern (shown in Fig. 14.2a). This creates pockets of 

turbulent eddies in the corners resulting in the dissipation of mechanical energy into intermolecular 

energy. 

Basic mechanism of this type of loss  

 The fluid flows against an adverse pressure gradient. The upstream pressure p1 at section a-b is lower 

than the downstream pressure p2 at section e-f since the upstream velocity V1 is higher than the 

downstream velocity V2 as a consequence of continuity.  

 The fluid particles near the wall due to their low kinetic energy cannot overcome the adverse 

pressure hill in the direction of flow and hence follow up the reverse path under the favourable 

pressure gradient (from p2 to p1).  

 This creates a zone of recirculating flow with turbulent eddies near the wall of the larger tube at the 

abrupt change of cross-section, as shown in Fig. 14.2a, resulting in a loss of total mechanical energy.  

 For high values of Reynolds number, usually found in practice, the velocity in the smaller pipe may 

be assumed sensibly uniform over the crosssection. Due to the vigorous mixing caused by the 

turbulence, the velocity becomes again uniform at a far downstream section e-f from the enlargement 

(approximately 8 times the larger diameter).  

https://nptel.ac.in/courses/112104118/lecture-14/14-6_losses_sudden_enlarg.htm
https://nptel.ac.in/courses/112104118/lecture-14/14-6_losses_sudden_enlarg.htm#exit_loss
https://nptel.ac.in/courses/112104118/lecture-14/14-7_losses_sudden_contract.htm
https://nptel.ac.in/courses/112104118/lecture-14/14-7_losses_sudden_contract.htm#entry_loss
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Fig 14.2   (a)   Flow through abrupt but finite enlargement  

(b)   Flow at Infinite enlargement  (Exit Loss) 

 A control volume abcdefgh is considered (Fig. 14.2a) for which the momentum theorem can be 

written as  

 

(14.20) 

   

where A1, A2 are the cross-sectional areas of the smaller and larger parts of the pipe respectively, Q is the 

volumetric fllow rate and p’ is the mean pressure of the eddying fluid over the annular face, gd. It is known 

from experimental evidence, the p’ = p1. 

 Hence the Eq. (14.20) becomes 

 

(14.21) 

  From the equation of continuity 

 

(14.22) 

 With the help of Eq. (14.22), Eq. (14.21) becomes 

 

(14.23) 

 Applying Bernoulli's equation between sections ab and ef in consideration of the flow to be incompressible 

and the axis of the pipe  to be horizontal, we can write 

 

  

 

(14.24) 

  where hL is the loss of head. Substituting (p2 −p1) from Eq. (14.23) into Eq. (14.24), we obtain 

 

(14.25) 
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  In view of the assumptions made, Eq.(14.25) is subjected to some inaccuracies, but experiments show that 

for coaxial pipes they are within only a few per cent of the actual values. 

Back to original slide - "Losses due to geometric changes" 

 Exit Loss 

 If, in Eq.(14.25), , then the head loss at an abrupt enlargement tends to . The 

physical resemblance of this situation is the submerged outlet of a pipe discharging into a large 

reservoir as shown in Fig.14.2b. 

 Since the fluid velocities are arrested in the large reservoir, the entire kinetic energy at the outlet of 

the pipe is dissipated into intermolecular energy of the reservoir through the creation of turbulent 

eddies. 

 In such circumstances, the loss is usually termed as the exit loss for the pipe and equals to the 

velocity head at the discharge end of the pipe.  

 Back to original slide - "Losses due to geometric changes" 

Losses Due to Sudden Contraction  

 An abrupt contraction is geometrically the reverse of an abrupt enlargement (Fig. 14.3). Here also the 

streamlines cannot follow the abrupt change of geometry and hence gradually converge from an 

upstream section of the larger tube.  

 However, immediately downstream of the junction of area contraction, the cross-sectional area of the 

stream tube becomes the minimum and less than that of the smaller pipe. This section of the stream 

tube is known as vena contracta, after which the stream widens again to fill the pipe.  

 The velocity of flow in the converging part of the stream tube from Sec. 1-1 to Sec. c-c (vena 

contracta) increases due to continuity and the pressure decreases in the direction of flow accordingly 

in compliance with the Bernoulli’s theorem.  

 In an accelerating flow,under a favourable pressure gradient, losses due to separation cannot take 

place. But in the decelerating part of the flow from Sec. c-c to Sec. 2-2, where the stream tube 

expands to fill the pipe, losses take place in the similar fashion as occur in case of a sudden 

geometrical enlargement. Hence eddies are formed between the vena contracta c-c and the 

downstream Sec. 2-2.  

 The flow pattern after the vena contracta is similar to that after an abrupt enlargement, and the loss of 

head is thus confined between Sec. c-c to Sec. 2-2. Therefore, we can say that the losses due to 

contraction is not for the contraction itself, but due to the expansion followed by the 

contraction. 

https://nptel.ac.in/courses/112104118/lecture-14/14-5_losses_geo_change.htm
https://nptel.ac.in/courses/112104118/lecture-14/14-5_losses_geo_change.htm


Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 14

4 

 

Fig 14.3  Flow through a sudden contraction  

 Following Eq. (14.25), the loss of head in this case can be written as        

 

(14.26) 

     

where Ac represents the cross-sectional area of the vena contracta, and Cc is the coefficient of 

contraction defined by 

 

(14.27) 

  Equation (14.26) is usually expressed as  

 

(14.28) 

where,        

 

(14.29) 

  

 Although the area A1 is not explicitly involved in the Eq. (14.26), the value of Cc depends on the 

ratio A2/A1. For coaxial circular pipes and at fairly high Reynolds numbers. Table 14.1 gives 

representative values of the coefficient K. 

Table 14.1  

A2/A1 0 0.04 0.16 0.36 0.64 1.0 
 

K 0.5 0.45 0.38 0.28 0.14 0 
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Back to original slide - "Losses due to geometric changes" 

 Entry Loss  

 As , the value of K in the Eq. (14.29) tends to 0.5 as shown in Table 14.1. This limiting 

situation corresponds to the flow from a large reservoir into a sharp edged pipe, provided the end of 

the pipe does not protrude into the reservoir (Fig. 14.4a).  

 The loss of head at the entrance to the pipe is therefore given by  and is known as entry loss.  

 A protruding pipe (Fig. 14.4b) causes a greater loss of head, while on the other hand, if the inlet of 

the pipe is well rounded (Fig. 14.4c), the fluid can follow the boundary without separating from it, 

and the entry loss is much reduced and even may be zero depending upon the rounded geometry of 

the pipe at its inlet.  

 

Fig 14.4  Flow from a reservoir to a sharp edges pipe  

 

 

We'll discuss them individually in the next consequent slides  

Losses Due to Sudden Enlargement 

 If the cross-section of a pipe with fluid flowing through it, is abruptly enlarged (Fig. 14.2a) at certain 

place, fluid emerging from the smaller pipe is unable to follow the abrupt deviation of the boundary.  

 The streamline takes a typical diverging pattern (shown in Fig. 14.2a). This creates pockets of 

turbulent eddies in the corners resulting in the dissipation of mechanical energy into intermolecular 

energy. 

Basic mechanism of this type of loss  

 The fluid flows against an adverse pressure gradient. The upstream pressure p1 at section a-b is lower 

than the downstream pressure p2 at section e-f since the upstream velocity V1 is higher than the 

downstream velocity V2 as a consequence of continuity.  

https://nptel.ac.in/courses/112104118/lecture-14/14-5_losses_geo_change.htm
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 The fluid particles near the wall due to their low kinetic energy cannot overcome the adverse 

pressure hill in the direction of flow and hence follow up the reverse path under the favourable 

pressure gradient (from p2 to p1).  

 This creates a zone of recirculating flow with turbulent eddies near the wall of the larger tube at the 

abrupt change of cross-section, as shown in Fig. 14.2a, resulting in a loss of total mechanical energy.  

 For high values of Reynolds number, usually found in practice, the velocity in the smaller pipe may 

be assumed sensibly uniform over the crosssection. Due to the vigorous mixing caused by the 

turbulence, the velocity becomes again uniform at a far downstream section e-f from the enlargement 

(approximately 8 times the larger diameter).  

 

Fig 14.2   (a)   Flow through abrupt but finite enlargement  

(b)   Flow at Infinite enlargement  (Exit Loss) 

 A control volume abcdefgh is considered (Fig. 14.2a) for which the momentum theorem can be 

written as  

 

(14.20) 

   

where A1, A2 are the cross-sectional areas of the smaller and larger parts of the pipe respectively, Q is the 

volumetric fllow rate and p’ is the mean pressure of the eddying fluid over the annular face, gd. It is known 

from experimental evidence, the p’ = p1. 

 Hence the Eq. (14.20) becomes 

 

(14.21) 

  From the equation of continuity 

 

(14.22) 

 With the help of Eq. (14.22), Eq. (14.21) becomes 

 

(14.23) 

 Applying Bernoulli's equation between sections ab and ef in consideration of the flow to be incompressible 

and the axis of the pipe  to be horizontal, we can write 
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(14.24) 

  where hL is the loss of head. Substituting (p2 −p1) from Eq. (14.23) into Eq. (14.24), we obtain 

 

(14.25) 

  In view of the assumptions made, Eq.(14.25) is subjected to some inaccuracies, but experiments show that 

for coaxial pipes they are within only a few per cent of the actual values. 

Back to original slide - "Losses due to geometric changes" 

 Exit Loss 

 If, in Eq.(14.25), , then the head loss at an abrupt enlargement tends to . The 

physical resemblance of this situation is the submerged outlet of a pipe discharging into a large 

reservoir as shown in Fig.14.2b. 

 Since the fluid velocities are arrested in the large reservoir, the entire kinetic energy at the outlet of 

the pipe is dissipated into intermolecular energy of the reservoir through the creation of turbulent 

eddies. 

 In such circumstances, the loss is usually termed as the exit loss for the pipe and equals to the 

velocity head at the discharge end of the pipe.  

 Back to original slide - "Losses due to geometric changes" 

 

 

Measurement Of Flow Rate Through Pipe  

Flow rate through a pipe is usually measured by providing a coaxial area contraction within the pipe and by 

recording the pressure drop across the contraction. Therefore the determination of the flow rate from the 

measurement of pressure drop depends on the straight forward application of Bernoulli’s equation.  

Three different flow meters operate on this principle. 

 Venturimeter 

 Orificemeter  

 Flow nozzle. 

https://nptel.ac.in/courses/112104118/lecture-14/14-5_losses_geo_change.htm
https://nptel.ac.in/courses/112104118/lecture-14/14-5_losses_geo_change.htm
https://nptel.ac.in/courses/112104118/lecture-15/15-1_mesure_flow.htm
https://nptel.ac.in/courses/112104118/lecture-15/15-3_orificemetr.htm
https://nptel.ac.in/courses/112104118/lecture-15/15-5_flow_nozzle.htm
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Venturimeter 

Construction: A venturimeter is essentially a short pipe (Fig. 15.1) consisting of two conical parts with a 

short portion of uniform cross-section in between. This short portion has the minimum area and is known 

as the throat. The two conical portions have the same base diameter, but one is having a shorter length 

with a larger cone angle while the other is having a larger length with a smaller cone angle.  

 

Fig 15.1  A Venturimeter  

  

Working: 

 The venturimeter is always used in a way that the upstream part of the flow takes place through 

the short conical portion while the downstream part of the flow through the long one.  

 This ensures a rapid converging passage and a gradual diverging passage in the direction of flow 

to avoid the loss of energy due to separation. In course of a flow through the converging part, the 
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velocity increases in the direction of flow according to the principle of continuity, while the 

pressure decreases according to Bernoulli’s theorem.  

 The velocity reaches its maximum value and pressure reaches its minimum value at the throat. 

Subsequently, a decrease in the velocity and an increase in the pressure takes place in course of 

flow through the divergent part. This typical variation of fluid velocity and pressure by allowing it 

to flow through such a constricted convergent-divergent passage was first demonstrated by an 

Italian scientist Giovanni Battista Venturi in 1797. 

 

Fig 15.2  Measurement of Flow by a Venturimeter  

 Figure 15.2 shows that a venturimeter is inserted in an inclined pipe line in a vertical plane to 

measure the flow rate through the pipe. Let us consider a steady, ideal and one dimensional (along 

the axis of the venturi meter) flow of fluid. Under this situation, the velocity and pressure at any 

section will be uniform. 

 Let the velocity and pressure at the inlet (Sec. 1) are V1 and p1 respectively, while those at the 

throat (Sec. 2) are V2 and p2. Now, applying Bernoulli’s equation between Secs 1 and 2, we get 

 

(15.1) 

 

(15.2) 

where ρ is the density of fluid flowing through the venturimeter.  

  

 From continuity,  

 

(15.3) 

  where A1 and A2 are the cross-sectional areas of the venturi meter at its throat and inlet respectively. 

 With the help of Eq. (15.3), Eq. (15.2) can be written as 
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(15.4) 

 

 where and are the piezometric pressure heads at sec. 1 and sec. 2 respectively, and are defined as 

 

(15.5a) 

 

(15.5b) 

 Hence, the volume flow rate through the pipe is given by 

  

 

(15.6) 

 

 

 If the pressure difference between Sections 1 and 2 is measured by a manometer as shown in Fig. 

15.2, we can write  

   

   

 

  

 

(15.7) 

where ρm is the density of the manometric liquid. 

 Equation (15.7) shows that a manometer always registers a direct reading of the difference in 

piezometric pressures. Now, substitution of from Eq. (15.7) in Eq. (15.6) gives 

 

(15.8) 

   

 If the pipe along with the venturimeter is horizontal, then z1 = z2; and hence becomes h1 − h2, 

where h1 and h2 are the static pressure heads  
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 The manometric equation Eq. (15.7) then becomes 

 

  

  Therefore, it is interesting to note that the final expression of flow rate, given by Eq. (15.8), in terms of 

manometer deflection ∆h, remains the same irrespective of whether the pipe-line along with the 

venturimeter connection is horizontal or not. 

 Measured values of ∆h, the difference in piezometric pressures between Secs I and 2, for a real fluid 

will always be greater than that assumed in case of an ideal fluid because of frictional losses in 

addition to the change in momentum.  

 Therefore, Eq. (15.8) always overestimates the actual flow rate. In order to take this into account, a 

multiplying factor Cd, called the coefficient of discharge, is incorporated in the Eq. (15.8) as  

 

  

  The coefficient of discharge Cd is always less than unity and is defined as 

 

where, the theoretical discharge rate is predicted by the Eq. (15.8) with the measured value of ∆h, and the 

actual rate of discharge is the discharge rate measured in practice. Value of Cd for a venturimeter usually 

lies between 0.95 to 0.98. 

 Orificemeter 

Construction: An orificemeter provides a simpler and cheaper arrangement for the measurement of fow 

through a pipe. An orificemeter is essentially a thin circular plate with a sharp edged concentric circular hole 

in it.  

Working:  

 The orifice plate, being fixed at a section of the pipe, (Fig. 15.3) creates an obstruction to the flow by 

providing an opening in the form of an orifice to the flow passage. 
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Fig 15.3   Flow through an Orificemeter  

 The area A0 of the orifice is much smaller than the cross-sectional area of the pipe. The flow from an 

upstream section, where it is uniform, adjusts itself in such a way that it contracts until a section 

downstream the orifice plate is reached, where the vena contracta is formed, and then expands to fill 

the passage of the pipe. 

 One of the pressure tapings is usually provided at a distance of one diameter upstream the orifice 

plate where the flow is almost uniform (Sec. 1-1) and the other at a distance of half a diameter 

downstream the orifice plate.  

 Considering the fluid to be ideal and the downstream pressure taping to be at the vena contracta (Sec. 

c-c), we can write, by applying Bernoulli’s theorem between Sec. 1-1 and Sec. c-c,  

 

(15.10) 

where and  are the piezometric pressures at Sec.1-1 and c-c respectively. 

 From the equation of continuity, 

 

(15.11) 

where Ac is the area of the vena contracta.  

 With the help of Eq. (15.11), Eq. (15.10) can be written as, 

 

(15.12) 

 

Correction in Velocity 

 Recalling the fact that the measured value of the piezometric pressure drop for a real fluid 

is always more due to friction than that assumed in case of an inviscid flow, a coefficient 

of velocity Cv (always less than 1) has to be introduced to determine the actual velocity Vc 

when the pressure drop in Eq. (15.12) is substituted by its measured value in 

terms of the manometer deflection '∆h' 

Hence,     

 

(15.13) 

  

where '∆h' is the difference in liquid levels in the manometer and ρm is the density of the 

manometric liquid. 
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Volumetric flow rate            

 

(15.14) 

      

 If a coefficient of contraction Cc is defined as, Cc = Ac /A0, where A0 is the area of the 

orifice, then Eq.(15.14) can be written, with the help of Eq. (15.13), 

 

  

 

  

 

(15.15) 

 

  

  

The value of C depends upon the ratio of orifice to duct area, and the Reynolds number of flow.  

 The main job in measuring the flow rate with the help of an orificemeter, is to find out 

accurately the value of C at the operating condition.  

 

 

 The downstream manometer connection should strictly be made to the section where the 

vena contracta occurs, but this is not feasible as the vena contracta is somewhat variable 

in position and is difficult to realize.  

 

 

 In practice, various positions are used for the manometer connections and C is thereby 

affected. Determination of accurate values of C of an orificemeter at different 

operating conditions is known as calibration of the orifice meter.  

 

 

Flow Nozzle 

 The flow nozzle as shown in Fig.15.4 is essentially a venturi meter with the divergent part omitted. 

Therefore the basic equations for calculation of flow rate are the same as those for a venturimeter.  

 The dissipation of energy downstream of the throat due to flow separation is greater than that for a 

venturimeter. But this disadvantage is often offset by the lower cost of the nozzle.  

 The downstream connection of the manometer may not necessarily be at the throat of the nozzle or at 

a point sufficiently far from the nozzle. 
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 The deviations are taken care of in the values of Cd, The coefficient Cd depends on the shape of the 

nozzle, the ratio of pipe to nozzle diameter and the Reynolds number of flow.  

 

Fig 15.4 A Flow nozzle  

 A comparative picture of the typical values of Cd, accuracy, and the cost of three flow meters 

(venturimeter, orificemeter and flow nozzle) is given below: 

Type of Flowmeter  Accuracy Cost 
Loss of 

Total Head  

Typical Values 

of Cd  

     

Venturimeter     High    High        Low      0.95 to 0.98  
     

Orificemeter     Low    Low        High      0.60 to 0.65  
     

Flow Nozzle 

Intermediate between 

a venturimeter and 

an orificemeter  

       0.70 to 0.80  

 

 Concept of Static Pressure  

 The thermodynamic or hydrostatic pressure caused by molecular collisions is known as static 

pressure in a fluid flow and is usually referred to as the pressure p.  

 When the fluid is at rest, this pressure p is the same in all directions and is categorically known as the 

hydrostatic pressure.  

 For the flow of a real and Stoksian fluid (the fluid which obeys Stoke’s law) the static or 

thermodynamic pressure becomes equal to the arithmetic average of the normal stresses at a point. 

The static pressure is a parameter to describe the state of a flowing fluid.  

 Let us consider the flow of a fluid through a closed passage as shown in Fig. 16.1a.  
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Fig 16.1   Measurement of Static pressure 

(a)  Single Wall tap     (b)  Multiple Wall Tap  

 If a hole is made at the wall and is connected to any pressure measuring device, it will then sense the 

static pressure at the wall. This type of hole at the wall is known as a wall tap.  

 The fact that a wall tap actually senses the static pressure can be appreciated by noticing that there is 

no component of velocity along the axis of the hole. 

 In most circumstances, for example, in case of parallel flows, the static pressure at a cross-section 

remains the same. The wall tap under this situation registers the static pressure at that cross-section.  

 In practice, instead of a single wall tap, a number of taps along the periphery of the wall are made 

and are mutually connected by flexible tubes (Fig. 16.1b) in order to register the static pressure more 

accurately. 

Hydrostatic, Hydrodynamic, Static and Total Pressure 

 Let us consider a fluid flowing through a pipe of varying cross sectional area. Considering two points 

A and B as shown in Figure 16.1(c), such that A and B are at a height ZA and ZB respectively from 

the datum. 

 

Figure 16.1 (c)  
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 If we consider the fluid to be stationary, then,     where the subscript ‘hs’ represents 

the hydrostatic case.  

So,   pAhs - pBhs = ρg( ZB–ZA)     

  

(16.1) 

where pAhs is the hydrostatic pressure at A and pBhs is the hydrostatic pressure at B. 

 Thus, from above we can conclude that the Hydrostatic pressure at a point in a fluid is the pressure 

acting at the point when the fluid is at rest or pressure at the point due to weight of the fluid above it.  

 Now if we consider the fluid to be moving, the pressure at a point can be written as a sum of two 

components, Hydrodynamic and Hydrostatic. 

pA = pAhs + pAhd     (16.2) 

where pAhs is the hydrostatic pressure at A and pAhd is the hydrodynamic pressure at A.  

 Using equation (16.2) in Bernoulli's equation between points A and B. 

 

(16.3) 

  From equation (16.1), the terms within the square bracket cancel each other. 

Hence,  

 

(16.4) 

 

(16.5) 

                                                 

 Equations (16.4) and (16.5) convey the following. The pressure at a location has both hydrostatic 

and hydrodynamic components. The difference in kinetic energy arises due to hydrodynamic 

components only.  

 In a frictionless flow, the sum of flow work due to hydrodynamic pressure and the kinetic energy is 

conserved. Such conservation shall apply to the entire flow field if the flow is irrotational.  

 The hydrodynamic component is often called static pressure and the velocity term, dynamic 

pressure. The sum of two, p0 is known as total pressure. This is conserved in isentropic, 

irrotational flow. 
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Stagnation Pressure 

 The stagnation pressure at a point in a fluid flow is the pressure which could result if the fluid were 

brought to rest isentropically.  

 The word isentropically implies the sense that the entire kinetic energy of a fluid particle is utilized 

to increase its pressure only. This is possible only in a reversible adiabatic process known as 

isentropic process.  

 

Fig 16.2   Measurement of Stagnation Pressure  

 Let us consider the flow of fluid through a closed passage (Fig. 16.2). At Sec. l-l let the velocity and 

static pressure of the fluid be uniform. Consider a point A on that section just in front of which a 

right angled tube with one end facing the flow and the other end closed is placed. 

 When equilibrium is attained, the fluid in the tube will be at rest, and the pressure at any point in the 

tube including the point B will be more than that at A where the flow velocity exists.  

 By the application of Bernoulli’s equation between the points B and A, in consideration of the flow 

to be inviscid and incompressible, we have,  

 

(16.6) 

 where p and V are the pressure and velocity respectively at the point A at Sec. I-I, and p0 is the pressure at 

B which, according to the definition, refers to the stagnation pressure at point A.  

 It is found from Eq. (16.6) that the stagnation pressure p0 consists of two terms, the static pressure, 

p and the term ρV
2
/2 which is known as dynamic pressure. Therefore Eq. (16.6) can be written for 

a better understanding as  

 

(16.7) 
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 Therefore, it appears from Eq.(16.7), that from a measurement of both static and stagnation pressure 

in a flowing fluid, the velocity of flow can be determined.  

 But it is difficult to measure the stagnation pressure in practice for a real fluid due to friction. The 

pressure in the stagnation tube indicated by any pressure measuring device (Fig. 16.2) will 

always be less than p0, since a part of the kinetic energy will be converted into intermolecular energy 

due to fluid friction). This is taken care of by an empirical factor C in determining the velocity from 

Eq. (16.7) as 

 

(16.8) 

 

Pitot Tube for Flow Measurement  

Construction: The principle of flow measurement by Pitot tube was adopted first by a French Scientist 

Henri Pitot in 1732 for measuring velocities in the river. A right angled glass tube, large enough for capillary 

effects to be negligible, is used for the purpose. One end of the tube faces the flow while the other end is 

open to the atmosphere as shown in Fig. 16.3a.  

Working:  

 The liquid flows up the tube and when equilibrium is attained, the liquid reaches a height above the 

free surface of the water stream.  

 Since the static pressure, under this situation, is equal to the hydrostatic pressure due to its depth 

below the free surface, the difference in level between the liquid in the glass tube and the free surface 

becomes the measure of dynamic pressure. Therefore, we can write, neglecting friction,  

 

where p0, p and V are the stagnation pressure, static pressure and velocity respectively at point A (Fig. 

16.3a).  

 

 Such a tube is known as a Pitot tube and provides one of the most accurate means of measuring the 

fluid velocity. 
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Fig 16.3  Simple Pitot Tube  (a) tube for measuring the Stagnation Pressure 

                                     (b) Static and Stagnation tubes together  

 For an open stream of liquid with a free surface, this single tube is suffcient to determine the 

velocity. But for a fluid flowing through a closed duct, the Pitot tube measures only the stagnation 

pressure and so the static pressure must be measured separately.  

 Measurement of static pressure in this case is made at the boundary of the wall (Fig. 16.3b). The axis 

of the tube measuring the static pressure must be perpendicular to the boundary and free from burrs, 

so that the boundary is smooth and hence the streamlines adjacent to it are not curved. This is done to 

sense the static pressure only without any part of the dynamic pressure. 

 A Pitot tube is also inserted as shown (Fig. 16.3b) to sense the stagnation pressure. The ends of the 

Pitot tube, measuring the stagnation pressure, and the piezometric tube, measuring the static 

pressure, may be connected to a suitable differential manometer for the determination of flow 

velocity and hence the flow rate. 

Pitot Static Tube  

 The tubes recording static pressure and the stagnation pressure (Fig. 16.3b) are usually combined 

into one instrument known as Pitot static tube (Fig. 16.4).  

 

Fig 16.4  Pitot Static Tube  

 The tube for sensing the static pressure is known as static tube which surrounds the pitot tube that 

measures the stagnation pressure.  
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 Two or more holes are drilled radially through the outer wall of the static tube into annular space. 

The position of these static holes is important. Downstream of the nose N, the flow is accelerated 

somewhat with consequent reduction in static pressure. But in front of the supporting stem, there is a 

reduction in velocity and increase in pressure.  

 The static holes should therefore be at the position where the two opposing effects are 

counterbalanced and the reading corresponds to the undisturbed static pressure. Finally the flow 

velocity is given by 

 

(16.9) 

   

where ∆p is the difference between stagnation and static pressures.  

 The factor C takes care of the non-idealities, due to friction, in converting the dynamic head 

into pressure head and depends, to a large extent, on the geometry of the pitot tube. The value 

of C is usually determined from calibration test of the pitot tube. 

Flow Through Orifices And Mouthpieces 

 An orifice is a small aperture through which the fluid passes. The thickness of an orifice in the 

direction of flow is very small in comparison to its other dimensions. 

 

 If a tank containing a liquid has a hole made on the side or base through which liquid flows, then 

such a hole may be termed as an orifice.The rate of flow of the liquid through such an orifice at a 

given time will depend partly on the shape, size and form of the orifice.  

 An orifice usually has a sharp edge so that there is minimum contact with the fluid and consequently 

minimum frictional resistance at the sides of the orifice. If a sharp edge is not provided, the flow 

depends on the thickness of the orifice and the roughness of its boundary surface too.  

Flow from an Orifice at the Side of a Tank under a Constant Head 

 Let us consider a tank containing a liquid and with an orifice at its side wall as shown in Fig. 16.5. 

The orifice has a sharp edge with the bevelled side facing downstream. Let the height of the free 

surface of liquid above the centre line of the orifice be kept fixed by some adjustable arrangements 

of inflow to the tank.  

 The liquid issues from the orifice as a free jet under the influence of gravity only. The streamlines 

approaching the orifice converges towards it. Since an instantaneous change of direction is not 

possible, the streamlines continue to converge beyond the orifice until they become parallel at the 

Sec. c-c (Fig. 16.5).  

 For an ideal fluid, streamlines will strictly be parallel at an infinite distance, but however fluid 

friction in practice produce parallel flow at only a short distance from the orifice. The area of the jet 

at the Sec. c-c is lower than the area of the orifice. The Sec. c-c is known as the vena contracta.  
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Fig 16.5  Flow from a Sharp edged Orifice  

 The contraction of the jet can be attributed to the action of a lateral force on the jet due to a change 

in the direction of flow velocity when the fluid approaches the orifice. Since the streamlines become 

parallel at vena contracta, the pressure at this section is assumed to be uniform.  

 If the pressure difference due to surface tension is neglected, the pressure in the jet at vena contracta 

becomes equal to that of the ambience surrounding the jet.  

 Considering the flow to be steady and frictional effects to be negligible, we can write by the 

application of Bernoulli’s equation between two points 1 and 2 on a particular stream-line with point 

2 being at vena contracta (Fig 16.5).  

 

(16.10) 

 The horizontal plane through the centre of the orifice has been taken as datum level for determining 

the potential head.  

 If the area of the tank is large enough as compared to that of the orifice, the velocity at point 1 

becomes negligibly small and pressure p1 equals to the hydrostatic pressure p1 equals to the 

hydrostatic pressure at that point as p1=patm +ρg(h-z1). 

 Therefore, Eq. (16.10) becomes 

 

(16.11) 

or,  (16.12) 
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 If the orifice is small in comparison to h, the velocity of the jet is constant across the vena contracta. 

The Eq. (16.12) states that the velocity with which a jet of liquid escapes from a small orifice is 

proportional to the square root of the head above the orifice, and is known as Torricelli’s formula. 

 The velocity V2 in Eq. (16.12) represents the ideal velocity since the frictional effects were neglected 

in the derivation. Therefore, a multiplying factor Cv known as coefficient of velocity is introduced to 

determine the actual velocity as 

 

  

 Since the role of friction is to reduce the velocity, Cv is always less than unity. The rate of discharge 

through the orifice can then be written as,  

 

(16.13) 

where ac is the cross-sectional area of the jet at vena contracta.  

 Defining a coefficient of contraction Cc as the ratio of the area of vena contracta to the area of 

orifiice, Eq. (16.8) can be written as                                 

 

(16.14) 

where, a0 is the cross-sectional area of the orifice. The product of Cc and Cv is written as Cd and is termed as 

coefficient of discharge. Therefore, 

   

 

  

  Exercise Problems    

1.  An open cylindrical tank 2m high and 1 m in diameter, is filled with water to a depth of 1m. If the 

cylinder rotates about its vertical axis. Determine  

                          (a)       the maximum angular velocity of the cylinder without spilling any water  

                          (b)       the depth at the center and gauge pressure at the bottom 0·2 m from the center at the 

condition of maximum angular velocity  

(6.26 rad/s, zero, 783.75 Pa.)  

2.  The velocity distribution for laminar flow between two parallel plates is given by  

 

where is the center plane velocity, h is the half spacing between the plates and y is the normal distance 

from the center plane. Determine the  
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            (a)    average velocity  

            (b)    momentum correction factor  

3.  Flow of air at 50°C is measured by a pilot-static tube. The differential reading in a water manometer is 24 

mm. Determine the velocity of air if the coefficient of tube is 0·95. Assume the density of air to be constant 

at 1·2 kg/m
3
  

(6 m/s) 

   

4.  Consider a short cylindrical duct whose cross-section enlarges abruptly from a diameter D1 to a diameter 

D2 . Find the ratio D1 /D2 so that the pressure drop for a given flow rate of a fluid through the duct is 

independent of the direction of flow. Neglect the losses due to skin friction. (Take co efficient of contraction 

Cc = 0.6)  

(0.577)  

5.  A venturimeter is placed at 30° to the horizontal ( sloping upwards in the direction of flow) to a pipe line 

carrying an oil of specific gravity 0·8. A differential manometer with mercury as the manometric fluid is 

attached to the inlet and throat of the venturimeter. The manometer shows a deflection ( the difference in 

height between the menisci of mercury at the two limbs) of 100mm. The pipe diameter is 200 mm, while the 

diameter of venturi throat is 100 mm.  

            (a)     Find the volume flow rate of oil if the coefficient of discharge of the venturimeter is 0·96.  

            (b)     What will be the reading of differential manometer if the venturimeter is turned horizontal? 

The length of venturimeter between the inlet and the throat is 320 mm.  

(0.044 m
3
 /s, 110 mm)  

6. Fig. 16.6 shows the weight W supported by the pressure difference created in the venturi and applied 

across the piston. At the inlet the air velocity is 10 m/s and the area is 100 cm
2
. The throat area is 4 cm

2
. 

Given that the air density is equal to 1.2 kg/m
3
, calculate the weight W that will be in equilibrium. Assume 

ideal flow in the duct, no friction between the piston and cylinder, and the piston has no mass.  

 

Figure 16.6  

(18.72 N)  
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7. A fire-fighting hose with an exit nozzle diameter = 50 mm discharges water at the rate of 3000 litres per 

minute. The height of the nozzle exit from the pump is 4 m and water level in the sump is 1 m below the 

pump (see Fig. 16.7 ). Calculate the head and power developed by the pump. Assume there are no losses in 

the pipeline and pump.  

 

Figure 16.7  

(38.17 m, 18.72 kw)  

8. A free jet of water is produced using a 75 mm diameter nozzle attached to a 200 mm diameter pipe, as 

shown in Figure 16.8. If the average velocity of water at plane B is 3.8 m/s, calculate the velocity of water at 

point A in the free jet. Neglect friction losses in the nozzle and pipe.  

 

(19.4 m/s)  

Figure 16.8  
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Principles of Physical Similarity - An Introduction  

Laboratory tests are usually carried out under altered conditions of the operating variables from the actual ones in practice. These variables, in 
case of experiments relating to fluid flow, are pressure, velocity, geometry of the working systems and the physical properties of the working 

fluid.  

The pertinent questions arising out of this situation are:  

  

1.       How to apply the test results from laboratory experiments to the actual problems? 

2.       Is it possible, to reduce the large number of experiments to a lesser one in achieving the same 
objective? 
 

 
 

Answer of the above two questions lies in the principle of physical similarity. This principle is useful for the following cases:  

  

1.       To apply the results taken from tests under one set of conditions to another set of conditions  

                                             and  

2.      To predict the influences of a large number of independent operating variables on the performance 
of a system from an experiment with a limited number of operating variables. 

 

Concept and Types of Physical Similarity 

The primary and fundamental requirement for the physical similarity between two problems is that the 

physics of the problems must be the same. 

For an example, two flows: one governed by viscous and pressure forces while the other by gravity force 

cannot be made physically similar. Therefore, the laws of similarity have to be sought between problems 

described by the same physics.  

Definition of physical similarity as a general proposition. 

Two systems, described by the same physics, operating under different sets of conditions are said to be 

physically similar in respect of certain specified physical quantities; when the ratio of corresponding 

magnitudes of these quantities between the two systems is the same everywhere.  

In the field of mechanics, there are three types of similarities which constitute the complete similarity between problems of same kind.  

 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 16

7 

Geometric Similarity : If the specified physical quantities are geometrical dimensions, the similarity is 

called Geometric Similarty,  

Kinematic Similarity : If the quantities are related to motions, the similarity is called Kinematic Similarity 

Dynamic Similarity : If the quantities refer to forces, then the similarity is termed as Dynamic Similarity.  

Geometric Similarity  

 Geometric Similarity implies the similarity of shape such that, the ratio of any length in one system 

to the corresponding length in other system is the same everywhere. 

 

 This ratio is usually known as scale factor.  

Therefore, geometrically similar objects are similar in their shapes, i.e., proportionate in their physical 

dimensions, but differ in size.  

In investigations of physical similarity, 

          the full size or actual scale systems are known as prototypes  

          the laboratory scale systems are referred to as models 

          use of the same fluid with both the prototype and the model is not necessary 

           model need not be necessarily smaller than the prototype. The flow of fluid through an 

injection nozzle or a carburettor , for example, would be more easily studied by using a 

model much larger than the prototype. 

          the model and prototype may be of identical size, although the two may then differ in 

regard to other factors such as velocity, and properties of the fluid. 

 If l1 and l2 are the two characteristic physical dimensions of any object, then the requirement of geometrical 

similarity is 

     (model ratio) 

(The second suffices m and p refer to model and prototype respectively) where lr is the scale factor or 

sometimes known as the model ratio. Figure 5.1 shows three pairs of geometrically similar objects, namely, 

a right circular cylinder, a parallelopiped, and a triangular prism. 
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Fig 17.1   Geometrically Similar Objects 

In all the above cases model ratio is 1/2 

Geometric similarity is perhaps the most obvious requirement in a model system designed to correspond to a 

given prototype system.  

A perfect geometric similarity is not always easy to attain. Problems in achieving perfect geometric 

similarity are: 

          For a small model, the surface roughness might not be reduced according to the scale factor 

(unless the model surfaces can be made very much smoother than those of the prototype). If for any 

reason the scale factor is not the same throughout, a distorted model results. 

          Sometimes it may so happen that to have a perfect geometric similarity within the available 

laboratory space, physics of the problem changes. For example, in case of large prototypes, such as 

rivers, the size of the model is limited by the available floor space of the laboratory; but if a very low 

scale factor is used in reducing both the horizontal and vertical lengths, this may result in a stream so 

shallow that surface tension has a considerable effect and, moreover, the flow may be laminar 

instead of turbulent. In this situation, a distorted model may be unavoidable (a lower scale factor 

”for horizontal lengths while a relatively higher scale factor for vertical lengths. The extent to which 

perfect geometric similarity should be sought therefore depends on the problem being investigated, 

and the accuracy required from the solution. 

Kinematic Similarity  

Kinematic similarity refers to similarity of motion.  
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Since motions are described by distance and time, it implies similarity of lengths (i.e., geometrical 

similarity) and, in addition, similarity of time intervals.  

If the corresponding lengths in the two systems are in a fixed ratio, the velocities of corresponding particles must be in a fixed ratio of magnitude 
of corresponding time intervals. 

If the ratio of corresponding lengths, known as the scale factor, is lr and the ratio of corresponding time 

intervals is tr, then the magnitudes of corresponding velocities are in the ratio lr/tr and the magnitudes of 

corresponding accelerations are in the ratio lr/t
2
 r. 

A well-known example of kinematic similarity is found in a planetarium. Here the galaxies of stars and 

planets in space are reproduced in accordance with a certain length scale and in simulating the motions of 

the planets, a fixed ratio of time intervals (and hence velocities and accelerations) is used. 

When fluid motions are kinematically similar, the patterns formed by streamlines are geometrically 

similar at corresponding times. 

 Since the impermeable boundaries also represent streamlines, kinematically similar flows are possible 

only past geometrically similar boundaries.  

Therefore, geometric similarity is a necessary condition for the kinematic similarity to be achieved, but 

not the sufficient one. 

 For example, geometrically similar boundaries may ensure geometrically similar streamlines in the near vicinity of the boundary but not at a 

distance from the boundary.  

Dynamic Similarity 

Dynamic similarity is the similarity of forces .  

In dynamically similar systems, the magnitudes of forces at correspondingly similar points in each system 

are in a fixed ratio.  

In a system involving flow of fluid, different forces due to different causes may act on a fluid element. 

These forces are as follows:  

Viscous Force (due to viscosity)  
 

Pressure Force ( due to different in pressure)  
 

Gravity Force (due to gravitational attraction)  
 

Capillary Force (due to surface tension)  
 

Compressibility Force ( due to elasticity)  
 

 

According to Newton 's law, the resultant FR of all these forces, will cause the acceleration of a fluid 

element. Hence  

        (17.1) 

Moreover, the inertia force is defined as equal and opposite to the resultant accelerating force  

 = -  
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Therefore Eq. 17.1 can be expressed as  

 

For dynamic similarity, the magnitude ratios of these forces have to be same for both the prototype and the 

model. The inertia force is usually taken as the common one to describe the ratios as (or putting in 

other form we equate the the non dimensionalised forces in the two systems)  

 

Magnitudes of Different Forces  

A fluid motion, under all such forces is characterised by  

1. Hydrodynamic parameters like pressure, velocity and acceleration due to gravity,  

2. Rheological and other physical properties of the fluid involved, and  

3. Geometrical dimensions of the system.  

It is important to express the magnitudes of different forces in terms of these parameters, to know the extent 

of their influences on the different forces acting on a flluid element in the course of its flow.  

Inertia Force  

 The inertia force acting on a fluid element is equal in magnitude to the mass of the element 

multiplied by its acceleration.  

 The mass of a fluid element is proportional to ρl
3
 where, ρ is the density of fluid and l is the 

characteristic geometrical dimension of the system.  

 The acceleration of a fluid element in any direction is the rate at which its velocity in that direction 

changes with time and is therefore proportional in magnitude to some characteristic velocity V 

divided by some specified interval of time t. The time interval t is proportional to the characteristic 

length l divided by the characteristic velocity V, so that the acceleration becomes proportional to V
2
/l.  

The magnitude of inertia force is thus proportional to 

 

  

This can be written as,  

 

(18.1a) 

  Viscous Force   

The viscous force arises from shear stress in a flow of fluid.  

 Therefore, we can write  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 17

1 

Magnitude of viscous force = shear stress  X  surface area over which the shear stress acts  

Again, shear stress = µ (viscosity) X rate of shear strain  

where, rate of shear strain velocity gradient     and surface area    

Hence        

 

  

 

(18.1b) 

                                               

Pressure Force  

The pressure force arises due to the difference of pressure in a flow field.  

 Hence it can be written as  

 

(18.1c)  

(where, p is some characteristic pressure difference in the flow.) 

Gravity Force  

The gravity force on a fluid element is its weight. Hence, 

 

(18.1d)  

(where g is the acceleration due to gravity or weight per unit mass)  

Capillary or Surface Tension Force  

The capillary force arises due to the existence of an interface between two fluids.  

 The surface tension force acts tangential to a surface .  

 It is equal to the coefficient of surface tension σ multiplied by the length of a linear element on the 

surface perpendicular to which the force acts.  

Therefore,  

 

(18.1e) 

  Compressibility or Elastic Force  

Elastic force arises due to the compressibility of the fluid in course of its flow.  
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 For a given compression (a decrease in volume), the increase in pressure is proportional to the bulk 

modulus of elasticity E  

 This gives rise to a force known as the elastic force.  

Hence, for a given compression       

 

(18.1f) 

 

The flow of a fluid in practice does not involve all the forces simultaneously.  

Therefore, the pertinent dimensionless parameters for dynamic similarity are derived from the ratios of 

significant forces causing the flow.  

Dynamic Similarity of Flows governed by Viscous, Pressure and Inertia Forces  

The criterion of dynamic similarity for the flows controlled by viscous, pressure and inertia forces are 

derived from the ratios of the representative magnitudes of these forces with the help of Eq. (18.1a) to 

(18.1c) as follows:  

 
|  

(18.2a) 

 

(18.2b) 

The term is known as Reynolds number, Re after the name of the scientist who first developed it 

and is thus proportional to the magnitude ratio of inertia force to viscous force .(Reynolds number plays a 

vital role in the analysis of fluid flow)  

The term is known as Euler number, Eu after the name of the scientist who first derived it. The 

dimensionless terms Re and Eu represent the critieria of dynamic similarity for the flows which are affected 

only by viscous, pressure and inertia forces. Such instances, for example, are  

1. the full flow of fluid in a completely closed conduit,  

2. flow of air past a low-speed aircraft and  

3. the flow of water past a submarine deeply submerged to produce no waves on the surface.  

Hence, for a complete dynamic similarity to exist between the prototype and the model for this class of 

flows, the Reynolds number, Re and Euler number, Eu have to be same for the two (prototype and model). 

Thus  

 

(18.2c) 

 

(18.2d) 

  where, the suffix p and suffix m refer to the parameters for prototype and model respectively.  
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In practice, the pressure drop is the dependent variable, and hence it is compared for the two systems with 

the help of Eq. (18.2d), while the equality of Reynolds number (Eq. (18.2c)) along with the equalities of 

other parameters in relation to kinematic and geometric similarities are maintained.  

 The characteristic geometrical dimension l and the reference velocity V in the expression of the 

Reynolds number may be any geometrical dimension and any velocity which are significant in 

determining the pattern of flow.  
 For internal flows through a closed duct, the hydraulic diameter of the duct Dh and the average flow 

velocity at a section are invariably used for l and V respectively.  

 The hydraulic diameter Dh is defined as Dh= 4A/P where A and P are the cross-sectional area and 

wetted perimeter respectively.  

Dynamic Similarity of Flows with Gravity, Pressure and Inertia Forces  

A flow of the type in which significant forces are gravity force, pressure force and inertia force, is found 

when a free surface is present.  

  Examples can be  

1.   the flow of a liquid in an open channel. 

2.  the wave motion caused by the passage of a ship through water.  

3.   the flows over weirs and spillways.  

The condition for dynamic similarity of such flows requires  

  the equality of the Euler number Eu (the magnitude ratio of pressure to inertia force),  

                                                                                   and  

 the equality of the magnitude ratio of gravity to inertia force at corresponding points in the systems 

being compared.  

       Thus ,  

 

(18.2e) 

Dynamic Similarity of Flows with Surface Tension as the Dominant Force 

Surface tension forces are important in certain classes of practical problems such as ,  

1. flows in which capillary waves appear  

2. flows of small jets and thin sheets of liquid injected by a nozzle in air  

3. flow of a thin sheet of liquid over a solid surface.  

Here the significant parameter for dynamic similarity is the magnitude ratio of the surface tension force to 

the inertia force.  

 This can be written as     
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The term   is usually known as Weber number, Wb (after the German naval architect Moritz 

Weber who first suggested the use of this term as a relevant parameter. )  

Thus for dynamically similar flows (Wb)m =(Wb)p  

i.e.,       

 
Dynamic Similarity of Flows with Elastic Force 

When the compressibility of fluid in the course of its flow becomes significant, the elastic force along with 

the pressure and inertia forces has to be considered.  

Therefore, the magnitude ratio of inertia to elastic force becomes a relevant parameter for dynamic similarity 

under this situation.  

Thus we can write,  

 

(18.2h)  

 The parameter is known as Cauchy number ,( after the French mathematician A.L. Cauchy)  

If we consider the flow to be isentropic , then it can be written  

 

(18.2i) 

(where Es is the isentropic bulk modulus of elasticity) 

  

Thus for dynamically similar flows (cauchy)m=(cauchy)p 

ie.,   

  

 The velocity with which a sound wave propagates through a fluid medium equals to .  

 Hence, the term can be written as where a is the acoustic velocity in the fluid 

medium.  
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The ratio V/a is known as Mach number, Ma ( after an Austrian physicist Earnst Mach)  

It has been shown in Chapter 1  that the effects of compressibility become important when the Mach number 

exceeds 0.33.  

The situation arises in the flow of air past high-speed aircraft, missiles, propellers and rotory compressors. In 

these cases equality of Mach number is a condition for dynamic similarity.  

Therefore,  

(Ma)p=(Ma)m   

i.e.       

 

 (18.2j)  

Ratios of Forces for Different Situations of Flow  

 

Pertinent Dimensionless term as the 

croterion of dynamic similarity in 

different situations of fluid flow  

Representative 

magnitude ration of the 

forces  

Name Recommended 

symbol  

    

 

  

Reynolds 

number  
Re 

    

 

  

Euler number  Eu 

    

 

  

Froude number  Fr 

    

 

  

Weber number  Wb 

    

 

  

Mach number  Ma 
 

 The Application of Dynamic Similarity - The Dimensional Analysis  

The concept:  

A physical problem may be characterised by a group of dimensionless similarity parameters or variables 

rather than by the original dimensional variables.  

 This gives a clue to the reduction in the number of parameters requiring separate consideration in an 

experimental investigation.  

For an example, if the Reynolds number Re = ρV Dh /µ is considered as the independent variable, in case of 

a flow of fluid through a closed duct of hydraulic diameter Dh, then a change in Re may be caused through a 
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change in flow velocity V only. Thus a range of Re can be covered simply by the variation in V without 

varying other independent dimensional variables ρ,Dh and µ.  

In fact, the variation in the Reynolds number physically implies the variation in any of the dimensional 

parameters defining it, though the change in Re, may be obtained through the variation in anyone parameter, 

say the velocity V.  

A number of such dimensionless parameters in relation to dynamic similarity are shown in Table 5.1. 

Sometimes it becomes diffcult to derive these parameters straight forward from an estimation of the 

representative order of magnitudes of the forces involved. An alternative method of determining these 

dimensionless parameters by a mathematical technique is known as dimensional analysis .  

The Technique:  

The requirement of dimensional homogeneity imposes conditions on the quantities involved in a physical 

problem, and these restrictions, placed in the form of an algebraic function by the requirement of 

dimensional homogeneity, play the central role in dimensional analysis.  

There are two existing approaches;  

 one due to Buckingham known as Buckingham's pi theorem  

  other due to Rayleigh known as Rayleigh's Indicial method  

In our next slides we'll see few examples of the dimensions of physical quantities. 

Dimensions of Physical Quantities 

All physical quantities are expressed by magnitudes and units.  

For example , the velocity and acceleration of a fluid particle are 8m/s and 10m/s
2
 respectively. Here the 

dimensions of velocity and acceleration are ms
-1

 and ms
-2

 respectively.  

In SI (System International) units, the primary physical quantities which are assigned base 

dimensions are the mass, length, time, temperature, current and luminous intensity. Of these, the first 

four are used in fluid mechanics and they are symbolized as M (mass), L (length), T (time), and θ 

(temperature).  

 Any physical quantity can be expressed in terms of these primary quantities by using the basic 

mathematical definition of the quantity.  

 The resulting expression is known as the dimension of the quantity.  

Let us take some  examples:  

1. Dimension of Stress  

Shear stress is defined as force/area. Again, force = mass × acceleration  

Dimensions of acceleration = Dimensions of velocity/Dimension of time.  
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 Dimension of area = (Length)
2
 =L

2
  

Hence, dimension of shear stress       

 

(19.1) 

   

2. Dimension of Viscosity  

Consider Newton's law for the definition of viscosity as  

 

  

or, 

 

  

        

The dimension of velocity gradient du/dy can be written as  

 

                                              dimension of du/dy= dimension of u/dimension of y = (L / T)/L = T 
-1

  

The dimension of shear stress is given in Eq. (19.1).  

Hence dimension of  

 

  

     

Dimensions of Various Physical Quantities in Tabular Format  

Physical Quantity  Dimension 
  

Mass M 
  

Length L 
  

Time T 
  

Temperature θ  
  

Velocity  LT
 -1

 
  

Angular velocity  T
 -1

 
  

Acceleration LT
 -2

 
  

Angular Acceleration  T
 -2

 
  

Force, Thrust, Weight  MLT
 -2

 
  

Stress, Pressure  ML
 -1

T
 -2
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Momentum MLT
 -1

 
  

Angular Momentum  ML
2
T

 -1
 

  

Moment, Torque  ML
2
T

 -2
 

  

Work, Energy  ML
2
T

 -2
 

  

Power ML
2
T

 -3
 

  

Stream Function  L
2
T

 -1
 

  

Vorticity, Shear Rate  T
 -1

 
  

Velocity Potential  L
2
T

 -1
 

  

Density ML
-3

 
  

Coefficient of Dynamic Viscosity  ML
 -1

T
 -1

 
  

Coefficient of Kinematic Viscosity  L
2
T

 -1
 

  

Surface Tension  MT
 -2

 
  

Bulk Modulus of Elasticity  ML
 -1

T
 -2

 
 

  

 

Buckingham's Pi Theorem  

 

Assume, a physical phenomenon is described by m number of independent variables like x1 , x2 , x3 , ..., 

xm 

The phenomenon may be expressed analytically by an implicit functional relationship of the controlling 

variables as 

 

(19.2)  

           

Now if n be the number of fundamental dimensions like mass, length, time, temperature etc ., involved 

in these m variables, then according to Buckingham's p theorem - 

The phenomenon can be described in terms of (m - n) independent dimensionless groups like π1 ,π2 , 

..., πm-n , where p terms, represent the dimensionless parameters and consist of different combinations of a 

number of dimensional variables out of the m independent variables defining the problem.  

Therefore. the analytical version of the phenomenon given by Eq. (19.2) can be reduced to  

 

(19.3)   

according to Buckingham's pi theorem  

 This physically implies that the phenomenon which is basically described by m independent 

dimensional variables, is ultimately controlled by (m-n) independent dimensionless parameters 

known as π terms.  

Alternative Mathematical Description of (π) Pi Theorem  
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A physical problem described by m number of variables involving n number of fundamental dimensions (n 

< m) leads to a system of n linear algebraic equations with m variables of the form  

 

  

 

  

...................................................   

 

(19.4)  

or in a matrix form,  

 

(19.5)  

  

where, 

 

  

 

        and 

 

  

Determination of π terms  

 A group of n (n = number of fundamental dimensions) variables out of m (m = total number of 

independent variables defining the problem) variables is first chosen to form a basis so that all n 

dimensions are represented . These n variables are referred to as repeating variables.  

 Then the p terms are formed by the product of these repeating variables raised to arbitrary unknown 

integer exponents and anyone of the excluded (m -n) variables.  

For example , if x1 x2 ...xn are taken as the repeating variables. Then  

 

 

................................... 
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 The sets of integer exponents a1, a2 . . . an are different for each p term.  

 Since p terms are dimensionless, it requires that when  all the variables in any p term are expressed in 

terms of their fundamental dimensions, the exponent of all the fundamental dimensions must be zero.  

  This leads to a system of n linear equations in a, a2 . . . an which gives a unique solution for the 

exponents. This gives  the values of a1 a2 . . . an for each p term  and hence the p terms are uniquely 

defined.  

In selecting the repeating variables, the following points have to be considered:  

1. The repeating variables must include among them all the n fundamental dimensions, not necessarily 

in each one but collectively.  

2. The dependent variable or the output parameter of the physical phenomenon should not be included 

in the repeating variables.  

No physical phenomena is represented when - 

 m < n    because there is no solution   and  

  m = n   because there is a unique solution of the variables involved and hence all the parameters 

have fixed values.  

. Therefore all feasible phenomena are defined with m > n .  

 When m = n + 1, then, according to the Pi theorem, the number of pi term is one and the 

phenomenon can be expressed as  

 

  

where, the non-dimensional term π1 is some specific combination of n + 1 variables involved in the problem.  

When m > n+ 1 ,  

1.  the number of π terms are more than one.  

2.  A number of choices regarding the repeating variables arise in this case.  

Again, it is true that if one of the repeating variables is changed, it results in a different set of π terms. 

Therefore the interesting question is which set of repeating variables is to be chosen , to arrive at the 

correct set of π terms to describe the problem. The answer to this question lies in the fact that different 

sets of π terms resulting from the use of different sets of repeating variables are not independent. 

Thus, anyone of such interdependent sets is meaningful in describing the same physical phenomenon.  

From any set of such π terms, one can obtain the other meaningful sets from some combination of the π 

terms of the existing set without altering their total numbers (m-n) as fixed by the Pi theorem.  

See the Example 

Example 

Consider pressure drop in a tube of length , hydraulic diameter d, surface roughness , with fluid of 

density ρ and viscosity μ moving with average velocity ν  

This can be expressed as  

https://nptel.ac.in/courses/112104118/lecture-19/hyperlink/example1.htm
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f (P, U, d, , ρ, μ) = 0  

Now m=7 since the phenomenon involves 7 independent parameters. 

We select ρ, U, d as repeating variables (so that all 3 dimensions are represented)  

Now 4 π (7 - 3) parameters are determined as  

 

 

 

 

Now basic units  

 

 

 

 

 

 

 

  

All Π parameters M
0 
L

0
 T

0
 

The above four equations yield 

a1= -1; b1 = - 2; c1= 0  

a2= -1; b2 = - 1; c2= -1  

a3= 0; b3 = 0; c3= -1  

a4= 0; b4 = 0; c4= -1  

Thus writing                                                   

implies                                                        

 

Therefore,                                                  
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   is called relative roughness  

Similarly,   other sets of Π parameters can be chosen to describe the phenomena. Thus though it does not 

give the actual relationship, but it puts the data in a compact form  

Rayleigh's Indicial Method  

This alternative method is also based on the fundamental principle of dimensional homogeneity of 

physical variables involved in a problem.  

Procedure- 

1. The dependent variable is identified and expressed as a product of all the independent variables 

raised to an unknown integer exponent.  

2. Equating the indices of n fundamental dimensions of the variables involved, n independent equations 

are obtained .  

3. These n equations are solved to  obtain the dimensionless groups.  

Example  

Let us illustrate this method by solving the pipe flow problem  

. Step 1 - ----- Here, the dependent variable Δp/l can be written as  

  (where, A is a dimensionless constant.)  
  

             

Step 2 -----Inserting the dimensions of each variable in the above equation, we obtain,  

 

  

Equating the indices of M, L, and T on both sides, we get ,  

c + d = 1                              

a + b - 3c - d = -2 

-a - d = -2            

  

Step 3 -----There are three equations and four unknowns. Solving these equations in terms of the unknown 

d, we have  

a = 2- d  

b = -d - 1  

c = 1- d  

  

Hence , we can be written  
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or,      

 

 Therefore we see that there are two independent dimensionless terms of the problem, namely,  

 Both Buckingham's method and Rayleigh's method of dimensional analysis determine only the 

relevant independent dimensionless parameters of a problem, but not the exact relationship 

between them.  

 For example, the numerical values of A and d   can never be known from dimensional analysis. They are 

found out from experiments.  

 If the system of equations is solved for the unknown c, it results,  

 

  

Therefore different interdependent sets of dimensionless terms are obtained with the change of unknown 

indices in terms of which the set of indicial equations are solved. This is similar to the situations arising with 

different possible choices of repeating variables in Buckingham's Pi theorem.  

Exercise Problems  -  Chapter 6  

1.  A 1/6 model automobile is tested in a wind tunnel with same air properties as the prototype. The 

prototype automobile runs on the roads at a velocity of 60 km/hr. For dynamically similar conditions, the 

drag measured on the model is 500 N. Determine the drag of the prototype and the power required to 

overcome this drag.  

(500N, 8.33 KN)  

2. A model is built of a flow phenomenon which is governed by the action of gravity and surface tension 

force. Show that the length scale ratio which will ensure complete similarity between model and the 

prototype is  

3. The speed of propagation U of a capillary wave in deep water is known to be a function of density ρ , 

wave length λ , and surface tension α . Using Dimensional Analysis, find out a relationship of U with ρ , λ , 

and α . (b) For a given surface tension and wavelength, how does the propagation speed changes if the 

density is halved ?  

(increased by a factor of ) 

4.  A hydraulic jump occurring in a stilling basin is to be studied in a 1:36 scale model. The prototype jump 

has an initial velocity of 10 m/s, an entrance Froude number of 6.0 and a power loss of 2 kW per meter 
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width of basin. Determine (a) the corresponding model velocity, (b) model Froude number and (c) power 

loss per meter width of the model  

(a 1·67 m/s, (b) 6· 0, (c) 0·26 W)  

5. A model of a reservoir having a free water surface within it is drained in 3 minutes by opening a sluice 

gate. The geometrical scale of the model is 1/100. How long would it take to empty the prototype?  

(30 minutes)  

6. Assuming that nothing is known about the particle motion under gravity beyond where , 

v0 , g, and t are respectively the displacement, initial velocity, gravitational acceleration, and time. Perform a 

dimensional analysis to explain the situation. 

 7. The tensile force inside a pendulum is known to depend on the mass, length, period, and angular 

amplitude of the pendulum. Perform a dimensional analysis. 

 8. The pressure drop in pipe flows of liquids is found to depend on the time required to pass a volume of a 

given liquid through, on this volume, and on the density as well as the viscosity of the liquid. Perform a 

dimensional analysis in a step by step manner, with the pressure drop and the density displayed as leading 

quantities.  

 9. Using the long steps of dimensional analysis, reduce the relationship n = G (g, A, , M) for the 

frequency n of the wing beat of a flying insect, where g stands for the gravitational acceleration; A, the wing 

area; , the air density; and M, the mass of the insect. Choose n and A as the leading quantities. 

   

10. The shape of a drop of liquid pulsates as it falls. The period of oscillation is observed to depend on the 

surface tension, the mean radius of the drop, and the liquid density. Perform a dimensional analysis to 

express the period of oscillation..  

  11. Liquid flows across an orifice loses useful power which is dependent on the liquid density and 

viscosity, the volume flow rate, and the orifice diameter. Perform a dimensional analysis (with the objective 

of analysing power loss). 

  12. During the flow through a pipe, it is observed that there exists a critical average flow velocity , 

beyond which the flow becomes turbulent. It is also known that is influenced by the diameter of the 

pipe, the density and the viscosity of the fluid. Perform a dimensional analysis to explain the situation.  

 Exercise Problems    

1.  A 1/6 model automobile is tested in a wind tunnel with same air properties as the prototype. The 

prototype automobile runs on the roads at a velocity of 60 km/hr. For dynamically similar conditions, the 

drag measured on the model is 500 N. Determine the drag of the prototype and the power required to 

overcome this drag.  

(500N, 8.33 KN)  
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2. A model is built of a flow phenomenon which is governed by the action of gravity and surface tension 

force. Show that the length scale ratio which will ensure complete similarity between model and the 

prototype is  

3. The speed of propagation U of a capillary wave in deep water is known to be a function of density ρ , 

wave length λ , and surface tension α . Using Dimensional Analysis, find out a relationship of U with ρ , λ , 

and α . (b) For a given surface tension and wavelength, how does the propagation speed changes if the 

density is halved ?  

(increased by a factor of ) 

4.  A hydraulic jump occurring in a stilling basin is to be studied in a 1:36 scale model. The prototype jump 

has an initial velocity of 10 m/s, an entrance Froude number of 6.0 and a power loss of 2 kW per meter 

width of basin. Determine (a) the corresponding model velocity, (b) model Froude number and (c) power 

loss per meter width of the model  

(a 1·67 m/s, (b) 6· 0, (c) 0·26 W)  

5. A model of a reservoir having a free water surface within it is drained in 3 minutes by opening a sluice 

gate. The geometrical scale of the model is 1/100. How long would it take to empty the prototype?  

(30 minutes)  

6. Assuming that nothing is known about the particle motion under gravity beyond where , 

v0 , g, and t are respectively the displacement, initial velocity, gravitational acceleration, and time. Perform a 

dimensional analysis to explain the situation. 

  

7. The tensile force inside a pendulum is known to depend on the mass, length, period, and angular 

amplitude of the pendulum. Perform a dimensional analysis. 

  

8. The pressure drop in pipe flows of liquids is found to depend on the time required to pass a volume of a 

given liquid through, on this volume, and on the density as well as the viscosity of the liquid. Perform a 

dimensional analysis in a step by step manner, with the pressure drop and the density displayed as leading 

quantities.  

 9. Using the long steps of dimensional analysis, reduce the relationship n = G (g, A, , M) for the 

frequency n of the wing beat of a flying insect, where g stands for the gravitational acceleration; A, the wing 

area; , the air density; and M, the mass of the insect. Choose n and A as the leading quantities. 

  10. The shape of a drop of liquid pulsates as it falls. The period of oscillation is observed to depend on the 

surface tension, the mean radius of the drop, and the liquid density. Perform a dimensional analysis to 

express the period of oscillation..  

  11. Liquid flows across an orifice loses useful power which is dependent on the liquid density and 

viscosity, the volume flow rate, and the orifice diameter. Perform a dimensional analysis (with the objective 

of analysing power loss). 
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  12. During the flow through a pipe, it is observed that there exists a critical average flow velocity , 

beyond which the flow becomes turbulent. It is also known that is influenced by the diameter of the 

pipe, the density and the viscosity of the fluid. Perform a dimensional analysis to explain the situation.  
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Flows of Ideal Fluids 
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Analysis of Inviscid, Incompressible, Irrotation Flows  

Incompressible flow is a constant density flow.  

 Let us visualize a fluid element of defined mass, moving along a streamline in an incompressible flow.  

Due to constant density , we can write        

 

(20.1) 

Irrotational Flow  

 if the fluid element does not rotate as it moves along the streamline, or to be precise, if its 

motion is translational (and deformation with no rotation) only, the flow is termed as 

irrotational. 

The rate of rotation of the fluid element can be measured as the average rate of rotation of two 

perpendicular line segments.  

The average rate of rotation ωz about z-axis is expressed in terms of the gradients of velocity components as  

 

  

Similarly, the other two components of rotation are     

 

  

ωx , ωy and ωz are components of  

 

  

         In a two-dimensional flow, ωz is the only non-trivial component of the rate of rotation called in-plane 

component of vorticity and computed as  

Thus for irrotational flow,  vorticity is zero i.e.  

Potential Flow Theory  

Let us imagine a pathline of a fluid particle shown in Fig. 20.1.  

Rate of spin of the particle is ωz . The flow in which this spin is zero throughout is known as irrotational 

flow .  

For irrotational flows,    
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Fig    20.1   Pathline of a Fluid Particle  

Velocity Potential and Stream Function  

Since for irrotational flows   .  

the velocity for an irrotational flow, can be expressed as the gradient of a scalar function called the velocity 

potential, denoted by Φ  

 

(20.2) 

      Combination of Eqs (20.1) and (20.2) yields         

 

(20.3) 

For irrotational flows                                 

 

  

                       

For two-dimensional case (as shown in Fig 20.1) 
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which is again Laplace's equation.  

 From Eq. (20.3) we see that an inviscid, incompressible, irrotational flow is governed by 

Laplace's equation.  

 Laplace's equation is linear, hence any number of particular solutions of Eq.(20.3) added together 

will yield another solution .  

 A complicated flow pattern for an inviscid, incompressible, irrotational flow can be synthesized by 

adding together a number of elementary flows ( provided they are also inviscid, incompressible and 

irrotational)----- The Superposition Principle  

The analysis of Laplace's Eq. (20.3) and finding out the potential functions are known as 

Potential Flow Theory and the inviscid, incompressible, irrotational flow is often called as Potential Flow .  

There are some elementary flows which constitute several complex potential-flow problems.  

 

Uniform Flow  

 Velocity does not change with y-coordinate  

 There exists only one component of velocity which is in the x direction.  

 Magnitude of the velocity is U0 .  

Since    

 

  

              or,     

 

  

 Thus,       

 

(20.4) 

    

Using stream function ψ for  uniform flow  

 

  

           so   

 

(20.5) 

The constants of integration C1 and K1   are arbitrary.  

https://nptel.ac.in/courses/112104118/lecture-20/hyperlink/supar_imp.htm
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 The values of ψ and Φ for different streamlines and velocity potential lines may change but flow pattern is 

unaltered  

. The constants of integration may be omitted, without any loss of generality and it is possible to write 

 

(20.6) 

   

 
Fig 20..2          (a)  Flownet for a Uniform Stream        (b)     Flownet for uniform Stream with an Anglea 

with x-axis  

These are plotted in Fig. 20.2(a) and consist of a rectangular mesh of straight streamlines and orthogonal 

straight potential-lines (remember streamlines and potential lines are always orthogonal ). It is 

conventional to put arrows on the streamlines showing the direction of flow.  

 

In terms of polar (r - θ) coordinate, Eq. (20.6) becomes  

 

(20.7) 

 Flow at an angle  
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If we consider a uniform stream at an angle α to the x-axis as shown in Fig. 20.2b. we require that  

 

  

             and       

 

(20.8) 

Integrating. we obtain for a uniform velocity U0 at an angle α, the stream function and velocity potential 

respectively as  

 

(20.9) 

 

Source or Sink 

Source flow -  

 A flow with straight streamlines emerging from a point.  

 Velocity along each streamline varies inversely with distance from the point (shown in Fig. 20.3).  

  Only the radial component of velocity is non-trivial. (vθ=0, vz=0 ).  

 

Fig 20.3    Flownet for a source flow  

In a steady source flow the amount of fluid crossing any given cylindrical surface of radius r and unit length 

is constant ( )  

that is     ( )in= ( )out 

 

  

  

 

(20.10a) 

                        (which shows that velocity is inversely proportional to the distance )  
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where, K is the source strength                and     is the volume flow rate  

The definition of stream function in cylindrical polar coordinate states that  

 

(20.11) 

For the source flow,  

 

 (20.12)  

 

 (20.13)  

Combining Eqs (20 .12) and (20.13) , we get  

 

(20.14) 

Thus                                                  

 

  

 

  

 Because the flow is irrotational, we can write       

 

  

               or   

 

  

              or   

 

(20.15) 

The integration constants C1 and C2 in Eqs (20.14) and (20.15) have no effect on the basic structure of 

velocity and pressure in the flow.  

The equations for streamlines and velocity potential lines for source flow become  

 

(20.16) 

   

K = source strength and is proportional to  

= the rate of volume flow from the source per unit 

depth perpendicular to the page  
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Sink flow  

 When is negative , we get sink flow,  

 here the flow is in the opposite direction of the source flow.  

 

In Fig. 20.3, the point 0 is the origin of the radial streamlines. We visualize that point O is a point source or 

sink that induces radial flow in the neighbourhood .  

The point source or sink is a point of singularity in the flow field (because vr becomes infinite).  

  The stream function and velocity potential function are  

 

(20.17) 

 

Concept of Circulation in a Free Vortex Flow 

Free Vortex Flow  

 Fluid particles move in circles about a point.  

 The only non-trivial velocity component is tangential.  

 This tangential speed varies with radius r so that same circulation is maintained.  

 Thus,all the streamlines are concentric circles about a given point where the velocity along each 

streamline is inversely proportional to the distance from the centre. This flow is necessarily 

irrotational.  

 

Fig 21.1      Flownet for a vortex (free vortex)  

Velocity components  

In a purely circulatory (free vortex flow) motion, the tangential velocity can be written as  

 

  

                  or,    
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     where is circulation  

 (21.1)    

For purely circulatory motion we can also write  

 

(21.2) 

         

Stream Function  

Using the definition of stream function, we can write   

 

  

  

Combining Eqs (21.1) and (21.2) with the above said relations for stream function, it is possible to write  

 

(21.3) 

      

Velocity Potential Function  

 Because of irrotationality, it should satisfy  

 

  

Eqs (21.1) and (21.2) and the above solution of Laplace's equation yields  

 

(21.4) 

Since, the integration constants C1 and C2 have no effect on the structure of velocities or pressures in the 

flow. We can ignore the integration constants without any loss of generality.  

It is clear that the streamlines for vortex flow are circles while the potential lines are radial . These are 

given by 

 

(21.5) 

   

 In Fig. 21.1, point 0 can be imagined as a point vortex that induces the circulatory flow around it.  

 The point vortex is a singularity in the flow field (vθ becomes infinite).  
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  Point 0 is simply a point formed by the intersection of the plane of a paper and a line perpendicular 

to the plane.  

 This line is called vortex filament of strength where is the circulation around the vortex filament 

.  

 

 

 

Circulation is defined as   

 

(21.6)  

This circulation constant denotes the algebraic strength of the vortex filament contained within the 

closed curve. From Eq. (21.6) we can write  

 

  

For a two-dimensional flow                

 

  

        or,      

       (according to Fig. 21.2)  
(21.7) 

Consider a fluid element as shown in Fig. 21.2. Circulation is positive in the anticlockwise direction (not 

a mandatory but general convention).  

 

Fig 21.2   Circulation in a flow field  
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After simplification                       

 

 (21.8)  

Physically, circulation per unit area is the vorticity of the flow .  

Now, for a free vortex flow, the tangential velocity is given by Eq. (21.1) as  

 

  

For a circular path (refer Fig.21.2)            

 

  

Thus,  

 

  

 

  

 

  

Therefore    

 2πC        (21.9) 

It may be noted that although free vortex is basically an irrotational motion, the circulation for a given path 

containing a singular point (including the origin) is constant (2πC) and independent of the radius of a 

circular streamline.  

 However, circulation  calculated in a free vortex flow along any closed contour excluding the 

singular point (the origin), should be zero.  
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Fig 21.3 (a)    Free Vortex Flow  

Considering Fig 21.3 (a) and taking a closed contour ABCD in order to obtain circulation about the point, P 

around ABCD it may be shown that  

 

Forced Vortex Flow  

 If there exists a solid body rotation at constant ω (induced by some external mechanism), the flow 

should be called a forced vortex motion (Fig. 21.3 (b). 

 

Fig 21.3 (b)   Forced Vortex Flow  

we can write  

      and   

 

(21.10) 

Equation (21.10) predicts that  
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1. The circulation is zero at the origin  

2.  It increases with increasing radius.  

3.  The variation is parabolic.  

 

It may be mentioned that the free vortex (irrotational) flow at the origin is impossible because of 

mathematical singularity. However, physically there should exist a rotational (forced vortex) core which is 

shown by the dotted line ( in Fig. 21.3a ).  

 Below are given two statements which are related to Kelvin's circulation theorem (stated in 1869) and 

Cauchy's theorem on irrotational motion (stated in 1815) respectively  

1. The circulation around any closed contour is invariant with time in an inviscid fluid.--- Kelvin's 

Theorem  
2. A body of inviscid fluid in irrotational motion continues to move irrotationally.------------ Cauchy's 

Theorem  

Combination of Fundamental Flows  

1)  Doublet  

 

 

We can now form different flow patterns by superimposing the velocity potential and stream 

functions of the elementary flows stated above.       

In order to develop a doublet, imagine a source and a sink of equal strength K at equal distance 

s from the origin along x-axis as shown in Fig. 21.4.  

 

Fig 21.4      Superposition of a Source and a Sink  

From any point p(x, y) in the field, r1 and r2 are drawn to the source and the sink. The polar 

coordinates of this point (r, θ) have been shown.  

 

The potential functions of the two flows may be superimposed to describe the potential for the 

combined flow at P as  

 

(21.11) 

Similarly,  

 

(21.12) 

where            
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Expanding θ1 and θ2 in terms of coordinates of p and s  

 

(21.13) 

 

(21.14) 

Using   

 

  

we find  

 

  

or,         
  

Hence the stream function and the velocity potential function are formed by combining Eqs 

(21.12) and (21.13), as well as Eqs(21.11) and (21.14) respectively  

 

  

Hence     -------    Stream Function  
 (21.15) 

 

  

            ----- Potential Function  

(21.16)  

Doublet is a special case when a source as well as a sink are brought together in such a 

way that  

     and at the same time the  

 strength   is increased to an infinite value.  

These are assumed to be accomplished in a manner which makes the product of s and 

(in limiting case) a finite value   

This gives us 

 

https://nptel.ac.in/courses/112104118/lecture-21/hyperlink/doublet_hyperlink.htm
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and     

                

                                 

                             

                        

 

 

 

 

 
 

 
Streamlines, Velocity Potential for a Doublet  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 20

2 

We have seen in the last lecture that the streamlines associated with the doublet are  

 

  

If we replace sinθ by y/r, and the minus sign be absorbed in C1 , we get  

 

  

 

 

 (21.17a)  

Putting     we get    

 

(21.17b) 

Equation (21.17b) represents a family of circles with  

 radius :  

 centre :  

 For x = 0, there are two values of y, one of them=0.  

 The centres of the circles fall on the y-axis.  

 On the circle, where y = 0, x has to be zero for all the values of the constant.  

 family of circles formed(due to different values of C1 ) is tangent to x-axis at the origin.  

These streamlines are illustrated in Fig. 21.5.  

 

Fig 21.5    Streamlines and Velocity Potential Lines for a Doublet  

Due to the initial positions of the source and the sink in the development of the doublet , it is certain that  

 the flow will emerge in the negative x direction from the origin  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 20

3 

                                                                 and  

  it will converge via the positive x direction of the origin.  

Velocity potential lines  

 

  

In cartresian coordinate the equation becomes  

 

(21.18)  

Once again we shall obtain a family of circles  

 radius:  

 centre:  
  The centres will fall on x-axis.  

 For y = 0 there are two values of x, one of which is zero.  

 When x = 0, y has to be zero for all values of the constant.  

 These circles are tangent to y-axis at the origin.  

In addition to the determination of the stream function and velocity potential, it is observed  that for a 

doublet 

 

  

As the centre of the doublet is approached; the radial velocity tends to be infinite.  

It shows that the doublet flow has a singularity.  

 Since the circulation about a singular point of a source or a sink is zero for any strength, it is obvious that 

the circulation about the singular point in a doublet flow must be zero i.e. doublet flow =0  

 

 (21.19)  

Applying Stokes Theorem between the line integral and the area-integral  

 

(21.20)  

       

From Eq. 21.20 the obvious conclusion is   i.e., doublet flow is an irrotational flow.  

Flow About a Cylinder without Circulation  
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 Inviscid-incompressible flow about a cylinder in uniform flow is equivalent to the superposition of 

a uniform flow and a doublet.  

 The doublet has its axis of development parallel to the direction of the uniform flow (x-axis in this 

case).  

 The potential and stream function for this flow will be the sum of those for uniform flow and 

doublet.  

Potential Function  

 

  

Stream function  

 

  

Streamlines  

In two dimensional flow, a streamline may be interpreted as  

 the edge of a surface, on which the velocity vector is always tangential.  

                                                    and  

  there is no flow in the direction normal to the surface (characteristic of a solid impervious boundary 

).  

 Hence, a streamline may also be considered as the contour of an impervious two-dimensional body .  

 

Fig 22.1     Surface Streamline  

Figure 22.1 shows a set of streamlines.  

1.  The streamline C-D may be considered as the edge of a two-dimensional body .  

2.  other streamlines form the flow about the boundary.  

In order to form a flow about the body of interest, a streamline has to be determined which encloses an area 

whose shape is of practical importance in fluid flow. This streamline describes the boundary of a two-

dimensional solid body. The remaining streamlines outside this solid region,  constitute the flow about this 

body.  

If we look for the streamline whose value is zero, we will obtain  
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(22.1)  

replacing y by rsinθ, we have  

 

(22.2)  

Solution of Eq. 22.2  

1. If θ = 0 or θ = π, the equation is satisfied. This indicates that the x-axis is a part of the streamline Ψ = 

0.  

2. When the quantity in the parentheses is zero, the equation is identically satisfied . Hence it follows 

that  

 

(22.3)  

Interpretation of the solution  

There is a circle of radius which is an intrinsic part of the streamline Ψ = 0.  

This is shown in Fig.22.2 

 

Fig 22.2    Streamline ψ = 0 in a Superimposed Flow of Doublet and Uniform Stream  

Stagnation Points  

Let us look at the points of intersection of the circle and x- axis , i.e. the points A and B in the above figure. 

The polar coordinate of these points are  

      for point A  
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       for point B  

  

The velocity at these points are found out by taking partial derivatives of the velocity potential in two 

orthogonal directions and then substituting the proper values of the coordinates.  

Since,         
  

 

 

(22.4a)  

  

 

 

 

(22.4b)  

  

At point  A  

 

  

At point B  

 

  

The points A and B are  the stagnation points through which the flow divides and subsequently 

reunites forming a zone of circular bluff body.  

The circular region, enclosed by part of the streamline ψ = 0 could be imagined as a solid cylinder in an 

inviscid flow. At a large distance from the cylinder the flow is moving uniformly in a cross-flow 

configuration.  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 20

7 

 

Fig. 22.3   Inviscid Flow past a Cylinder  

Figure 22.3 shows the streamlines of the flow.  

1.  The streamlines outside the circle describe the flow pattern of the inviscid irrotational flow 

across a cylinder.  
2.  The streamlines inside the circle may be disregarded since this region is considered as a solid 

obstacle.  

3. Lift and Drag for Flow Past a Cylinder without Circulation  

4. Pressure in the Cylinder Surface  
5. Pressure  becomes uniform at large distances from the cylinder ( where the influence of doublet is  

small).  

6. Let us imagine the pressure p0 is known as well as uniform velocity U0 .  

We can apply Bernoulli's equation between infinity and the points on the boundary of the cylinder.  

7. Neglecting the variation of potential energy between the aforesaid point at infinity and any point on 

the surface of the cylinder, we can write  

 

(22.5) 

8. where the subscript b represents the surface on the cylinder.  

9. Since fluid cannot penetrate the solid boundary, the velocity Ub should be only in the transverse 

direction , or in other words, only vθ component of velocity is present on the streamline ψ = 0 .  

10. Thus at                          

 

(22.6)  

11.   
12. From eqs (22.5) and (22.6) we obtain  

 

(22.7)  

13.   
14. Lift and Drag  

15. Lift :force acting on the cylinder (per unit length) in the direction normal to uniform flow.  
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16. Drag: force acting on the cylinder (per unit length) in the direction parallel to uniform flow.  

17.  
18. Fig 22.4 Calculation of Drag in a Cylinder  

19. The drag is calculated by integrating the force components arising out of pressure, in the x direct ion 

on the boundary. Referring to Fig.22.4, the drag force can be written as  

20. infinitesimal length on the circumference  

21. Since,     

22.   

 

or,       

  

 

(22.8)  

24.   
25. Similarly, the lift force may be calculated as  

 

(22.9)  

26.   
27. The Eqs (22.8) and (22.9) produce D=0 and L=0 after the integration is carried out.  

28. However, in reality, the cylinder will always experience some drag force. This contradiction 

between the inviscid flow result and the experiment is usually known as D 'Almbert paradox.  
29. Bernoulli's equation can be used to calculate the pressure distribution on the cylinder surface  

 

  

 

  

30. The pressure coefficient , cp is therefore 
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(22.10) 

31.   
32. The pressure distribution on a cylinder is shown in Figure below 

33.    
34. Fig 22.5 Variation of coefficient of pressure with angle  

35. Analysis of Potential Flows through Complex Variables  

36. The properties exhibited by the velocity potential and stream function of two dimensional irrotational 

flow of an inviscid fluid are identical to those exhibited by the real and imaginary part of an analytic 

function of a complex variable. It is natural to combine and into an analytic function of a 

complex variable in the region of z plane occupied by the flow. Here, is called 

imaginary unit.  

An analytic function,  
 

(22.11) 

37.  

and  
 

(22.12) 

38. These are known as Cauchy-Riemann condition. Also, and are real single valued continuous 

functions. We get from the above  

  
        and       

39.  

Therefore, 
        and       

40.  

Consider 
 

(22.13) 

41. where is velocity potential function and is stream function. This leads to  

  
     and     

42. which means  

  
     and     

43. Finally we get  

  
     and     

  

44. This completes the definition  
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(22.14) 

45.  

Also, 
 

(22.15) 

46. Therefore and are perpendicular to each other.  

47. Let us consider another function or complex potential  

  
 

  

48.  

Which gives, 
 

(22.16) 

49. Therefore, we get 

     and      

50.  

      and      

51.  

  
;   which means  

  

52.  

  
    and       is the complex velocity  

  

53. Therefore, 

  
 

  

54.  

  
 

(22.17) 

...contd...Analysis of Potential Flows through Complex Variables  

Now consider another situation, where the complex potential is given by  

   
 

(22.18) 

 

and       and       

 

   
     entailing     and    
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     and     

  

Therefore     signifies uniform flow. The flow was earlier represented via Figure 20.2(a)  

We may choose yet another complex potential, given by  

   
 

(22.19) 

 

or,      

 

or,          

 

   
   

(22.20) 

This signifies 

   
  

  

 

      (22.21) 

 

      (22.22) 

The flow is basically elementary uniform flow at an angle as represented by Figure 20.2 (b).  

Consider another complex potential given by  

      where    (22.23) 

 

   

   

  

We obtain   and    

If A is positive, is in the outward direction and it is a source flow (Figure 20.3). If A is negative, is in 

the inward direction and it is sink flow. 

 

The radial and tangential component of velocities are given by  

   

   

  

https://nptel.ac.in/courses/112104118/lecture-20/20-3_uniform_flow.htm#fig_202ab
https://nptel.ac.in/courses/112104118/lecture-20/20-3_uniform_flow.htm#fig_202ab
https://nptel.ac.in/courses/112104118/lecture-20/20-4_source_sink.htm#fig_20.3
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Let  

     ,    where   is the mass flux    

 

   
   

  

The quantity K is, 

   
    and    is the volume flow rate  

  

..contd...Analysis of Potential Flows through Complex Variables  

Let us combine a source and sink now. Refer to Figure 21.4. The complex potential is given by  

   
 

(22.24) 

This follows 

   

      

  

 

                             with  
     and     

  

We know, 

   

      

  

 

or,  

  

  

 

Therefore,  

  

(22.25) 

 

We also find     and       

That results in  

https://nptel.ac.in/courses/112104118/lecture-21/21-3_doublet.htm#super
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(22.26) 

Under the limiting condition of   (the flow becomes a doublet)  

  
  

  

We also know, 

  

  

  

The strength of the doublets given by  

We get family of velocity potential from  constant lines  

  
  

  

 

or, 
  

  

 

or, 

 

(22.27) 

This is the equation for constant lines (also see Figure 21.5) 

Now from equation (22.25), for the limiting case of , one can write 

  
   [as under the limiting case]  

  

 

or, 
 

  

 

or, 
 

  

The streamlines associated with the doublet are 

https://nptel.ac.in/courses/112104118/lecture-21/21-4_streamline_velo_poten_doublet.htm#stream
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  constant lines, which can be expressed as    

 

  
 

  

 

or, 
 

  

 

or, 
 

  

 

or, 

 

  (22.28) 

This is the equation for constant lines  (see Figure 21.5)  

Therefore for the doublet 

  
 

  

 

and, 
 

  

It can also be written as 

  
 

(22.30) 

 

  

 

  

  

  

If the represents a doublet. 

Under the limiting conditions, 
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(22.31) 

  

Thus, by using the elementary complex potential for source, sink, doublet, uniform flow, vortex flow etc 

more complicated fields can be constructed via the method of superposition. Especially, external flow past 

objects of various shapes can be simulated. However, for the first course, we shall follow simpler approach 

and construct various complex flows without using the route of complex potentials. We shall take up such 

exercises in the following lectures.  

Flow Past a Source 

When a uniform flow is added to that due to a source - 

 fluid emitted from the source is swept away in the downstream direction 

 stream function and velocity potential for this flow will be the sum of those for uniform flow and 

source  

Stream function;      

Velocity Potential;   

So                            

and                            
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Fig 23.1  The streamlines of the flow past a line source for equal increments of 2πψ/q 

The Plane coordinates are x/a, y/a where a=k/u  

Explanation of Figure 

 At the point x = -a, y = 0 fluid velocity is zero.  

 This is called stagnation point of the flow 

 Here the source flow is turned around by the oncoming uniform flow 

 The parabolic streamline passing through stagnation point seperates uniform flow from the 

source flow. 

 The streamline becomes parallel to x axis as  

Flow Past Vortex  

when uniform flow is superimposed with a vortex flow - 

 Flow will be asymmetrical about x - axis 

 Again stream function and velocity potential will be the sum of those for uniform flow and vortex 

flow  

Stream Function:     

Velocity Potential:     

so that;                     

 

                                 

Flow About a Rotating Cylinder  
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Magnus Effect  

Flow about a rotating cylinder is equivalent to the combination of flow past a cylinder and a vortex.  

As such in addition to superimposed uniform flow and a doublet, a vortex is thrown at the doublet centre 

which will simulate a rotating cylinder in uniform stream.  

 The pressure distribution will result in a force, a component of which will culminate in lift force  

 The phenomenon of generation of lift by a rotating object placed in a stream is known as Magnus effect.  

Velocity Potential and Stream Function  

The velocity potential and stream functions for the combination of doublet, vortex and uniform flow are  

     

      (clockwise rotation)  
(23.1) 

 

   (clockwise rotation)  
(23.2) 

By making use of either the stream function or velocity potential function, the velocity components are 

(putting x= rcosθ and y= rsinθ ) 

 

(23.3) 

 

 

(23.4) 

  

Stagnation Points 

 At the stagnation points the velocity components must vanish. From Eq. (23.3), we get  

 =0 
(23.5) 

Solution :  

1. From Eq. (23.5) it is evident that a zero radial velocity component may occur at  

                        and  
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 along the circle,    .  

 Eq. (23.4) depicts that a zero transverse velocity requires  

            or                

(23.6) 

             

At the stagnation point, both radial and transverse velocity components must be zero .  

Thus the location of stagnation point occurs at  

 

  

 

 

  

There will be two stagnation points since there are two angles for a given sine except for sin
-1

(1) 

Determination of Stream Line  

The streamline passing through these points may be determined by evaluating ψ at these points.  

 Substitution of the stagnation coordinate (r, θ) into the stream function (Eq. 23.2) yields  

 

  

 

 

  

 

or,   

(23.7) 

   

Equating the general expression for stream function to the above constant, we get  
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By rearranging we can write  

 

(23.8) 

All points along the circle satisfy Eq. (23.8) , since for this value of r, each quantity within 

parentheses in the equation is zero.  

Considering the interior of the circle (on which ψ = 0) to be a solid cylinder, the outer streamline pattern is 

shown in Fig 23.2.  

 

Fig  23.2  Flow Past a Cylinder with Circulation  

At the stagnation point  

 

  

 

 

  

  

The limiting case arises for , where and two stagnation points meet at the 

bottom as shown in Fig. 23.3.  
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In the case of a circulatory flow past the cylinder, the streamlines are symmetric with respect to the y-axis. 

The presures at the points on the cylinder surface are symmetrical with respect to the y-axis. There is no 

symmetry with respect to the x-axis. Therefore a resultant force acts on the cylinder in the direction of the y-

axis, and the resultant force in the direction of the x-axis is equal to zero as in the flow without circulation; 

that is, the D'Alembert paradox takes place here as well. Thus, in the presence of circulation, different flow 

patterns can take place and, therefore, it is necessary for the uniqueness of the solution, to specify the 

magnitude of circulation.  

 

Fig 23.3    Flow Past a Circular Cylinder with Circulation Value  

However, in all these cases the effects of the vortex and doublet become negligibly small as one moves a 

large distance from the cylinder.  

The flow is assumed to be uniform at infinity.  

We have already seen that the change in strength  of the vortex changes the flow pattern, particularly the 

position of the stagnation points but the radius of the cylinder remains unchanged.  

Lift and Drag for Flow About a Rotating Cylinder  

The pressure at large distances from the cylinder is uniform and given by p0.  

 Deploying Bernoulli's equation between the points at infinity and on the boundary of the cylinder,  

 

(23.9) 

Hence,                                             

 

(23.10) 

From Eqs (23.9) and (23.10) we can write  
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(23.11) 

  

The lift may calculated as  

   

or,     

 

 

 

(23.12) 

The drag force , which includes the multiplication by cosθ (and integration over 2π) is zero.  

 Thus the inviscid flow also demonstrates lift.  

  lift becomes a simple formula involving only the density of the medium, free stream velocity and 

circulation.  

  in two dimensional incompressible steady flow about a boundary of any shape, the lift is always a 

product of these three quantities.----- Kutta- Joukowski theorem  

Aerofoil Theory  

Aerofoils are streamline shaped wings which are used in airplanes and turbo machinery. These shapes are 

such that the drag force is a very small fraction of the lift. The following nomenclatures are used for defining 

an aerofoil  
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Fig 23.4      Aerofoil Section  

 The chord (C) is the distance between the leading edge and trailing edge.  

 The length of an aerofoil, normal to the cross-section (i.e., normal to the plane of a paper) is called 

the span of a aerofoil.  

 The camber line represents the mean profile of the aerofoil. Some important geometrical parameters 

for an aerofoil are the ratio of maximum thickness to chord (t/C) and the ratio of maximum camber 

to chord (h/C). When these ratios are small, an aerofoil can be considered to be thin. For the analysis 

of flow, a thin aerofoil is represented by its camber.  

The theory of thick cambered aerofoils uses a complex-variable mapping which transforms the inviscid flow 

across a rotating cylinder into the flow about an aerofoil shape with circulation.  

  Flow Around a Thin Aerofoil  

 Thin aerofoil theory is based upon the superposition of uniform flow at infinity and a continuous 

distribution of clockwise free vortex on the camber line having circulation density per unit 

length .  

 The circulation density should be such that the resultant flow is tangent to the camber line at 

every point. 

 Since the slope of the camber line is assumed to be small, . The total circulation 

around the profile is given by  

 

(23.13)  
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Fig 23.5    Flow Around Thin Aerofoil  

A vortical motion of strength at x= develops a velocity at the point p which may be expressed as  

 

The total induced velocity in the upward direction at point p due to the entire vortex distribution along the 

camber line is  

          (23.14)  

For a small camber (having small α), this expression is identically valid for the induced velocity at point p' 

due to the vortex sheet of variable strength on the camber line. The resultant velocity due to and 

v(x) must be tangential to the camber line so that the slope of a camber line may be expressed as  

 

  

 

(23.15) 

From Eqs (23.14) and (23.15) we can write  

 

  

Consider an element ds on the camber line. Consider a small rectangle (drawn with dotted line) around ds. 

The upper and lower sides of the rectangle are very close to each other and these are parallel to the camber 

line. The other two sides are normal to the camber line. The circulation along the rectangle is measured in 

clockwise direction as  
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   [normal component of velocity at the camber line should 

be zero]  
  

or     

If the mean velocity in the tangential direction at the camber line is given by it can be 

rewritten as  

  and   
  

if v is very small becomes equal to . The difference in velocity across the camber line 

brought about by the vortex sheet of variable strength causes pressure difference and generates lift 

force.  

Generation of Vortices Around a Wing 

 The lift around an aerofoil is generated following Kutta-Joukowski theorem . Lift is a product of 

ρ , and the circulation .  

 

  

 When the motion of a wing starts from rest, vortices are formed at the trailing edge. 

 At the start, there is a velocity discontinuity at the trailing edge. This is eventual because near the 

trailing edge, the velocity at the bottom surface is higher than that at the top surface. This 

discrepancy in velocity culminates in the formation of vortices at the trailing edge.  

 Figure 23.6(a) depicts the formation of starting vortex by impulsively moving aerofoil. However, the 

starting vortices induce a counter circulation as shown in Figure 23.6(b). The circulation around a 

path (ABCD) enclosing the wing and just shed (starting) vortex must be zero. Here we refer to 

Kelvin's theorem once again.  

 

Fig 23.6    Vortices Generated when an Aerofoil Just Begins to Move  

   

 Initially, the flow starts with the zero circulation around the closed path. Thereafter, due to the 

change in angle of attack or flow velocity, if a fresh starting vortex is shed, the circulation around the 

wing will adjust itself so that a net zero vorticity is set around the closed path.  

 Real wings have finite span or finite aspect ratio (AR) λ , defined as  
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 (23.16)  

where b is the span length, As is the plan form area as seen from the top..  

 For a wing of finite span, the end conditions affect both the lift and the drag. In the leading edge 

region, pressure at the bottom surface of a wing is higher than that at the top surface. The 

longitudinal vortices are generated at the edges of finite wing owing to pressure differences between 

the bottom surface directly facing the flow and the top surface.  

 

Fig 23.7    Vortices Around a Finite Wing  
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Fig 23.8   Generation of Longitudinal Vortices 

Exercise Problems  -  Chapter 7  

1. Determine whether the function 

 

  

is a possible velocity potential for inviscid incompressible flow. 

2. Find the stream function and the velocity potential for flow around a closed contour formed by 

superposition of a source, sink and a rectilinear flow. The source and sink are of equal strength and they are 

located at equal distances on either side of the origin along the x-axis.  

3. Verify the stream function and the velocity potential for flow around a circular cylinder with Circulation 

satisfying their respective Laplace equations.  

4. A kite is having cross-sectional area of .5 m ×.5 m. The weight of kite is 4.9 N and it flies in the air at an 

angle of 10
0
 with the horizontal plane. The string of the kite makes an angle of with the horizontal plane. 

The tension applied by the person flying the kite is N. If the velocity of the wind at the layer where the kite 

is flying is 15 m/s, find out the lift and drag coefficients of the kite.  

Take of air as 1.2 kg/m and  

                                                                                                                            

5. In a tornado (free vortex motion), at a radius of 20 cm the velocity (tangential component is the only non-

trivial component) and pressures are 22.5 m/s and 117.72 kpa absolute. Find out the pressure at a radius of 

4.5 m. The fluid is air and assumed to have density equal to 1.2 kg/m
3
 .  

[196.705 kpa]  

6. Flow past a rotating cylinder can be simulated by superposition of a doublet, a uniform flow and a vortex. 

The peripheral velocity of the rotating cylinder alone is given by at (R is the radius of the cylinder). 

Use the expression for the combined velocity potential for the superimposed uniform flow, doublet and 

vortex flow (clockwise rotation) and show that the resultant velocity at any point on the cylinder is given by 

. The angle is the angular position of the point of interest. A cylinder rotates at 

600 rpm around its own axis which is perpendicular to the uniform air stream density 1.24 kg/m
3
 having a 

velocity of 40 m/s. The cylinder is 2 m in diameter. Find out (a) circulation, (b) lift per unit length and the 

(c) position of the stagnation points.  

[394.78 m
2
 / s, 19581.29 N/m, -51.75

0
 and 231.75

0
 ]  

7. In the early attempts for the development of the aeroplane, rotating cylinders were used as the airfoils. 

Consider such a cylinder having a diameter of 1m and a length of 10 m. If this cylinder is rotated at 120 rpm 

while the plane moves at a speed of 120 km/hour through the air at 700 m standard atmosphere ( 

kg/m
3
 ), estimate the minimum lift that could be developed disregarding end effects.  

[ 3880 N]  
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8. If a cylinder (placed with its axis normal to the free stream ) is to be used as a pitot-static tube for the 

measurement of the free-stream velocity, find the locations of piezo-metric holes on the cylinder  

 

Assume ideal fluid flow. The velocity components in the flow field are  

 

Note: A Pitot-static tube measures the velocity head, i.e., the difference between the stagnation pressure and 

static pressure in the flow.  

[180
0
, 210

0
]  

Exercise Problems  -  Chapter 7  

1. Determine whether the function 

 

  

is a possible velocity potential for inviscid incompressible flow. 

2. Find the stream function and the velocity potential for flow around a closed contour formed by 

superposition of a source, sink and a rectilinear flow. The source and sink are of equal strength and they are 

located at equal distances on either side of the origin along the x-axis.  

3. Verify the stream function and the velocity potential for flow around a circular cylinder with Circulation 

satisfying their respective Laplace equations.  

4. A kite is having cross-sectional area of .5 m ×.5 m. The weight of kite is 4.9 N and it flies in the air at an 

angle of 10
0
 with the horizontal plane. The string of the kite makes an angle of with the horizontal plane. 

The tension applied by the person flying the kite is N. If the velocity of the wind at the layer where the kite 

is flying is 15 m/s, find out the lift and drag coefficients of the kite.  

Take of air as 1.2 kg/m and  
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5. In a tornado (free vortex motion), at a radius of 20 cm the velocity (tangential component is the only non-

trivial component) and pressures are 22.5 m/s and 117.72 kpa absolute. Find out the pressure at a radius of 

4.5 m. The fluid is air and assumed to have density equal to 1.2 kg/m
3
 .  

[196.705 kpa]  

6. Flow past a rotating cylinder can be simulated by superposition of a doublet, a uniform flow and a vortex. 

The peripheral velocity of the rotating cylinder alone is given by at (R is the radius of the cylinder). 

Use the expression for the combined velocity potential for the superimposed uniform flow, doublet and 

vortex flow (clockwise rotation) and show that the resultant velocity at any point on the cylinder is given by 

. The angle is the angular position of the point of interest. A cylinder rotates at 

600 rpm around its own axis which is perpendicular to the uniform air stream density 1.24 kg/m
3
 having a 

velocity of 40 m/s. The cylinder is 2 m in diameter. Find out (a) circulation, (b) lift per unit length and the 

(c) position of the stagnation points.  

[394.78 m
2
 / s, 19581.29 N/m, -51.75

0
 and 231.75

0
 ]  

7. In the early attempts for the development of the aeroplane, rotating cylinders were used as the airfoils. 

Consider such a cylinder having a diameter of 1m and a length of 10 m. If this cylinder is rotated at 120 rpm 

while the plane moves at a speed of 120 km/hour through the air at 700 m standard atmosphere ( 

kg/m
3
 ), estimate the minimum lift that could be developed disregarding end effects.  

[ 3880 N]  

8. If a cylinder (placed with its axis normal to the free stream ) is to be used as a pitot-static tube for the 

measurement of the free-stream velocity, find the locations of piezo-metric holes on the cylinder  

 

Assume ideal fluid flow. The velocity components in the flow field are  

 

Note: A Pitot-static tube measures the velocity head, i.e., the difference between the stagnation pressure and 

static pressure in the flow.  

[180
0
, 210

0
]  
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Viscous Incompressible Flows 

 

 

 

 

 

 

 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 23

0 

 

General Viscosity Law  

Newton's viscosity law is  

 

(24.1)  

where,  

  = Shear Stress,  

 n is the coordinate direction normal to the solid-fluid interface, 

 μ is the coefficient of viscosity, and 

 V is velocity.  

The above law is valid for parallel flows.  

Considering Stokes' viscosity law: shear stress is proportional to rate of shear strain so that  

     (24.2a) 

 

     (24.2b) 

 

     (24.2c) 

   has two subscripts---  

first subscript : denotes the direction of the normal to the plane on which the stress acts, while the  

second subscript : denotes direction of the force which causes the stress.  

The expressions of Stokes' law of viscosity for normal stresses are  

         (24.3a)  

 

          (24.3b) 

 

          (24.3c) 

where is a proportionality factor and it is related to the second coefficient of viscosity μ1 by the 

relationship . 
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We have already seen that the thermodyamic pressure is  

Now if we add the three equations 24.3(a),(b) and (c) , we obtain, 

 

  

or  

 

(24.4)  

 For incompressible fluids,  

So, is satisfied eventually. This is known as Thermodynamic pressure.  

 For compressible fluids, Stokes' hypothesis is .  

 Invoking this to Eq. (24.4), will finally result in (same as for 

incompressible fluid).  

 Interesting historical aspects of the Stoke's assumption can be found in Truesdell 

.  

 -------------------------------------------------------------------------------------------------------------------------

---------------------------------------------  

† Truesdell , C.A. "Stoke's Principle of Viscosity", Journal of Rational Mechanics and Analysis, 

Vol.1, pp.228-231,1952. 

 -------------------------------------------------------------------------------------------------------------------------

---------------------------------------------  

 Generally, fluids obeying the ideal gas equation follow this hypothesis and they are called 

Stokesian fluids .  

 The second coefficient of viscosity, μ1 has been verified to be negligibly small.  

Substituting μ for in 24.3a, 24.3b, 24.3c we obtain  

  

          (24.5a) 

 

         (24.5b)  

 

        (24.5c)  

In deriving the above stress-strain rate relationship, it was assumed that a fluid has the following properties  
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 Fluid is homogeneous and isotropic, i.e. the relation between components of stress and those of rate 

of strain is the same in all directions.  

 Stress is a linear function of strain rate.  

 The stress-strain relationship will hold good irrespective of the orientation of the reference 

coordinate system.  

The stress components must reduce to the hydrostatic pressure "p" (typically thermodynamic pressure = 

hydrostatic pressure ) when all the gradients of velocities are zero.  

 

  This is an invariant quantity i.e. does not depend on the coordinate system used.  

  Thus it can be identified as an intrinsic property of the flow field  

  Negative sign ensures pressure decreases in the direction of flow  

  This is called hydro-static pressure and is in general different from thermodynamic pressure.  

Hydrostatic Pressure   Thermodynamic Pressure  

     

1)   Average mechanical 

pressure exerted at a 

point in the fluid  

  
 

 

Force exerted on container 

walls as fluid molecules 

coincide with it during 

their random movement  
 

2) Related to 

translational energy of 

the molecules 
 

 

Related to absolute 

temperature of the fluid 

and includes the 

vibrational and rotational 

energy as well  
 

 A pressure sensor records Thermodynamic Pressure  

 Hydrostatic Pressure and Thermodynamic Pressure are normally almost equal 

 Hence p itself can be treated as a measurable property of the flow field i.e., Thermodynamic Pressure  

Navier-Strokes Equation 

 Generalized equations of motion of a real flow named after the inventors CLMH Navier and GG 

Stokes are derived from the Newton's second law  

 Newton's second law states that the product of mass and acceleration is equal to sum of the 

external forces acting on a body.  
 External forces are of two kinds-  

 one acts throughout the mass of the body ----- body force ( gravitational force, 

electromagnetic force)  

 another acts on the boundary----------------------   surface force (pressure and 

frictional force).  

 Objective - We shall consider a differential fluid element in the flow field (Fig. 24.1).  Evaluate the surface 

forces acting on the boundary of the rectangular parallelepiped shown below.  

https://nptel.ac.in/courses/112104118/lecture-24/hyperlink/thermo_hydro_pressure.htm
https://nptel.ac.in/courses/112104118/lecture-24/hyperlink/thermo_hydro_pressure.htm
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Fig. 24.1 Definition of the components of stress and their locations in a differential fluid element  

 Let the body force per unit mass be  

 

(24.6)  

and surface force per unit volume be  

 

(24.7)  

 Consider surface force on the surface AEHD, per unit area,  

   

[Here second subscript x denotes that the surface force is evaluated for the surface whose outward normal is 

the x axis]  

 Surface force on the surface BFGC per unit area is  

 

 Net force on the body due to imbalance of surface forces on the above two surfaces is  
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                     (since area of faces AEHD and BFGC is dydz)  
(24.8)  

 Total force on the body due to net surface forces on all six surfaces is  

 

(24.9)  

 And hence, the resultant surface force dF, per unit volume, is  

                        (since Volume= dx dy dz)  
(24.10)  

 The quantities , and   are vectors which can be resolved into normal stresses denoted by 

and shearing stresses denoted by as  

 

(24.11) 
 

 

  

The stress system has nine scalar quantities. These nine quantities form a stress tensor.  

Nine Scalar Quantities of Stress System - Stress Tensor  

The set of nine components of stress tensor can be described as  

 

(24.12)  

 The  stress tensor is symmetric,  

 This means that two shearing stresses with subscripts which differ only in their sequence are equal. 

For example   

 Considering the equation of motion for instantaneous rotation of the fluid element (Fig. 24.1) about y 

axis, we can write  

 

               

where  =dxdydz is the volume of the element, is the angular acceleration  
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    is the moment of inertia of the element about y-axis  

 Since is proportional to fifth power of the linear dimensions and is proportional to the third 

power of the linear dimensions, the left hand side of the above equation and the second term on the 

right hand side vanishes faster than the first term on the right hand side on contracting the element to 

a point.  

 Hence, the result is  

 

From the similar considerations about other two remaining axes, we can write  

 

 

which has already been observed in Eqs (24.2a), (24.2b) and (24.2c) earlier.  

 Invoking these conditions into Eq. (24.12), the stress tensor becomes  

 

(24.13)  

 Combining Eqs (24.10), (24.11) and (24.13), the resultant surface force per unit volume becomes  

 

(8.14) 

  

 As per the velocity field,  

 

(24.15)  

By Newton's law of motion applied to the differential element, we can write  
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or,                   

Substituting Eqs (24.15), (24.14) and (24.6) into the above expression, we obtain  

 

(24.16a)  

 

(24.16b)  

 

(24.16c)  

Since                                

                                        

Similarly others follow. 

 So we can express , and in terms of field derivatives,  

  

 

    (24.17a) 

 

(24.17b) 

 

(24.17c) 

  

  

 These differential equations are known as Navier-Stokes equations.  

 At this juncture, discuss the equation of continuity as well, which has a general (conservative) form  

 

(24.18)  

 In case of incompressible flow ρ = constant. Therefore, equation of continuity for incompressible 

flow becomes  
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(24.19)  

 Invoking Eq. (24.19) into Eqs (24.17a), (24.17b) and (24.17c), we get  

 

Similarly others follow  

Thus,    

 

(24.20a) 

 

(24.20b) 

 

(24.20c) 

Vector Notation & derivation in Cylindrical Coordinates - Navier-Stokes equation 

 Using, vector notation to write Navier-Stokes and continuity equations for incompressible flow we 

have  

 

(24.21)  

and  

 

(24.22)  

 we have four unknown quantities, u, v, w and p ,  

 we  also have four equations, - equations of motion in three directions and the continuity 

equation.  
 In principle, these equations are solvable but to date generalized solution is not available due to the 

complex nature of the set of these equations.  

 The highest order terms, which come from the viscous forces, are linear and of second order  

  The first order convective terms are non-linear and hence, the set is termed as quasi-linear.  

 Navier-Stokes equations in cylindrical coordinate (Fig. 24.2) are useful in solving many problems. If  

, and denote the velocity components along the radial, cross-radial and axial directions 

respectively, then for the case of incompressible flow, Eqs (24.21) and (24.22) lead to the following 

system of equations: 
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FIG 24.2 Cylindrical polar coordinate and the velocity components  

   

 

  

(24.23a) 

 

  

(24.23b) 

 

  

(24.23c) 
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(24.24) 

A general way of deriving the Navier-Stokes equations from the basic laws of physics.  

 Consider a general flow field as represented in Fig. 25.1.  

 Imagine a closed control volume, within the flow field. The control volume is fixed in space and 

the fluid is moving through it. The control volume occupies reasonably large finite region of the flow 

field.  

 A control surface , A0 is defined as the surface which bounds the volume .  

 According to Reynolds transport theorem, "The rate of change of momentum for a system equals the 

sum of the rate of change of momentum inside the control volume and the rate of efflux of 

momentum across the control surface".  

 The rate of change of momentum for a system (in our case, the control volume boundary and the 

system boundary are same) is equal to the net external force acting on it.  

        Now, we shall transform these statements into equation by accounting for each term, 

 

FIG 25.1 Finite control volume fixed in space with the fluid moving through it  

 Rate of change of momentum inside the control volume  

 

  

  

   (since t is independent of space variable)  

(25.1)  

 Rate of efflux of momentum through control surface  
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(25.2)  

 Surface force acting on the control volume  

 ( is symmetric stress tensor )  
  

 

 

(25.3)  

 Body force acting on the control volume  

 

(25.4)  

in Eq. (25.4) is the body force per unit mass.  

 Finally, we get,  

 

  

 

  

or  

or,        

or      
(25.5)  

We know that is the general form of mass conservation equation (popularly known as the 

continuity equation), valid for both compressible and incompressible flows.  

 Invoking this relationship in Eq. (25.5), we obtain  
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or       
(25.6)  

 Equation (25.6) is referred to as Cauchy's equation of motion . In this equation, is the stress 

tensor,  

 

(25.7)  

 

 The specific forms for different coordinate systems can easily be obtained from Eq. (25.7).  

In a cartesian coordinate system,  

 

 
 

This is known as deformation tensor . Note that is a symmetric tensor  

 

 

(25.7)  

 

 The specific forms for different coordinate systems can easily be obtained from Eq. (25.7).  

In a cartesian coordinate system,  

 

https://nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
https://nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
https://nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
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This is known as deformation tensor . Note that is a symmetric tensor  

 

 

 

 After having substituted we get  

 

(25.8)  

From Stokes's hypothesis we get,  
(25.9)  

Invoking above two relationships into Eq.( 25.6) we get  

 

(25.10)  

This is the most general form of Navier-Stokes equation.  

Exact Solutions Of Navier-Stokes Equations  

Consider a class of flow termed as parallel flow in which only one velocity term is nontrivial and all the 

fluid particles move in one direction only.  

 We choose to be the direction along which all fluid particles travel , i.e. . 

Invoking this in continuity equation, we get  

   

 

  

  which means  

 Now. Navier-Stokes equations for incompressible flow become  

https://nptel.ac.in/courses/112104118/lecture-25/hyperlink/19-5_gen_nav_hyperlink.htm
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So, we obtain  

   which means   

and  

(25.11)  

Parallel Flow in a Straight Channel 

Consider steady flow between two infinitely broad parallel plates as shown in Fig. 25.2.  

Flow is independent of any variation in z direction, hence, z dependence is gotten rid of and Eq. (25.11) 

becomes  

 

FIG 25.2 Parallel flow in a straight channel  

 

(25.12)  

The boundary conditions are at y = b, u = 0; and y = -b, u = O.  

 From Eq. (25.12), we can write  
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or   

 Applying the boundary conditions, the constants are evaluated as  

   and   

So, the solution is  

        
 (25.13) 

          

which implies that the velocity profile is parabolic.  

Average Velocity and Maximum Velocity  

 To establish the relationship between the maximum velocity and average velocity in the channel, we 

analyze as follows  

 

At y = 0,                          ; this yields  

 

(25.14a)  

On the other hand, the average velocity,  

 

 

or  
 

 

 

 

Finally,      
  (25.14b)   

So,    or    
  (25.14c)   

 The shearing stress at the wall for the parallel flow in a channel can be determined from the velocity 

gradient as  
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Since the upper plate is a "minus y surface", a negative stress acts in the positive x direction, i.e. to the right.  

 The local friction coefficient, Cf is defined by  

 

  

 

(25.14d) 

where is the Reynolds number of flow based on average velocity and the channel height (2b).  

 Experiments show that Eq. (25.14d) is valid in the laminar regime of the channel flow.  

 The maximum Reynolds number value corresponding to fully developed laminar flow, for which a 

stable motion will persist, is 2300.  

 In a reasonably careful experiment, laminar flow can be observed up to even Re = 10,000.  

 But the value below which the flow will always remain laminar, i.e. the critical value of Re is 2300.  

Couette Flow 

Couette flow is the flow between two parallel plates (Fig. 26.1). Here, one plate is at rest and the other is 

moving with a velocity U . Let us assume the plates are infinitely large in z direction, so the z dependence is 

not there.  

The governing equation is  

 

  

flow is independent of any variation in z-direction.  

The boundary conditions are ---(i)At y = 0, u = 0 (ii)At y = h, u = U.  
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FIG 26.1 Couette flow between two parallel flat plates  

 We get,  

 

  

  

Invoking the condition (at y = 0, u = 0), becomes equal to zero.  

 

  

  

Invoking the other condition (at y = h, u = U),  

 

  

   

So,      
(26.1)  

Equation (26.1) can also be expressed in the form  

 

  

or,             
(26.2a)  

Where      

, 
  

                                                            

Equation (26.2a) describes the velocity distribution in non-dimensional form across the channel with P as a 

parameter known as the non-dimensional pressure gradient .  

 When P = 0, the velocity distribution across the channel is reduced to  
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 This particular case is known as simple Couette flow.  

 When P > 0 , i.e. for a negative or favourable pressure gradient in the direction of 

motion, the velocity is positive over the whole gap between the channel walls. For negative value of 

P ( P < 0 ), there is a positive or adverse pressure gradient in the direction of motion and the 

velocity over a portion of channel width can become negative and back flow may occur near the 

wall which is at rest. Figure 26.2a shows the effect of dragging action of the upper plate exerted on 

the fluid particles in the channel for different values of pressure gradient.  

 

FIG 26.2a - Velocity profile for the Couette flow for various values of pressure gradient  

Maximum and minimum velocities  

The quantitative description of non-dimensional velocity distribution across the channel, depicted by Eq. 

(26.2a), is shown  

in Fig. 26.2b.  

 The location of maximum or minimum velocity in the channel is found out by setting =0. 

From Eq. (26.2a), we can write  

 

  

Setting gives  

 

 26.2b    

 It is interesting to note that maximum velocity for P = 1 occurs at y/h = 1 and equals to U . For P 

> 1, the maximum velocity occurs at a location .  
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 This means that with P > 1, the fluid particles attain a velocity higher than that of the moving plate at 

a location somewhere below the moving plate.  

 For P = -1, the minimum velocity occurs,  at . For P < -1,  the minimum velocity occurs at a 

location .  

 This means that there occurs a back flow near the fixed plate. The values of maximum and minimum 

velocities can be determined by substituting the value of y from Eq. (26.2b) into Eq. (26.2a) as  

 

  

 

 

(26.2c)  

 
FIG 26.2b - Velocity distribution of the Couette flow  

                  

Hagen Poiseuille Flow 

 Consider fully developed laminar flow through a straight tube of circular cross-section as in Fig. 

26.3. Rotational symmetry is considered to make the flow two-dimensional axisymmetric.  

 Let us take z-axis as the axis of the tube along which all the fluid particles travel, i.e.  

 

 

Fig 26.3 - Hagen-Poiseuille flow through a pipe  

 Now, from continuity equation, we obtain  

    [ For rotational symmetry, ] 
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which means  

 Invoking in the  

Navier-Stokes equations, we obtain  

                        (in the z-direction)  

(26.3)  

 For steady flow, the governing equation becomes  

 

(26.4)  

The boundary conditions are- (i) At r = 0, is finite and (ii) r = R, yields  

 Equation (26.4) can be written as  

  
 

  

or, 
 

or, 
 

or, 
 

or, 
 

 

  At r =0, is finite which means A should be equal to zero and at r = R, = 0 yields  

 

  

 

 

(26.5)  

 This shows that the axial velocity profile in a fully developed laminar pipe flow is having 

parabolic variation along r.  

 At r = 0, as such,  
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(26.6a)  

 The average velocity in the channel,  

 

  

or,   

  

 

 

(26.6b)  

or  (26.6c)  

 Now, the discharge (Q) through a pipe is given by  

 

(26.7)  

or,     [From Eq. 26.6b]  
  

 

or  
(26.8)  

Applications-  

 Equation (26.8) is commonly used in the measurement of viscosity with the help of capillary tube 

viscometers . Such a viscometer consists of a constant head tank to supply liquid to a capillary tube 

(Fig. 26.4).  

 

 

 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 25

1 

FIG 26.4 Schematic diagram of the experimental facility for determination of viscosity  

 Pressure drop readings across a specified length in the developed region of the flow are taken with 

the help of a manometer. The developed flow region is ensured by providing the necessary and 

sufficient entry length.  

 From Eq. (26.8), the expression for viscosity can be written as  

 

  

  

 The volumetric flow rates (Q) are measured by collecting the liquid in a measuring cylinder. The 

diameter (D) of the capillary tube is known beforehand. Now the viscosity of a flowing fluid can 

easily be evaluated.  

 Shear stress profile across the cross-section can also be determined from this information. Shear 

stress at any point of the pipe flow is given by  

 

 

From Eq. (26.5)    

or     
(26.9a)  

which means  
(26.9b)  

This also indicates that varies linearly with the radial distance from the axis.  

 At the wall, assumes the maximum value.  

 

  

Again, over a pipe length of l , the total shear force is  

 

  

 

or  

 

  

or 

[Pressure drop between the specified length]    

as it should be. Negative sign indicates that the force is acting in opposite to the flow direction.  

 However, from Eq. (26.6b), we can write  
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(26.9c)  

or   
(26.10)  

Losses and Friction Factors  

 Over a finite length l , the head loss                           (26.11)  

Combining Eqs (26.10) and (26.11), we get  

 

 

or  

(26.12)  

 On the other hand, the head loss in a pipe flow is given by Darcy-Weisbach formula as  

 

(26.13)  

where "f" is Darcy friction factor . Equations (26.12) and (26.13) yield  

 

  

which finally gives , where is the Reynolds number.  

 So, for a fully developed laminar flow, the Darcy (or Moody) friction factor is given by  

 

(26.14a)  

Alternatively, the skin friction coefficient for Hagen-Poiseuille flow can be expressed by  

 

  

  

With the help of Eqs (26.9b) and (26.9c), it can be written  
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(26.14b)  

The skin friction coefficient Cf is called as Fanning's friction factor . From comparison of Eqs (26.14a) and 

(26.14b), it appears  

 

  

  

 For fully developed turbulent flow, the analysis is much more complicated, and we generally depend 

on experimental results. Friction factor for a wide range of Reynolds number (10
4
 to 10

8
) can be 

obtained from a look-up chart . Friction factor, for high Reynolds number flows, is also a function of 

tube surface condition. However, in circular tube, flow is laminar for Re ≤ 2300 and turbulent regime 

starts with Re ≥ 4000.  

 The surface condition of the tube is another responsible parameter in determination of friction factor.  

 Friction factor in the turbulent regime is determined for different degree of surface-roughness 

of the pipe, where is the dimensional roughness and Dh is usually the hydraulic diameter of the 

pipe .  

 Friction factors for different Reynolds number and surface-roughness have been determined 

experimentally by various investigators and the comprehensive results are expressed through a 

graphical presentation which is known as Moody Chart after L.F. Moody who compiled it.  

 The hydraulic diameter which is used as the characteristic length in determination of friction factor, 

instead of ordinary geometrical diameter, is defined as  

 

(26.15)  

where Aw is the flow area and Pw is the wetted perimeter .  

 Kinetic energy correction factor , The kinetic energy associated with the fluid flowing with its 

profile through elemental area and the total kinetic energy passing through per 

unit time .  

 This can be related to the kinetic energy due to average velocity( ), through a correction factor, α 

as  

or  
 

 Here, for Hagen-Poiseuille flow,  
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(26.16)  

Flow between Two Concentric Rotating Cylinders  

  Another example which leads to an exact solution of Navier-Stokes equation is the flow between 

two concentric rotating cylinders.  
 Consider flow in the annulus of two cylinders (Fig. 26.5), where r1 and r2 are the radii of inner and 

outer cylinders, respectively, and the cylinders move with different rotational speeds ω1 and ω2 

respectively  

.  

FIG 26.5 - Flow between two concentric rotating cylinders  

 From the physics of the problem we know, , .  

 From the continuity Eq. and these two conditions, we obtain  

 

  

which means is not a function of θ. Assume z dimension to be large enough so that end effects can be 

neglected and (any property) = 0.  

 This implies . With these simplifications and assuming that " θ symmetry" holds good, 

Navier-Stokes equation reduces to  

 

(26.17)  

and  
(26.18)  

 Equation (26.17) signifies that the centrifugal force is supplied by the radial pressure, exerted by the 

wall of the enclosure on the fluid. In other words, it describes the radial pressure distribution.  

From Eq. (26.18), we get  
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  or   
(26.19)  

 For the azimuthal component of velocity, , the boundary conditions are: at at 

.  

 Application of these boundary conditions on Eq. (26.19) will produce  

 

  

and  

 

  

   

 Finally, the velocity distribution is given by  

 

(26.20)  

Calculation of Stress and Torque Transmitted  

Now, is the general stress-strain relation.  

or     
  

 In our case,  

 

  

 

or    
(26.21)  

 Equations (26.20) and (26.21) yields  
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(26.22)  

 Now,  

 

  

and,  

 

  

  

 For the case, when the inner cylinder is at rest and the outer cylinder rotates, the torque transmitted 

by the outer cylinder to the fluid is  

 

  

or      

(26.23)  

where l is the length of the cylinder.  

 The moment T1, with which the fluid acts on the inner cylinder has the same magnitude. If the 

angular velocity of the external cylinder and the moment acting on the inner cylinder are measured, 

the coefficient of viscosity can be evaluated by making use of the Eq. (26.23).  

Low Reynolds Number Flow Around a Sphere 

 Stokes obtained the solution for the pressure and velocity field for the slow motion of a viscous fluid 

past a sphere. In his analysis, Stokes neglected the inertia terms of Navier-Stokes equations.  

 Avoiding details, integrating the pressure distribution and the shearing stress over the surface of a 

sphere of radius R , Stokes found that the drag D of the sphere, which is placed in a parallel stream of 

uniform velocity , is given by  

 

(27.1)  

This is the well-known Stokes' equation for the drag of a sphere.  

 It can be shown that one third of the total drag is due to pressure distribution and the remaining two 

third arises from frictional forces. If the drag coefficient is defined according to the relation  
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(27.2)  

where is the frontal area of the sphere, then  

 

  

 or  
(27.3)  

 A comparison between Stokes' drag coefficient in Eq. (27.3) and experiments is shown in Fig. 27.1. 

The approximate solution due to Stokes' is valid for Re < 1.  

 
 

FIG 27.1 - Comparison between Stokes' drag coefficient and experimental drag coefficient  

 An important application of Stokes' law is the determination of viscosity of a viscous fluid by 

measuring the terminal velocity of a falling sphere. In this device, a sphere is dropped in a 

transparent cylinder containing the fluid under test. If the specific weight of the sphere is close to that 

of the liquid, the sphere will approach a small constant speed after being released in the fluid. Now 

we can apply Stokes' law for steady creeping flow around a sphere where the drag force on the 

sphere is given by Eq. (27.1).  

 With the sphere, falling at a constant speed, the acceleration is zero. This signifies that the falling 

body has attained terminal velocity and we can say that the sum of the buoyant force and drag force 

is equal to weight of the body.  

 

(27.4)  

where ρs is the density of the sphere, ρl is density of the liquid and VT is the terminal velocity.  

 Solving for μ, we get  

 

(27.5)  
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The terminal velocity VT can be measured by observing the time for the sphere to cross a known distance 

between two points after its acceleration has ceased.  

heory of Hydrodynamic Lubrication 

 Thin film of oil, confined between the interspace of moving parts, may acquire high pressures up to 

100 MPa which is capable of supporting load and reducing friction. The salient features of this type 

of motion can be understood from a study of slipper bearing (Fig. 27.2). The slipper moves with a 

constant velocity U past the bearing plate. This slipper face and the bearing plate are not parallel but 

slightly inclined at an angle of . A typical bearing has a gap width of 0.025 mm or less, and the 

convergence between the walls may be of the order of 1/5000. It is assumed that the sliding surfaces 

are very large in transverse direction so that the problem can be considered two-dimensional.  

 

Fig 27.2 - Flow in a slipper bearing  

 For the analysis, we may assume that the slipper is at rest and the plate is forced to move with a 

constant velocity U .  

 The height h(x) of the wedge between the block and the guide is assumed to be very small as 

compared with the length l of the block.  

 The essential difference between this motion and that discussed in Lecture 26 (Couette flow) is that 

here the two walls are inclined at an angle to each other.  

 Due to the gradual reduction of narrowing passage, the convective acceleration is distinctly not 

zero.  

 For all practical purposes, inertia terms can be neglected as compared to viscous term. This can be 

justified in following way  

 

  

The inertia force can be neglected with respect to viscous force if the modified Reynolds number,  

 

  

 The equation for motion in y direction can be omitted since the v component of velocity is very small 

with respect to u . Besides, in the x-momentum equation, can be neglected as compared 

https://nptel.ac.in/courses/112104118/lecture-26/26-1_couette_6low.htm
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with because the former is smaller than the latter by a factor of the order of . With 

these simplifications the equations of motion reduce to  

 

(27.6)  

The equation of continuity can be written as :  

 

(27.7)  

The boundary conditions are:  

at y = 0, u = U at x = 0, p = p0 

at y = h, u = 0 and at x = l, p = p0                                                                 (27.8)  

 Integrating Eq. (27.6) with respect to y , we obtain  

 

  

  

 Application of the kinematic boundary conditions (at y=0, u =U and y = h, U=0), yields  

 

(27.9)  

Note that is constant as far as integration along y is concerned, but p and vary along x -axis.  

 At the point of maximum pressure, =0 hence  

 

(27.10)  

 Equation (27.10) depicts that the velocity profile along y is linear at the location of maximum 

pressure. The gap at this location may be denoted as h
*
.  

 Substituting Eq. (27.9) into Eq. (27.8) and integrating, we get  

 

  

  

or    
(27.11)  
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where  

 Integrating Eq. (27.11) with respect to x , we obtain  

 

(27.12a)  

or  
(27.12b)  

where    is a constant  

 Since the pressure must be the same (p = p0), at the ends of the bearing, namely, p = p0 at x = 0 

and p = p0 at x=l, the unknowns in the above equations can be determined by applying the pressure 

boundary conditions. We obtain  

 

  

 With these values inserted, the equation for pressure distribution (27.12) becomes  

 

  

or    
(27.13) 

  

 It may be seen from Eq. (27.13) that, if the gap is uniform, i.e. h = h1=h2, the gauge pressure will 

be zero. Furthermore, it can be said that very high pressure can be developed by keeping the film 

thickness very small.  

 Figure 27.2 shows the distribution of pressure throughout the bearing.  

.Theory of Hydrodynamic Lubrication... cont from previous slide  

  

 

 The total load bearing capacity per unit width is  

 

  

After substituting h=h1 - αx with α=(h1-h2)/ l in the above equation and performing the integration,  

 

(27.14)  
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 The shear stress at the bearing plate is  

 

(27.15)  

Substituting the value of from Eq. (27.14) and then invoking the value of Q in Eq. (27.15), the final 

expression for shear stress becomes  

 

  

 The drag force required to move the lower surface at speed U is expressed by  

 

(27.16)  

 Michell thrust bearing, named after A.G.M. Michell, works on the principles based on the theory of 

hydrodynamic lubrication . The journal bearing (Fig. 27.3) develops its force by the same action, 

except that the surfaces are curved.  

 

FIG 27.3 Hydrodynamic action of a journal bearing  

Exercise Problems  -  Chapter 8  

1. Water flows between two very large horizontal parallel flat plates 30 mm apart. If the average velocity of 

water is 0.2 m/s, what is the shear stress  

(a) at the lower plate and  

(b) at the middle plane? 

Take  

(a) 0.022 N/m
2
         (b) 0 

2. A viscous fluid flows steadily, parallel to the axis in the annular space between two coaxial cylinders 

having radii r1 and r2 respectively. Show that the volumetric flow rate is given by 
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where n=r2/r1 

3. An endless belt passes upward through a chemical both with speed V and drags a layer of liquid of 

thickness H, density ρ, and viscosity μ . Gravity pulls the liquid down, however, the upward movement of 

the belt keeps it from running off. Assuming laminar and fully developed flow, solve the velocity 

distribution across the layer of liquid, if the atmosphere exerts no-shear on its surface. Also determine the 

rate at which the liquid is being dragged up by the belt.  

4. Derive a formula for the terminal velocity of a sphere with Re (based on the diameter) much less than 1. 

Apply the result to the settlement speed of blood cells in plasma, using a radius of 3 ×10
-3

 mm for the cell, a 

difference of densities between cell and the plasma of 0.07 ×10
-6

 kg/mm
3
, a plasma viscosity of 1.27 ×10

-3
 

Ns/m
2
  

This problem should be considered as a take-home assignment  

5. Refer to Figure 27.4. This problem illustrates the secret of the strength of cello-tape joints.  

 

Figure 27.4  

A disc of radius r is at a uniform distance h from a large flat plate, and the gap h is filled with a viscous 

liquid. The disc moves upwards at v =dh/dt, in response to a central force F. Due to the symmetry of the 

problem (in the θ direction), the governing equations are  

Continuity: 
 

momentum: 

 

a)  Show that if and inertia terms can be neglected in the momentum equations and we 

get the following : 

Continuity Equation remains unchanged  
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b) Solve these differential equations to get 

 

c) Estimate F if R=1 cm, h =0.1 mm  

6.Find the load that the following step bearing (Figure 27.5) can carry:  

 

Figure 27.5  

The gap is uniform (=h1 ) over length B1 and also uniform over length B2 .  

  Recap 

   In this course you have learnt the following 

  

 The boundary layer is the thin layer of fluid adjacent to the solid surface. Phenomenologically, 

the effect of viscosity is very prominent within this layer.  

  

 The main-stream velocity undergoes a change from zero at the solid surface to the full 

magnitude through the boundary layer.Effectively, the boundary layer theory is a complement 

to the inviscid flow theory.  

  

 The governing equation for the boundary layer can be obtained through correct reduction of 

the Navier-Stokes equations within the thin layer referred above. There is no variation in 

pressure in y direction within the boundary layer.  

  

 The pressure is impressed on the boundary layer by the outer inviscid flow which can be 

calculated using Bernoulli's equation.  

  

 The boundary layer equation is a second order non-linear partial differential equation. The 

exact solution of this equation is known as similarity solution. For the flow over a flat plate, 

the similarity solution is often referred to as Blasius solution. Complete analytical treatment of 

this solution is beyond the scope of this text. However, the momentum integral equation can be 
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derived from the boundary layer equation which is amenable to analytical treatment.  

  

 The solutions of the momentum integral equation are called approximate solutions of the 

boundary layer equation.  

  

 The boundary layer equations are valid up to the point of separation. At the point of separation, 

the flow gets detached from the solid surface due to excessive adverse pressure gradient.  

  

 Beyond the point of separation, the flow reversal produces eddies. During flow past bluff-

bodies, the desired pressure recovery does not take place in a separated flow and the situation 

gives rise to pressure drag or form drag.  
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Laminar Boundary Layers 
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Introduction 

 The boundary layer of a flowing fluid is the thin layer close to the wall  

 In a flow field, viscous stresses are very prominent within this layer.  

 Although the layer is thin, it is very important to know the details of flow within it.  

 The main-flow velocity within this layer tends to zero while approaching the wall (no-slip 

condition).  

 Also the gradient of this velocity component in a direction normal to the surface is large as compared 

to the gradient in the streamwise direction.  

Boundary Layer Equations 

 In 1904, Ludwig Prandtl, the well known German scientist, introduced the concept of boundary 

layer and derived the equations for boundary layer flow by correct reduction of Navier-Stokes 

equations. 

 He hypothesized that for fluids having relatively small viscosity, the effect of internal friction in 

the fluid is significant only in a narrow region surrounding solid boundaries or bodies over 

which the fluid flows. 

 Thus, close to the body is the boundary layer where shear stresses exert an increasingly larger 

effect on the fluid as one moves from free stream towards the solid boundary.  

 However, outside the boundary layer where the effect of the shear stresses on the flow is small 

compared to values inside the boundary layer (since the velocity gradient  is negligible),-

--------  

1. the fluid particles experience no vorticity and therefore, 

2. the flow is similar to a potential flow. 

 Hence, the surface at the boundary layer interface is a rather fictitious one, that divides rotational 

and irrotational flow. Fig 28.1 shows Prandtl's model regarding boundary layer flow. 

 Hence with the exception of the immediate vicinity of the surface, the flow is frict ionless (inviscid) 

and the velocity is U (the potential velocity).  

 In the region, very near to the surface (in the thin layer), there is friction in the flow which signifies 

that the fluid is retarded until it adheres to the surface (no-slip condition).  

 The transition of the mainstream velocity from zero at the surface (with respect to the surface) to full 

magnitude takes place across the boundary layer.  

About the boundary layer                 

 Boundary layer  thickness is which is a function of the coordinate direction x .  

 The thickness is considered to be very small compared to the characteristic length L of the 

domain.  

 In the normal direction, within this thin layer, the gradient is very large compared to the 

gradient in the flow direction .  
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          Now we take up the Navier-Stokes equations for : steady, two dimensional, laminar, incompressible 

flows.                      

Considering the Navier-Stokes equations together with the equation of continuity, the following dimensional 

form is obtained.  

 

(28.1) 

 

(28.2) 

 

(28.3) 

 
                               Fig 28.1 Boundary layer and Free Stream for Flow Over a flat plate  

 u - velocity component along  x direction. 

 v - velocity component along y direction  

 p - static pressure 

 ρ - density. 

 μ - dynamic viscosity of the fluid 

 The equations are now non-dimensionalised.  

  The length and the velocity scales are chosen as L and respectively.  

 The non-dimensional variables are:  

                                                       

 

                                                                             

where is the dimensional free stream velocity and the pressure is non-dimensionalised by twice 

the dynamic pressure .  

Using these non-dimensional variables, the Eqs (28.1) to (28.3) become  

       click for details  

 

 

(28.4) 

https://nptel.ac.in/courses/112104118/lecture-28/hyperlink/nav_stroke_eqn.htm
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  on-
Dimensi
onal 
Navier 

Stokes Equations  

    

    

    

    

    

    

                                  [where is the Reynolds number ]  

Others follow similarly  

 

   

where the Reynolds number,  

                                                                     

Order of Magnitude Analysis 

    

    

  

(28.5) 

  

(28.6) 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 26

9 

 Let us examine what happens to the u velocity as we go across the boundary layer.  

At the wall the u velocity is zero [ with respect to the wall and absolute zero for a stationary wall 

(which is normally implied if not stated otherwise)].  

The value of u on the inviscid side, that is on the free stream side beyond the boundary layer is U. 

For the case of external flow over a flat plate, this U is equal to .  

 Based on the above, we can identify the following scales for the boundary layer variables:  

                                                                                        

Variable Dimensional scale Non-dimensional scale 

 

 

 

 
  

 
  

  

The symbol describes a value much smaller than 1.  

 Now we analyse equations 28.4 - 28.6, and look at the order of magnitude of each individual term 

     Eq 28.6 - the continuity equation 

 

     One general rule of incompressible fluid mechanics is that we are not allowed to drop any term from 

the continuity equation. 

 From the scales of boundary layer variables, the derivative is of the order 1. 

 The second term in the continuity equation should also be of the order 

1.The reason being has to be of the order because becomes at its 

maximum. 

     Eq 28.4 - x direction momentum equation  

   Inertia terms are of the order 1.  

   is of the order 1  

     is of the order .  

However after multiplication with 1/Re, the sum of the two second order derivatives should produce at least 

one term which is of the same order of       magnitude as the inertia terms. This is possible only if the 

Reynolds number (Re) is of the order of .  

 It follows from  that will not exceed the order of 1 so as to be in balance with the 

remaining term. 

 Finally, Eqs (28.4), (28.5) and (28.6) can be rewritten as  

 

(28.4) 
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(28.5) 

 

 

  

 

 

(28.6) 

 

  

As a consequence of the order of magnitude analysis, can be dropped from the x direction 

momentum equation, because on multiplication with it assumes the smallest order of magnitude.  

  Eq 28.5 - y direction momentum equation. 

 All the terms of this equation are of a smaller magnitude than those of Eq. (28.4).  

 This equation can only be balanced if is of the same order of magnitude as other terms.  

 Thus they momentum equation reduces to  

 

(28.7) 

 This means that the pressure across the boundary layer does not change. The pressure is 

impressed on the boundary layer, and its value is determined by hydrodynamic considerations.  

 This also implies that the pressure p is only a function of x. The pressure forces on a body are 

solely determined by the inviscid flow outside the boundary layer. 

 The application of Eq. (28.4) at the outer edge of boundary layer gives 

 

(28.8a) 

 In dimensional form, this can be written as 

          

 

(28.8b) 

                 

On integrating Eq ( 28.8b) the well known Bernoulli's equation is obtained  

a constant  
 (28.9) 
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 Finally, it can be said that by the order of magnitude analysis, the Navier-Stokes equations are 

simplified into equations given below.  

 

(28.10) 

  

 

(28.11) 

  

 

(28.12) 

  

 These are known as Prandtl's boundary-layer equations.  

 The available boundary conditions are:  

Solid surface 

    

  

or 
 

(28.13) 

Outer edge of boundary-layer 

 

  

 

or 
 

(28.14)  

   

 The unknown pressure p in the x-momentum equation can be determined from Bernoulli's Eq. (28.9), 

if the inviscid velocity distribution U(x) is also known.  

We solve the Prandtl boundary layer equations for and with U obtained from the outer 

inviscid flow analysis. The equations are solved by commencing at the leading edge of the body and moving 

downstream to the desired location 

 it allows  the no-slip boundary condition to be satisfied which constitutes a significant improvement 

over the potential flow analysis while solving real fluid flow problems.   

 The Prandtl boundary layer equations are thus a simplification of the Navier-Stokes equations.  

Boundary Layer Coordinates 

 The boundary layer equations derived are in Cartesian coordinates. 
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 The Velocity components u and v represent x and y direction velocities respectively. 

 For objects with small curvature, these equations can be used with -  

 x coordinate : streamwise direction 

 y coordinate : normal component  

 They are called Boundary Layer Coordinates. 

Application of Boundary Layer Theory  

 The Boundary-Layer Theory is not valid beyond the point of separation. 

 At the point of separation, boundary layer thickness becomes quite large for the thin layer 

approximation to be valid. 

 It is important to note that boundary layer theory can be used to locate the point of seperation itself. 

 In applying the boundary layer theory although U is the free-stream velocity at the outer edge of the 

boundary layer, it is interpreted as the fluid velocity at the wall calculated from inviscid flow 

considerations ( known as Potential Wall Velocity)  

 Mathematically, application of the boundary - layer theory converts the character of governing 

Navier-Stroke equations from elliptic to parabolic 

 This allows the marching in flow direction, as the solution at any location is independent of the 

conditions farther downstream.  

Blasius Flow Over A Flat Plate  

 The classical problem considered by H. Blasius was  

1. Two-dimensional, steady, incompressible flow over a flat plate at zero angle of incidence 

with respect to the uniform stream of velocity .  

2. The fluid extends to infinity in all directions from the plate.   

The physical problem is already illustrated in Fig. 28.1  

 Blasius wanted to determine  

(a) the velocity field solely within the boundary layer,  

(b) the boundary layer thickness ,  

(c) the shear stress distribution on the plate, and  

(d) the drag force on the plate.  

 The Prandtl boundary layer equations in the case under consideration are  

                                                               

 

(28.15)  

 

  

The boundary conditions are  

 

(28.16) 
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 Note that the substitution of the term in the original boundary layer momentum equation in 

terms of the free stream velocity produces which is equal to zero.  

 Hence the governing Eq. (28.15) does not contain any pressure-gradient term.  

 However, the characteristic parameters of this problem are  that is,  

 This relation has five variables . 

 It involves two dimensions, length and time.  

 Thus it can be reduced to a dimensionless relation in terms of (5-2) =3 quantities ( Buckingham Pi 

Theorem) 

 Thus a similarity variables can be used to find the solution  

 Such flow fields are called self-similar flow field .  

Law of Similarity for Boundary Layer Flows  

 

 It states that the u component of velocity with two velocity profiles of u(x,y) at different x 

locations differ only by scale factors in u and y .   

 Therefore, the velocity profiles u(x,y) at all values of x can be made congruent if they are 

plotted in coordinates which have been made dimensionless with reference to the scale 

factors. 

 The local free stream velocity U(x) at section x is an obvious scale factor for u, because 

the dimensionless u(x) varies between zero and unity with y at all sections.  

 The scale factor for y , denoted by g(x) , is proportional to the local boundary layer 

thickness so that y itself varies between zero and unity.  

 Velocity at two arbitrary x locations, namely x1 and x2 should satisfy the equation  

                  
  (28.17)  

 Now, for Blasius flow, it is possible to identify g(x) with the boundary layers thickness δ 

we know  

 

  

Thus in terms of x we get                                    

 

  

 

  

  i.e.,                                                                     
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(28.18)  

where         

or more precisely,  

 

(28.19)  

 

  

 

  

The stream function can now be obtained in terms of the velocity components as  

 

  

or  

 

(28.20)  

 

where D is a constant. Also  and the constant of integration is zero if the stream 

function at the solid surface is set equal to zero.  

Now, the velocity components and their derivatives are:  

 

(28.21a)  

 

   

                 or       

 

(28.21b)  
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(28.21c)  

 

  

 

(28.21d)  

 

  

 

 

(28.21e)  

  

  Substituting (28.2) into (28.15), we have 

  

 

  

 

  

  

or, 

 

where 

(28.22)  

 

and  

 

  

This is known as Blasius Equation . 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 27

6 

Contd. from Previous Slide  

        

 The boundary conditions as in Eg. (28.16), in combination with Eg. (28.21a) and (28.21b) 

become 

at , therefore    

 

         

at   therefore      

  

(28.23)  

 

Equation (28.22) is a third order nonlinear differential equation . 

 Blasius obtained the solution of this equation in the form of series expansion through 

analytical techniques  

 We shall not discuss this technique. However, we shall discuss a numerical technique to 

solve the aforesaid equation which can be understood rather easily.  

 Note that the equation for does not contain .   

 Boundary conditions at and merge into the condition 

. This is the key feature of similarity solution.  
 We can rewrite Eq. (28.22) as three first order differential equations in the following way  

 

(28.24a)  

 

(28.24b)  

 

(28.24c)  

 Let us next consider the boundary conditions.  

1. The condition remains valid.  

2. The condition means that .  

3. The condition  gives us .  

Note  that the equations for f and G have initial values. However, the value for H(0) is not known. 

Hence, we do not have a usual initial-value problem.  

Shooting Technique  
 

We handle this problem as an initial-value problem by choosing values of and solving by 

numerical methods , and .  

 

In general, the condition will not be satisfied for the function arising from the 

numerical solution.  

We then choose other initial values of so that eventually we find an which results in 
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.  

This method is called the shooting technique .  

 In Eq. (28.24), the primes refer to differentiation wrt. the similarity variable . The 

integration steps following Runge-Kutta method are given below. 

 

(28.25a)  

 

(28.25b)  

 

(28.25c)  

 

 One moves from to . A fourth order accuracy is preserved if h is constant 

along the integration path, that is, for all values of n . The values of k, l and 

m are as follows.  

 For generality let the system of governing equations be  

 

  

 

  

 

  

 

  

 

  

 

  

 

  

   

In a similar way K3, l3, m3 and k4, l4, m4 mare calculated following standard formulae for the 

Runge-Kutta integration. For example, K3 is given by 

The functions F1, F2and F3 are G, H , - 

f H / 2 respectively. Then at a distance from the wall, we have  

 

(28.26a)  

 

(28.26b)  

 

(28.26c)  

 

(28.26d)  

 As it has been mentioned earlier is unknown. It must be determined 
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such that the condition is satisfied.  

The condition at infinity is usually approximated at a finite value of  (around ). The 

process of obtaining accurately involves iteration and may be calculated using the procedure 

described below.  

 For this purpose, consider Fig. 28.2(a) where the solutions of versus for two different 

values of are plotted.  

The values of are estimated from the curves and are plotted in Fig. 28.2(b).  

 The value of now can be calculated by finding the value at which the line 1-2 

crosses the line By using similar triangles, it can be said that 

. By solving this, we get .  

 Next we repeat the same calculation as above by using and the better of the two 

initial values of . Thus we get another improved value . This process may 

continue, that is, we use and as a pair of values to find more improved values 

for , and so forth. The better guess for H (0) can also be obtained by using the 

Newton Raphson Method. It should be always kept in mind that for each value of , 

the curve versus is to be examined to get the proper value of .  

 The functions and are plotted in Fig. 28.3.The velocity 

components, u and v inside the boundary layer can be computed from Eqs (28.21a) and 

(28.21b) respectively. 

 A sample computer program in FORTRAN follows in order to explain the solution 

procedure in greater detail. The program uses Runge Kutta integration together with the 

Newton Raphson method 

Download the program  

******************************************************************** 

*****  Calculation of Velocity Boundary Layer over a flat plate *****               

********************************************************************** 

      

  

 real A,kf,kY,kZ 
 dimension eta(500),Y(500),Z(500),kf(500),kY(500),kZ(500),f(500), 

     t q(500),err(500) 

       

 open (unit=1,file='velocity_bl.dat') 

       

 

*********************************************************************    

***** Equations for Velocity boundary layers over a flat plate  ***** 

*****                 f'=Y                                      *****  

*****                 Y'=Z                                      ***** 

*****                 Z'=-(1./2.)fZ                             ***** 

*****  BC's: @eta=0,f=f'=0,Z=A(guessed) ; @eta=INF.,Y=1         ***** 
***** A is the guessed value for Z at eta=0                     ***** 

***** Runge kuuta method is used to fing f,Y,Z                  ***** 

********************************************************************* 

  

https://nptel.ac.in/courses/112104118/lecture-28/flat%20plate.F.txt
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  A=1. 

 

  i=0 

       h=0.05 

   1   Z(1)=A 
       i=i+1 

           

     

           Y(1)=0  

      f(1)=0 

      eta(1)=0 

 

      do 2  n=1,150 

        kf(1)=Y(n) 

       kY(1)=Z(n) 

    kZ(1)=-(1./2.)*Z(n)*f(n) 

          
    kf(2)=(Y(n)+(h/2.)*kY(1)) 

    kY(2)=(Z(n)+(h/2.)*kZ(1)) 

    kZ(2)=-(1./2.)*(Z(n)+(h/2.)*kZ(1))*(f(n)+(h/2.)*kf(1)) 

     

    kf(3)=(Y(n)+(h/2.)*kY(2)) 

    kY(3)=(Z(n)+(h/2.)*kZ(2)) 

    kZ(3)=-(1./2.)*(Z(n)+(h/2.)*kZ(2))*(f(n)+(h/2.)*kf(2)) 

     

    kf(4)=(Y(n)+h*kY(3)) 

    kY(4)=(Z(n)+h*kZ(3)) 

    kZ(4)=-(1./2.)*(Z(n)+h*kZ(3))*(f(n)+h*kf(3)) 
     

    eta(n+1)=eta(n)+h 

     

    f(n+1)=f(n)+h*(kf(1)+2*kf(2)+2*kf(3)+kf(4))/6 

    Y(n+1)=Y(n)+h*(kY(1)+2*kY(2)+2*kY(3)+kY(4))/6 

    Z(n+1)=Z(n)+h*(kZ(1)+2*kZ(2)+2*kZ(3)+kZ(4))/6 

         

    2  continue 

 

  

 

      q(i)=A 
      err(i)=(1.-Y(91)) 

 

*************************************************************************** 

*****     We Are using Newton Rapson mathod to find A_impproved       ***** 

*****              A_improved=A-(Y(A)-1)/(dY/dA)                      *****  

*****     Here,      Y(A)-1=err(i)                                    ***** 

*****                dY/dA=err(i)-err(i-1)/q(i)-q(i-1)                ***** 

*************************************************************************** 

  

 if (i.eq.1) then 

       A=A+0.05 
       goto 1 

 else 

 

      if (i.eq.3) then 

             if (err(2).lt.err(1)) then 

                  A_improved=q(2)-((q(3)-q(2))*err(2)/(err(3)-err(2))) 

             else                  

             A_improved=q(1)-((q(3)-q(1))*err(1)/(err(3)-err(1))) 

             endif 

 

      else 

      A_improved=q(i-1)-((q(i)-q(i-1))*err(i-1)/(err(i)-err(i-1))) 
      endif 
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 endif 

  

  
      if (abs(err(i)).gt.0.0001) then  

      A =A_improved 

           goto 1 

      else 

 

  write (1,10) 

  10  format(1x,'SOLUTION OF HYDRODYNAMIC BOUNDARY LAYER FOR FLOW OVER  

     d FLAT PlATE'/) 

    

       

 

 write(1,20) 
 write (1,30) 

  30  format (4x,'ETA',6x,'[F]',6x,'[FPRIME]',4x,'[F"]') 

          

 write (1,20) 

  20  format ('____________________________________________________') 

 write(1,40)(eta(x),f(x),Y(x),Z(x),x=1,150)  

      

  40  format(f10.6,f10.6,1x,f10.6,2x,f8.6) 

  

      endif 

      stop 
 end  
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  Fig 28.2     Correcting the initial guess for H(O)  

 

 

 
Fig 28.3      f, G and H distribution in the boundary layer  

 

 Measurements to test the accuracy of theoretical results were carried out by many 

scientists. In his experiments, J. Nikuradse, found excellent agreement with the theoretical 

results with respect to velocity distribution within the boundary layer of a stream 

of air on a flat plate.  

 In the next slide we'll see some values of the velocity profile shape 
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and in tabular format.  

 

Values of the velocity profile shape  

      Table 28.1 The Blasius Velocity Profile  

 

 

         

   

                  

                          

0 0  0  0.33206  

0.2  0.00664  0.006641  0.33199  

0.4  0.02656  0.13277  0.33147  

0.8  0.10611  0.26471  0.32739  

1.2  0.23795  0.39378  0.31659  

1.6  0.42032  0.51676  0.29667  

2.0  0.65003  0.62977  0.26675  

2.4  0.92230  0.72899  0.22809  

2.8  1.23099  0.81152  0.18401  

3.2  1.56911  0.87609  0.13913  

3.6  1.92954  0.92333  0.09809  

4.0  2.30576  0.95552  0.06424  

4.4  2.69238  0.97587  0.03897  

4.8  3.08534  0.98779  0.02187  

5.0  3.28329  0.99155  0.01591  

8.8  7.07923  1.00000  0.00000  
 

                                    

Wall Shear Stress  

 With the profile known, wall shear can be evaluated as  
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Now,      
 

  

or 

 

  

or  

 

  

     from Table 28.1    

 

         (Wall Shear Stress)  

(29.1a)  

and the local skin friction coefficient is  

 Substituting from (29.1a) we get  

                                

         (Skin Friction Coefficient)  

(29.1b)  

  

 In 1951, Liepmann and Dhawan , measured the shearing stress on a flat plate directly. 

Their results showed a striking confirmation of Eq. (29.1).  

 Total frictional force per unit width for the plate of length L is  

 

  

 

  

or                  

 

  

   

or            
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(29.2)  

and the average skin friction coefficient is  

 

(29.3)  

where, .  

For a flat plate of length L in the streamwise direction and width w perpendicular to the flow, the 

Drag D would be  

 

 (29.4) 

  

    

Let us do an Example  

 

 

Example  

 

The above engineering system shows a series of thin parallel plates aligned with the intake flows. The plate 

spacing is h and the plate length is L.  

Assume that the flow is incompressible. Derive expression for the pressure drop pin-pout between inflow 

and outflow streams for the high velocity flow where a boundary layer develops on each surface 

independent of adjacent plates. 

Solution. 

The drag force on each plate is 

https://nptel.ac.in/courses/112104118/lecture-29/hyperlink/29-1_wall_shear_examp.htm
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Now choosing one channel as control volume  

 

 

or,      

 

or,          independent of the width of the plate  

Boundary Layer Thickness 

 Since , it is customary to select the boundary layer thickness as that 

point where approaches 0.99.  

 From Table 28.1, reaches 0.99 at η= 5.0 and we can write       

 

            

(29.5)  

  

 However, the aforesaid definition of boundary layer thickness is somewhat arbitrary, a physically 

more meaningful measure of boundary layer estimation is expressed through displacement thickness 

.  

 
                         Fig. 29.1   (Displacement thickness)     (b) Momentum thickness  

 Displacement thickness : It is defined as the distance by which the external potential flow is 

displaced outwards due to the decrease in velocity in the boundary layer. 
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Therefore,  

(29.6) 

 

  

  

 Substituting the values of and from Eqs (28.21a) and (28.19) into Eq.(29.6), we obtain  

 

  

or,   

    

(29.7)  

Following the analogy of the displacement thickness, a momentum thickness may be defined.   

Momentum thickness ( ): It  is defined as the loss of momentum in the boundary layer as compared 

with that of potential flow. Thus  

     

  

 

(29.8) 

With the substitution of and from Eg. (28.21a) and (28.19), we can evaluate numerically the value 

of for a flat plate as  

 

 

                          

(29.9)  

The relationships between have been shown in Fig. 29.1.  

Momentum-Integral Equations For The Boundary Layer 

 To employ boundary layer concepts in real engineering designs, we need approximate methods that 

would quickly lead to an answer even if the accuracy is somewhat less.   
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 Karman and Pohlhausen devised a simplified method by satisfying only the boundary conditions 

of the boundary layer flow rather than satisfying Prandtl's differential equations for each and every 

particle within the boundary layer. We shall discuss this method herein.  

 Consider the case of  steady, two-dimensional and incompressible flow, i.e. we shall refer to Eqs 

(28.10) to (28.14). Upon integrating the dimensional form of Eq. (28.10) with respect to y = 0 (wall) 

to y = δ (where δ signifies the interface of the free stream and the boundary layer), we obtain    

 

  

or,         

(29.10)  

 

 The second term of the left hand side can be expanded as  

 

 

or,   by continuity equation  

 

or,   

(29.11)  

 

 Substituting Eq. (29.11) in Eq. (29.10) we obtain  

 

(29.12)  

 Substituting the relation between and the free stream velocity for the inviscid zone in Eq. 

(29.12) we get 

 

 

 

             

which is reduced to              
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 Since the integrals vanish outside the boundary layer, we are allowed to increase the integration limit 

to infinity (i.e . ) 

 

 

or,    

(29.13)  

 Substituting Eq. (29.6) and (29.7) in Eq. (29.13) we obtain  

 

(29.14)  

where     is the displacement thickness  

  

is momentum thickness  

   

 

Equation (29.14) is known as momentum integral equation for two dimensional incompressible 

laminar boundary layer. The same remains valid for turbulent boundary layers as well.  

Needless to say, the wall shear stress will be different for laminar and turbulent flows.  

 The term signifies space-wise acceleration of the free stream. Existence of this term means 

that free stream pressure gradient is present  in the flow direction.  

 For example,  we get finite value of outside the boundary layer in the entrance region of a 

pipe or a channel. For external flows, the existence of depends on the shape of the body.  

 During the flow over a flat plate, and the momentum integral equation is reduced to  

 

(29.15) 

Seperation of Boundary Layer 

 It has been observed that the flow is reversed at the vicinity of the wall under certain conditions.  

 The phenomenon is termed as separation of boundary layer.  
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 Separation takes place due to excessive momentum loss near the wall in a boundary layer trying 

to move downstream against increasing pressure, i.e., , which is called adverse pressure 

gradient.  
 Figure 29.2 shows the flow past a circular cylinder, in an infinite medium.  

1. Up to , the flow area is like a constricted passage and the flow behaviour is 

like that of a nozzle. 

2. Beyond the flow area is diverged, therefore, the flow behaviour is much 

similar to a diffuser 

This dictates the inviscid pressure distribution on the cylinder which is shown by a firm line in Fig. 

29.2.   

Here    

  :  pressure in the free stream   

   :  velocity in the free stream and   

      : is the local pressure on the cylinder.  

 

 
Fig. 29.2   Flow separation and formation of wake behind a circular cylinder 

 Consider the forces in the flow field.   

In the inviscid region,  
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1. Until the pressure force and the force due to streamwise acceleration i.e. 

inertia forces are acting in the same direction (pressure gradient being 

negative/favourable) 

2. Beyond , the pressure gradient is positive or adverse. Due to the adverse 

pressure gradient the pressure force and the force due to acceleration will be opposing 

each other in the in viscid zone of this part. 

  

So long as no viscous effect is considered, the situation does not cause any sensation.   

In the viscid region (near the solid boundary),   

1. Up to , the viscous force opposes the combined pressure force and the force 

due to acceleration. Fluid particles overcome this viscous resistance due to 

continuous conversion of pressure force into kinetic energy. 

2. Beyond , within the viscous zone, the flow structure becomes different. It is 

seen that the force due to acceleration is opposed by both the viscous force and 

pressure force. 

 Depending upon the magnitude of adverse pressure gradient, somewhere around , the fluid 

particles, in the boundary layer are separated from the wall and driven in the upstream direction. 

However, the far field external stream pushes back these separated layers together with it and 

develops a broad pulsating wake behind the cylinder. 

 The mathematical explanation of flow-separation : The point of separation may be defined as the 

limit between forward and reverse flow in the layer very close to the wall, i.e., at the point of 

separation  

 

(29.16) 

  

This means that the shear stress at the wall, . But at this point, the adverse pressure continues 

to exist and at the downstream of this point the flow acts in a reverse direction resulting in a back 

flow. 

 We can also explain flow separation using the argument about the second derivative of velocity u at 

the wall. From the dimensional form of the momentum  at the wall, where u = v = 0, we can write  

 

(29.17) 

  

 Consider the situation due to a favourable pressure gradient where we have,  

1.   . (From Eq. (29.17)) 

2. As we proceed towards the free stream, the velocity u approaches  asymptotically, 

so   decreases at a continuously lesser rate in y direction. 

3.  This means that remains less than zero near the edge of the boundary layer. 
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4.  The curvature of a velocity profile is always negative as shown in (Fig. 29.3a) 

      Consider the case of adverse pressure gradient,  

1. At the boundary, the curvature of the profile must be positive (since ).  

2. Near the interface of boundary layer and free stream the previous argument regarding 

and still holds good and the curvature is negative. 

3.  Thus we observe that for an adverse pressure gradient, there must exist a point for which 

. This point is known as point of inflection of the velocity profile in the 

boundary layer as shown in Fig. 29.3b 

4. However, point of separation means at the wall. 

5.   at the wall since separation can only occur due to adverse pressure gradient. 

But we have already seen that at the edge of the boundary layer, . It is therefore, 

clear that if there is a point of separation, there must exist a point of inflection in the 

velocity profile.  

 
Fig. 29.3  Velocity distribution within a boundary layer 

              

              (a) Favourable pressure gradient,  

               (b) adverse pressure gradient,  

1. Let us reconsider the flow past a circular cylinder and continue our discussion on the wake behind 

a cylinder. The pressure distribution which was shown by the firm line in Fig. 21.5 is obtained from 
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the potential flow theory. However. somewhere near (in experiments it has been observed 

to be at ) . the boundary layer detaches itself from the wall. 
2. Meanwhile, pressure in the wake remains close to separation-point-pressure since the eddies 

(formed as a consequence of the retarded layers being carried together with the upper layer through 

the action of shear) cannot convert rotational kinetic energy into pressure head. The actual pressure 

distribution is shown by the dotted line in Fig. 29.3. 

3. Since the wake zone pressure is less than that of the forward stagnation point (pressure at point 

A in Fig. 29.3), the cylinder experiences a drag force which is basically attributed to the pressure 

difference.  

 The drag force, brought about by the pressure difference is known as form drag whereas the 

shear stress at the wall gives rise to skin friction drag. Generally, these two drag forces together 

are responsible for resultant drag on a body 

  

 

Karman-Pohlhausen Approximate Method For Solution Of Momentum Integral 

Equation Over A Flat Plate  

 The basic equation for this method is obtained by integrating the x direction momentum equation 

(boundary layer momentum equation) with respect to y from the wall (at y = 0) to a distance 

which is assumed to be outside the boundary layer. Using this notation, we can rewrite the Karman 

momentum integral equation as  

 

(30.1)  

 The effect of pressure gradient is described by the second term on the left hand side. For pressure 

gradient surfaces in external flow or for the developing sections in internal flow, this term 

contributes to the pressure gradient.  

 We assume a velocity profile which is a polynomial of . being a form of similarity 

variable , implies that with the growth of boundary layer as distance x varies from the leading 

edge, the velocity profile remains geometrically similar.  
 We choose a velocity profile in the form 

 

(30.2)  

  

In order to determine the constants we shall prescribe the following boundary 

conditions  

 

(30.3a)  

 

(30.3b)  
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 at  

 

(30.3c)  

 at  

 

(30.3d)  

  

 These requirements will yield      respectively 

Finally, we obtain the following values for the coefficients in Eq. (30.2),  

 

and the velocity profile becomes  

 

(30.4)  

 For flow over a flat plate, and the governing Eq. (30.1) reduces to  

 

(30.5)  

 Again from Eq. (29.8), the momentum thickness is  

        

  

 

  

 

  

     

  The wall shear stress is given by 

 

  

 

  

   
  

 Substituting the values of and in Eq. (30.5) we get,    
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(30.6) 

where C1 is any arbitrary unknown constant.  

 The condition at the leading edge (   ) yields        

Finally we obtain,  

 

(30.7)  

 

  

 

(30.8)  

 This is the value of boundary layer thickness on a flat plate. Although, the method is an approximate 

one, the result is found to be reasonably accurate. The value is slightly lower than the exact solution 

of laminar flow over a flat plate . As such, the accuracy depends on the order of the velocity 

profile. We could have have used a fourth order polynomial instead --  

 

(30.9)  

 In addition to the boundary conditions in Eq. (30.3), we shall require another boundary condition at 

 

 This yields the constants as . Finally the velocity profile will be      

 

 Subsequently, for a fourth order profile the growth of boundary layer is given by  

 

(30.10)  

Integral Method For Non-Zero Pressure Gradient Flows  
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 A wide variety of "integral methods" in this category have been discussed by Rosenhead . The 

Thwaites method  is found to be a very elegant method, which is an extension of the method due to 

Holstein and Bohlen . We shall discuss the Holstein-Bohlen method in this section.  

 This is an approximate method for solving boundary layer equations for two-dimensional 

generalized flow. The integrated  Eq. (29.14) for laminar flow with pressure gradient can be written 

as  

 

or  

 

(30.11)  

 The velocity profile at the boundary layer is considered to be a fourth-order polynomial in terms of 

the dimensionless distance , and is expressed as  

 

The boundary conditions are  

 

 

 

 A dimensionless quantity, known as shape factor is introduced as  

 

(30.12)  

 The following relations are obtained  

 

  

 Now, the velocity profile can be expressed as  

 

(30.13)  

where  

 



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 29

6 

 The shear stress is given by  

 

(30.14)  

 We use the following dimensionless parameters,  

 

(30.15)  

 

(30.16)  

 

(30.17)  

 The integrated momentum Eq. (30.10) reduces to  

 

 

(30.18)  

 The parameter L is related to the skin friction   

 The parameter K is linked to the pressure gradient.  

 If we take K as the independent variable . L and H can be shown to be the functions of K since  

 

(30.19)  

 

 

(30.20)  

 

(30.21)  

Therefore,  
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 The right-hand side of Eq. (30.18) is thus a function of K alone. Walz  pointed out that this function 

can be approximated with a good degree of accuracy by a linear function of K so that  

      [Walz's approximation]  

 Equation (30.18) can now be written as  

 

Solution of this differential equation for the dependent variable subject to the boundary 

condition  U = 0 when x = 0 , gives  

 

 With a = 0.47 and b = 6. the approximation is particularly close between the stagnation point and the 

point of maximum velocity.  

 Finally the value of the dependent variable is  

 

(30.22)  

 By taking the limit of Eq. (30.22), according to L'Hopital's rule, it can be shown that  

 

This corresponds to K = 0.0783.  

 Note that is not equal to zero at the stagnation point. If is determined from Eq. 

(30.22), K(x) can be obtained from Eq. (30.16).  

 Table 30.1 gives the necessary parameters for obtaining results, such as velocity profile and shear 

stress The approximate method can be applied successfully to a wide range of problems.  

Table 30.1    Auxiliary functions after Holstein and Bohlen   

 

            K               
  

12  0.0948  2.250  0.356  

10  0.0919  2.260  0.351  

8  0.0831  2.289  0.340  

7.6  0.0807  2.297  0.337  

7.2  0.0781  2.305  0.333  

7.0  0.0767  2.309  0.331  

6.6  0.0737  2.318  0.328  
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6.2  0.0706  2.328  0.324  

5.0  0.0599  2.361  0.310  

3.0  0.0385  2.427  0.283  

1.0  0.0135  2.508  0.252  

0  0  2.554  0.235  

-1  -0.0140  2.604  0.217  

-3  -0.0429  2.716  0.179  

-5  -0.0720  2.847  0.140  

-7  -0.0999  2.999  0.100  

-9  -0.1254  3.176  0.059  

-11  -0.1474  3.383  0.019  

-12  -0.1567  3.500  0  

 

                  
        

               

0 0  0  0  

0.2  0.00664  0.006641  0.006641  

0.4  0.02656  0.13277  0.13277  

0.8  0.10611  0.26471  0.26471  

1.2  0.23795  0.39378  0.39378  

1.6  0.42032  0.51676  0.51676  

2.0  0.65003  0.62977  0.62977  

2.4  0.92230  0.72899  0.72899  

2.8  1.23099  0.81152  0.81152  

3.2  1.56911  0.87609  0.87609  

3.6  1.92954  0.92333  0.92333  

4.0  2.30576  0.95552  0.95552  

4.4  2.69238  0.97587  0.97587  

4.8  3.08534  0.98779  0.98779  

5.0  3.28329  0.99155  0.99155  

8.8  7.07923  1.00000  1.00000  

  

 As mentioned earlier, K and are related to the pressure gradient and the shape factor.   

 Introduction of K and in the integral analysis enables extension of Karman-Pohlhausen method for 

solving flows over curved geometry. However, the analysis is not valid for the geometries, where 

and  
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Point of Seperation 

For point of seperation,      

                                    

                       or,            

                       or,          

Entry Flow In A Duct  

 Growth of boundary layer has a remarkable influence on flow through a constant area duct or pipe.  

Consider a flow entering a pipe with uniform velocity.  

1. The boundary layer starts growing on the wall at the entrance of the pipe.  

2. Gradually it becomes thicker in the downstream.  

3. The flow becomes fully developed when the boundary layers from the wall meet at the axis 

of the pipe.  

 The velocity profile is nearly rectangular at the entrance and it gradually changes to a parabolic 

profile at the fully developed region.  

 Before the boundary layers from the periphery meet at the axis, there prevails a core region which is 

uninfluenced by viscosity.  

 Since the volume-flow must be same for every section and the boundary-layer thickness increases in 

the flow direction, the inviscid core accelerates, and there is a corresponding fall in pressure.  

 Entrance length : It can be shown that for laminar incompressible flows, the velocity profile 

approaches the parabolic profile through a distance Le from the entry of the pipe. This is known as 

entrance length and  is given by  

 

For a Reynolds number of 2000, this distance,  the entrance length is about 100 pipe-diameters. For 

turbulent flows, the entrance region is shorter, since the turbulent boundary layer grows faster.  

 At the entrance region,  

1. The velocity gradient is steeper at the wall, causing a higher value of shear stress as compared to a 

developed flow.  

2. Momentum flux across any section  is higher than that typically at the inlet due to the change in 

shape of the velocity profile.   

3. Arising out of these, an additional pressure drop is brought about at the entrance region as compared 

to the pressure drop in the fully developed region.  
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Fig. 31.1 Development of boundary layer in the entrance region of a duct  

Control Of Boundary Layer Separation -  

 The total drag on a body is attributed to form drag and skin friction drag. In some flow 

configurations, the contribution of form drag becomes significant.  

 In order to reduce the form drag, the boundary layer separation should be prevented or delayed 

so that better pressure recovery takes place and the form drag is reduced considerably. There are 

some popular methods for this purpose which are stated as follows.  

i. By giving the profile of the body a streamlined shape( as shown in Fig. 31.2).  

1. This has an elongated shape in the rear part to reduce the magnitude of the pressure 

gradient. 

2. The optimum contour for a streamlined body is the one for which the wake zone is 

very narrow and the form drag is minimum. 

   

 
      Fig. 31.2  Reduction of drag coefficient (CD) by giving the profile a streamlined 

shape  

ii. The injection of fluid through porous wall can also control the boundary layer 

separation. This is generally accomplished by blowing high energy fluid particles 

tangentially from the location where separation would have taken place otherwise. This is 

shown in Fig. 31.3.  

1.  The injection of fluid promotes turbulence  

2. This increases skin friction. But the form drag is reduced considerably due to 

suppression of flow separation 

3. The reduction in form drag is quite significant and increase in skin friction drag can 

be ignored.  
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Fig. 31.3 Boundary layer control by blowing  

Mechanisms of Boundary Layer Transition 

 One of the interesting problems in fluid mechanics is the physical mechanism of transition from 

laminar to turbulent flow. The problem evolves about the generation of both steady and unsteady 

vorticity near a body, its subsequent molecular diffusion, its kinematic and dynamic convection and 

redistribution downstream, and the resulting feedback on the velocity and pressure fields near the 

body. We can perhaps realise the complexity of the transition problem by examining the behaviour 

of a real flow past a cylinder.  

 

Figure 31.4 (a) shows the flow past a cylinder for a very low Reynolds number . The flow 

smoothly divides and reunites around the cylinder.  

 At a Reynolds number of about 4, the flow (boundary layer) separates in the downstream and 

the wake is formed by two symmetric eddies . The eddies remain steady and symmetrical but grow 

in size up to a Reynolds number of about 40 as shown in Fig. 31.4(b). 

 At a Reynolds number above 40 , oscillation in the wake induces asymmetry and finally the wake 

starts shedding vortices into the stream. This situation is termed as onset of periodicity as shown in 

Fig. 31.4(c) and the wake keeps on undulating up to a Reynolds number of 90 .  

 At a Reynolds number above 90 , the eddies are shed alternately from a top and bottom of the 

cylinder and the regular pattern of alternately shed clockwise and counterclockwise vortices form 

Von Karman vortex street as in Fig. 31.4(d).  

 Periodicity is eventually induced in the flow field with the vortex-shedding phenomenon.  

 The periodicity is characterised by the frequency of vortex shedding  

 In non-dimensional form, the vortex shedding frequency is expressed as known as the 

Strouhal number named after V. Strouhal, a German physicist who experimented with wires 

singing in the wind. The Strouhal number shows a slight but continuous variation with Reynolds 

number around a value of 0.21. The boundary layer on the cylinder surface remains laminar and 

separation takes placeat about 81
0 
from the forward stagnation point.  

 At about Re = 500 , multiple frequencies start showing up and the wake tends to become Chaotic.  

 As the Reynolds number becomes higher, the boundary layer around the cylinder tends to become 

turbulent. The wake, of course, shows fully turbulent characters (Fig31.4 (e)). 

 For larger Reynolds numbers, the boundary layer becomes turbulent. A turbulent boundary layer 

offers greater resistance to seperation than a laminar boundary layer. As a consequence the 

seperation point moves downstream and the seperation angle is delayed to 110
0
 from the forward 

stagnation point (Fig 31.4 (f) ).  

https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
https://nptel.ac.in/courses/112104118/lecture-31/31-3_mechanics.htm#reynolds
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Fig. 31.4 Influence of Reynolds number on wake-zone aerodynamics  

 Experimental flow visualizations past a circular cylinder are shown in Figure 31.5 (a) and (b)  

 

Fig 31.5 (a) Flow Past a Cylinder at Re=2000 [Photograph courtesy Werle and Gallon (ONERA)]  
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Fig 31.5 (b) Flow Past a Cylinder at Re=10000 [Photograph courtesy Thomas Corke and Hasan Najib 

(Illinois Institute of Technology, Chicago)]  

 A very interesting sequence of events begins to develop when the Reynolds number is increased 

beyond 40, at which point the wake behind the cylinder becomes unstable. Photographs show that 

the wake develops a slow oscillation in which the velocity is periodic in time and downstream 

distance. The amplitude of the oscillation increases downstream. The oscillating wake rolls up into 

two staggered rows of vortices with opposite sense of rotation. 

 Karman investigated the phenomenon and concluded that a nonstaggered row of vortices is unstable, 

and a staggered row is stable only if the ratio of lateral distance between the vortices to their 

longitudinal distance is 0.28. Because of the similarity of the wake with footprints in a street, the 

staggered row of vortices behind a blue body is called a Karman Vortex Street . The vortices move 

downstream at a speed smaller than the upstream velocity U.  

 In the range 40 < Re < 80, the vortex street does not interact with the pair of attached vortices. As Re 

is increased beyond 80 the vortex street forms closer to the cylinder, and the attached eddies 

themselves begin to oscillate. Finally the attached eddies periodically break off alternately from the 

two sides of the cylinder. 

 While an eddy on one side is shed, that on the other side forms, resulting in an unsteady flow near 

the cylinder. As vortices of opposite circulations are shed off alternately from the two sides, the 

circulation around the cylinder changes sign, resulting in an oscillating "lift" or lateral force. If the 

frequency of vortex shedding is close to the natural frequency of some mode of vibration of the 

cylinder body, then an appreciable lateral vibration culminates.  

 Numerical flow visualizations for the flow past a circular cylinder can be observed in Fig 31.6 and 

31.7 

 

Fig 31.6 Numerical flow visualization (LES results) for a low reynolds number flow past a Circular Cylinder 

[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ] 
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Fig 31.7 Numerical flow visualization (LES results) for a moderately high reynolds number flow past a 

Circular Cylinder 

[Animation by Dr.-Ing M. Breuer, LSTM, Univ Erlangen-Nuremberg ]  

 An understanding of the transitional flow processes will help in practical problems either by 

improving procedures for predicting positions or for determining methods of advancing or retarding 

the transition position. 

 The critical value at which the transition occurs in pipe flow is . The actual value 

depends upon the disturbance in flow. Some experiments have shown the critical Reynolds number 

to reach as high as 10,000. The precise upper bound is not known, but the lower bound appears to be 

. Below this value, the flow remains laminar even when subjected to strong 

disturbances.  

 In the case of flow through a channel,  , the flow alternates randomly between 

laminar and partially turbulent. Near the centerline, the flow is more laminar than turbulent, 

whereas near the wall, the flow is more turbulent than laminar. For flow over a flat plate, 

turbulent regime is observed between Reynolds numbers of 3.5 × 10
5
 and 10

6
.  

Several Events Of Transition -  

Transitional flow consists of several events as shown in Fig. 31.8. Let us consider the events one after 

another.  

 

1. Region of instability of small wavy disturbances-   
 

Consider a laminar flow over a flat plate aligned with the flow direction (Fig. 31.8).  

 In the presence of an adverse pressure gradient, at a high Reynolds number (water velocity 

approximately 9-cm/sec), two-dimensional waves appear.  

 These waves are called Tollmien-Schlichting wave( In 1929, Tollmien and Schlichting predicted 

that the waves would form and grow in the boundary layer).  

  These waves can be made visible by a method known as tellurium method.   

2. Three-dimensional waves and vortex formation- 

 Disturbances in the free stream or oscillations in the upstream boundary layer can generate wave 

growth, which has a variation in the span wise direction.  

 This leads an initially two-dimensional wave to a three-dimensional form.  

 In many such transitional flows, periodicity is observed in the span wise direction.   

 This is accompanied by the appearance of vortices whose axes lie in the direction of flow.  

3. Peak-Valley development with streamwise vortices- 

 As the three-dimensional wave propagates downstream, the boundary layer flow develops into a 

complex stream wise vortex system.  

 Within this vortex system, at some spanwise location, the velocities fluctuate violently .   

 These locations are called peaks and the neighbouring locations of the peaks are valleys (Fig. 

31.9).  
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4. Vorticity concentration and shear layer development- 

     

At the spanwise locations corresponding to the peak, the instantaneous streamwise velocity profiles 

demonstrate the following 

  Often, an inflexion is observed on the velocity profile.  

  The inflectional profile appears and disappears once after each cycle of the basic wave.  

5. Breakdown- 

     

The instantaneous velocity profiles produce high shear in the outer region of the boundary layer.  

 The velocity fluctuations develop from the shear layer at a higher frequency than that of the basic 

wave.  

 These velocity fluctuations have a strong ability to amplify any slight three-dimensionality, which is 

already present in the flow field.  

 As a result, a staggered vortex pattern evolves with the streamwise wavelength twice the 

wavelength of Tollmien-Schlichting wavelength .  
 The span wise wavelength of these structures is about one-half of the stream wise value.   

 The high frequency fluctuations are referred as hairpin eddies.  

This is known as breakdown.   

6. Turbulent-spot development- 

 The hairpin-eddies travel at a speed grater than that of the basic (primary) waves.   

 As they travel downstream, eddies spread in the spanwise direction and towards the wall.  

 The vortices begin a cascading breakdown into smaller vortices.  

 In such a fluctuating state, intense local changes occur at random locations in the shear layer near the 

wall in the form of turbulent spots.  

 Each spot grows almost linearly with the downstream distance.  

  The creation of spots is considered as the main event of transition .  
 

 
Fig. 31.8 Sequence of event involved in transition  
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Fig. 31.9 Cross-stream view of the streamwise vortex system  

Exercise Problems    

1.Two students are asked to solve the Blasius flow over a flat plate to determine the variation of boundary 

layer thickness as a function of the Reynolds number. One student solves the problem by similarity method 

and arrives at the result . The other student chooses to solve the problem by using the 

momentum-integer equation and Karman-Pohlhausen method and funds that . 

Which of the two results is expected to be closer to the experimental results and why?  

2. A scientist claims that a highly viscous flow around a body can generate the same flow patterns as the 

flow of an inviscid and incompressible fluid around that body. According to our understanding, the 

Reynolds number for the first flow is very small, while the Reynolds number for the second flow can be 

taken to be (infinity). Do you think it is possible to get the same flow patterns for the two extreme values 

of Reynolds number? Please use mathematical analysis to prove or disprove the scientist's claim.  

3. In boundary layer theory, a boundary layer can be characterized by any of the following quantities (i) 

Boundary layer thickness (ii) Displacement thickness (iii) Momentum thickness.  

How do these quantities differ in their physical as well as mathematical definitions? For the flow over a flat 

plate, which of these is expected to have the highest value at a given location on the wall, and which the 

lowest?  

4. What do you mean by the "point of separation" of a boundary layer? How will the velocity gradient 

and the second gradient .Vary within the boundary layer at the point of separation? Please show the 

variation graphically. Here u is the velocity along the wall and y is the co-ordinate perpendicular to the wall.  

5.  Reduce the Prandtl's boundary layer equations to a simpler form than that given by equations (28.10) - 

(28.12) for -  

      (a)   Flow over a flat plate.  

      (b)   The case  (a constant) 

      (c)   The case where velocity (v) is directly proportional to kinematic viscosity ( )  

      (d)    Also solve the Prandtl's boundary layer equations for v = assuming pressure gradient =0. 
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6.   Water of kinematic viscosity ( ) equal to 9.29x10 
-7

 m
2
 /s is flowing steadily over a smooth flat plate at 

zero angle of incidence, with a velocity of 1.524 m/s. The length of the plate is 0.3048 m. Calculate-  

 

      (a)  The thickness of the boundary layer at 0.1524 m from the leading edge.  

      (b)  Boundary layer rate of growth at 0.1524 m from the leading edge.  

      (c)  Total drag coefficient on the plate. 

7.   Use the Prandtl's boundary layer equations and show that the velocity profile for a laminar flow past a 

flat plate has an infinite radius of curvature on the surface of the plate.  

8.  Air is flowing over a smooth flat plate at a velocity of 4.39 m/s. The density of air is 1.031 Kg/m
3
 and the 

kinematic viscosity is 1.34x10
-5

 m
2
 /s. The length of the plate is 12.2 m in the direction of the flow. Find- 

      (a)  The boundary layer thickness at 15.24 cm from the leading edge. 

      (b)   The drag coefficient (CDf ).  

9.  Show that the shape factor (H) has the value 2.6 for the boundary layer flow over a flat plate. Also 

calculate the position where the flow is critical for flow velocity of 3.048 m/s and kinematic viscosity 

9.29x10 
-7

 m
2
 /s. 

Given that at the critical location Reynold's Number (based on distance from the leading edge surface) is 

related to shape factor (H) by-  

log(R critical ) =H.  

10. Determine the distance downstream from the bow of a ship moving at 3.9 m/s relative to still water at 

which the boundary layer will become turbulent. Also find the boundary layer thickness and total friction 

drag coefficient for this portion of the surface of the ship. Given the kinematic viscosity = 1.124x10
-6

 m
2
 /s.  

Recap 

   In this course you have learnt the following 

   The boundary layer is the thin layer of fluid adjacent to the solid surface. Phenomenologically, 

the effect of viscosity is very prominent within this layer.  

   The main-stream velocity undergoes a change from zero at the solid surface to the full 

magnitude through the boundary layer.Effectively, the boundary layer theory is a complement 

to the inviscid flow theory.  

  

 The governing equation for the boundary layer can be obtained through correct reduction of 

the Navier-Stokes equations within the thin layer referred above. There is no variation in 

pressure in y direction within the boundary layer.  

  

 The pressure is impressed on the boundary layer by the outer inviscid flow which can be 

calculated using Bernoulli's equation.  

  

 The boundary layer equation is a second order non-linear partial differential equation. The 

exact solution of this equation is known as similarity solution. For the flow over a flat plate, 

the similarity solution is often referred to as Blasius solution. Complete analytical treatment of 

this solution is beyond the scope of this text. However, the momentum integral equation can be 

derived from the boundary layer equation which is amenable to analytical treatment.  

   The solutions of the momentum integral equation are called approx imate solutions of the 
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boundary layer equation.  

  

 The boundary layer equations are valid up to the point of separation. At the point of separation, 

the flow gets detached from the solid surface due to excessive adverse pressure gradient.  

  

 Beyond the point of separation, the flow reversal produces eddies. During flow past bluff-

bodies, the desired pressure recovery does not take place in a separated flow and the situation 

gives rise to pressure drag or form drag.  
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Introduction 

 The turbulent motion is an irregular motion.  

 Turbulent fluid motion can be considered as an irregular condition of flow in which various 

quantities (such as velocity components and pressure) show a random variation with time and 

space in such a way that the statistical average of those quantities can be quantitatively expressed.  

 It is postulated that the fluctuations inherently come from disturbances (such as roughness of a solid 

surface) and they may be either dampened out due to viscous damping or may grow by drawing 

energy from the free stream.  

 At a Reynolds number less than the critical, the kinetic energy of flow is not enough to sustain the 

random fluctuations against the viscous damping and in such cases laminar flow continues to exist.  

 At somewhat higher Reynolds number than the critical Reynolds number, the kinetic energy of 

flow supports the growth of fluctuations and transition to turbulence takes place.  

Characteristics Of Turbulent Flow  

 The most important characteristic of turbulent motion is the fact that velocity and pressure at a 

point fluctuate with time in a random manner.  

 

Fig. 32.1 Variation of horizontal components of velocity for laminar and turbulent flows at a point P  

 The mixing in turbulent flow is more due to these fluctuations. As a result we can see more uniform 

velocity distributions in turbulent pipe flows as compared to the laminar flows .  

 

 

Fig. 32.2 Comparison of velocity profiles in a pipe for (a) laminar and (b) turbulent flows  

 Turbulence can be generated by -  

1. frictional forces at the confining solid walls  

2. the flow of layers of fluids with different velocities over one another 
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The turbulence generated in these two ways are considered to be different. 

Turbulence generated and continuously affected by fixed walls is designated as wall turbulence , and 

turbulence generated by two adjacent layers of fluid in absence of walls is termed as free turbulence . One 

of the effects of viscosity on turbulence is to make the flow more homogeneous and less dependent on 

direction.  

 Turbulence can be categorised as below -  

 Homogeneous Turbulence: Turbulence has the same structure quantitatively in all parts of 

the flow field.  

 Isotropic Turbulence: The statistical features have no directional preference and perfect 

disorder persists.  

 Anisotropic Turbulence: The statistical features have directional preference and the mean 

velocity has a gradient. 

  Homogeneous Turbulence : The term homogeneous turbulence implies that the velocity fluctuations in 

the system are random but the average turbulent characteristics are independent of the position in the fluid, 

i.e., invariant to axis translation.  

Consider the root mean square velocity fluctuations  

, ,  

In homogeneous turbulence, the rms values of u', v' and w' can all be different, but each value must be 

constant over the entire turbulent field. Note that even if the rms fluctuation of any component, say u' s are 

constant over the entire field the instantaneous values of u necessarily differ from point to point at any 

instant.  

 Isotropic Turbulence: The velocity fluctuations are independent of the axis of reference, i.e. 

invariant to axis rotation and reflection. Isotropic turbulence is by its definition always homogeneous 

. In such a situation, the gradient of the mean velocity does not exist, the mean velocity is either zero 

or constant throughout. 

In isotropic turbulence fluctuations are independent of the direction of reference and  

= =   or     

It is re-emphasised that even if the rms fluctuations at any point are same, their instantaneous values 

necessarily differ from each other at any instant.  

 Turbulent flow is diffusive and dissipative . In general, turbulence brings about better mixing of a 

fluid and produces an additional diffusive effect. Such a diffusion is termed as "Eddy-diffusion ".( 

Note that this is different from molecular diffusion) 

At a large Reynolds number there exists a continuous transport of energy from the free stream to the 

large eddies. Then, from the large eddies smaller eddies are continuously formed. Near the wall 

smallest eddies destroy themselves in dissipating energy, i.e., converting kinetic energy of the eddies 

into intermolecular energy. 

Laminar-Turbulent Transition  

 For a turbulent flow over a flat plate,  
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 The turbulent boundary layer continues to grow in thickness, with a small region below it called a 

viscous sublayer. In this sub layer, the flow is well behaved,just as the laminar boundary layer (Fig. 

32.3) 

 

Fig. 32.3 Laminar - turbulent transition 

Illustration 

 Observe that at a certain axial location, the laminar boundary layer tends to become unstable. 

Physically this means that the disturbances in the flow grow in amplitude at this location.  

Free stream turbulence, wall roughness and acoustic signals may be among the sources of such disturbances. 

Transition to turbulent flow is thus initiated with the instability in laminar flow  

 The possibility of instability in boundary layer was felt by Prandtl as early as 1912.The theoretical 

analysis of Tollmien and Schlichting showed that unstable waves could exist if the Reynolds 

number was 575.  

The Reynolds number was defined as 

 

where is the free stream velocity , is the displacement thickness and is the kinematic viscosity .  

 Taylor developed an alternate theory, which assumed that the transition is caused by a momentary 

separation at the boundary layer associated with the free stream turbulence.  

In a pipe flow the initiation of turbulence is usually observed at Reynolds numbers (  )in 

the range of 2000 to 2700.  

The development starts with a laminar profile, undergoes a transition, changes over to turbulent profile and 

then stays turbulent thereafter   (Fig. 32.4). The length of development is of the order of 25 to 40 diameters 

of the pipe. 
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Fig. 32.4   Development of turbulent flow in a circular duct  

Correlation Functions  

   

 
 

Fig 32.5 Velocity Correlation  

 A statistical correlation can be applied to fluctuating velocity terms in turbulence. Turbulent motion 

is by definition eddying motion. Not withstanding the circulation strength of the individual eddies, a 

high degree of correlation exists between the velocities at two points in space, if the distance 

between the points is smaller than the diameter of the eddy. Conversely, if the points are so far apart 

that the space, in between, corresponds to many eddy diameters (Figure 32.5), little correlation can 

be expected.  

   

 Consider a statistical property of a random variable (velocity) at two points separated by a distance r. 

An Eulerian correlation tensor (nine terms) at the two points can be defined by    
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In other words, the dependence between the two velocities at two points is measured by the correlations, i.e. 

the time averages of the products of the quantities measured at two points. The correlation of the 

components of the turbulent velocity of these two points is defined as  

 

It is conventional to work with the non-dimensional form of the correlation, such as 

 

A value of R(r) of unity signifies a perfect correlation of the two quantities involved and their motion is in 

phase. Negative value of the correlation function implies that the time averages of the velocities in the two 

correlated points have different signs. Figure 32.6 shows typical variations of the correlation R with 

increasing separation r .  

The positive correlation indicates that the fluid can be modelled as travelling in lumps. Since swirling 

motion is an essential feature of turbulent motion, these lumps are viewed as eddies of various sizes. The 

correlation R(r) is a measure of the strength of the eddies of size larger than r. Essentially the velocities at 

two points are correlated if they are located on the same eddy  

 To describe the evolution of a fluctuating function u'(t), we need to know the manner in which the 

value of u' at different times are related. For this purpose the correlation function  

 

between the values of u' at different times is chosen and is called autocorrelation function. 

 The correlation studies reveal that the turbulent motion is composed of eddies which are convected 

by the mean motion . The eddies have a wide range variation in their size. The size of the large 

eddies is comparable with the dimensions of the neighbouring objects or the dimensions of the flow 

passage.  

The size of the smallest eddies can be of the order of 1 mm or less. However, the smallest eddies are much 

larger than the molecular mean free paths and the turbulent motion does obey the principles of continuum 

mechanics.  

 

Fig 32.6 Variation of R with the distance of separation, r  
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Reynolds decomposition of turbulent flow :  

 The Experiment: In 1883, O. Reynolds conducted experiments with pipe flow by feeding into the 

stream a thin thread of liquid dye. For low Reynolds numbers, the dye traced a straight line and did 

not disperse. With increasing velocity, the dye thread got mixed in all directions and the flowing 

fluid appeared to be uniformly colored in the downstream flow.  

The Inference: It was conjectured that on the main motion in the direction of the pipe axis, there existed a 

superimposed motion all along the main motion at right angles to it. The superimposed motion causes 

exchange of momentum in transverse direction and the velocity distribution over the cross-section is more 

uniform than in laminar flow. This description of turbulent flow which consists of superimposed streaming 

and fluctuating (eddying) motion is well known as Reynolds decomposition of turbulent flow.  

 Here, we shall discuss different descriptions of mean motion. Generally, for Eulerian velocity u , the 

following two methods of averaging could be obtained.  

(i) Time average for a stationary turbulence:  

 

  

(ii) Space average for a homogeneous turbulence:  

 

  

For a stationary and homogeneous turbulence, it is assumed that the two averages lead to the same result: 

and the assumption is known as the ergodic hypothesis. 

 In our analysis, average of any quantity will be evaluated as a time average . Take a finite time 

interval t1. This interval must be larger than the time scale of turbulence. Needless to say that it must 

be small compared with the period t2 of any slow variation (such as periodicity of the mean flow) in 

the flow field that we do not consider to be chaotic or turbulent .  

 Thus, for a parallel flow, it can be written that the axial velocity component is  

 

(32.1)  

 

As such, the time mean component determines whether the turbulent motion is steady or not. The 

symbol signifies any of the space variables.  

 While the motion described by Fig.32.6(a) is for a turbulent flow with steady mean velocity the 

Fig.32.6(b) shows an example of turbulent flow with unsteady mean velocity. The time period of the 

high frequency fluctuating component is t1 whereas the time period for the unsteady mean motion is 

t2 and for obvious reason t2>>t1. Even if the bulk motion is parallel, the fluctuation u ' being random 

varies in all directions.  

 The continuity equation, gives us  
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Invoking Eq.(32.1) in the above expression, we get 

 

(32.2)  

 
Fig 32.6 Steady and unsteady mean motions in a turbulent flow  

Since , Eq.(32.2) depicts that y and z components of velocity exist even for the parallel flow 

if the flow is turbulent. We have-  

 

(32.3) 

Contd. from Previous slide 

 However, the fluctuating components do not bring about the bulk displacement of a fluid element. 

The instantaneous displacement is , and that is not responsible for the bulk motion. We can 

conclude from the above  

 

  

  

Due to the interaction of fluctuating components, macroscopic momentum transport takes place. Therefore, 

interaction effect between two fluctuating components over a long period is non-zero and this can be 

expressed as  

 

  

Taking time average of these two integrals and write  

 

(32.4a)  

and  
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(32.4b)  

 Now, we can make a general statement with any two fluctuating parameters, say, with f ' and g' as  

 

(32.5a)  

 
 

(32.5b)  

The time averages of the spatial gradients of the fluctuating components also follow the same laws, and they 

can be written as  

 

(32.6)  

 The intensity of turbulence or degree of turbulence in a flow is described by the relative 

magnitude of the root mean square value of the fluctuating components with respect to the time 

averaged main velocity. The mathematical expression is given by  

 

(32.7a)  

The degree of turbulence in a wind tunnel can be brought down by introducing screens of fine mesh at the 

bell mouth entry. In general, at a certain distance from the screens, the turbulence in a wind tunnel becomes 

isotropic, i.e. the mean oscillation in the three components are equal,  

 

  

In this case, it is sufficient to consider the oscillation u' in the direction of flow and to put  

 

(32.7b)  

This simpler definition of turbulence intensity is often used in practice even in cases when turbulence is not 

isotropic.  

Following Reynolds decomposition, it is suggested to separate the motion into a mean motion and a 

fluctuating or eddying motion. Denoting the time average of the component of velocity by and 

fluctuating component as , we can write down the following,  

 

 

By definition, the time averages of all quantities describing fluctuations are equal to zero.  

 

(32.8)  
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The fluctuations u', v' , and w' influence the mean motion , and in such a way that the mean motion 

exhibits an apparent increase in the resistance to deformation. In other words, the effect of fluctuations is an 

apparent increase in viscosity or macroscopic momentum diffusivity .  

 Rules of mean time - averages  

If f and g are two dependent variables and if s denotes anyone of the independent variables x, y  

 

  

 

  

 Intermittency 

 Consider a turbulent flow confined to a limited region. To be specific we shall consider the example 

of a wake (Figure 33.1a), but our discussion also applies to a jet (Figure 33.1b), a shear layer (Figure 

33.1c), or the outer part of a boundary layer on a wall. 

 The fluid outside the turbulent region is either in irrotational motion (as in the case of a wake or a 

boundary layer), or nearly static (as in the case of a jet). Observations show that the instantaneous 

interface between the turbulent and nonturbulent fluid is very sharp. 

 The thickness of the interface must equal the size of the smallest scales in the flow, namely the 

Kolmogorov microscale. 
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Figure 33.1  Three types of free turbulent flows; (a) wake  (b) jet and (c) shear layer [after P.K. 

Kundu and I.M. Cohen, Fluid Mechanics, Academic Press, 2002]  

 Measurement at a point in the outer part of the turbulent region (say at point P in Figure 33.1a) 

shows periods of high-frequency fluctuations as the point P moves into the turbulent flow and low-

frequency periods as the point moves out of the turbulent region. Intermittency I is defined as the 

fraction of time the flow at a point is turbulent.  

 The variation of I across a wake is sketched in Figure 33.1a, showing that I =1 near the center where 

the flow is always turbulent, and I = 0 at the outer edge of the flow domain.  

  Derivation of Governing Equations for Turbulent Flow  

 For incompressible flows, the Navier-Stokes equations can be rearranged in the form  

 

(33.1a)  

 

(33.1b)  

 

(33.1c)  
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and  

 

(33.2)  
 

 Express the velocity components and pressure in terms of time-mean values and 

corresponding fluctuations. In continuity equation, this substitution and subsequent time 

averaging will lead to  

                               

 

or,                         

  

 Since,                      

  

We can write                 
(33.3a)  

From Eqs (33.3a) and (33.2), we obtain  

 

(33.3b)  

 

 It is evident that the time-averaged velocity components and the fluctuating velocity 

components, each satisfy the continuity equation for incompressible flow.  

 Imagine a two-dimensional flow in which the turbulent components are independent of 

the z -direction. Eventually, Eq.(33.3b) tends to  

 

(33.4)  

On the basis of condition (33.4), it is postulated that if at an instant there is an increase in u' in the 

x -direction, it will be followed by an increase in v' in the negative y -direction. In other words, 

is non-zero and negative. (see Figure 33.2)  
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Fig 33.2 Each dot represents uν pair at an instant  

 Invoking the concepts of eqn. (32.8) into the equations of motion eqn (33.1 a, b, c), we 

obtain expressions in terms of mean and fluctuating components. Now, forming time 

averages and considering the rules of averaging we discern the following. The terms 

which are linear, such as and vanish when they are averaged [from (32.6)]. The 

same is true for the mixed terms like , or , but the quadratic terms in the 

fluctuating components remain in the equations. After averaging, they form , etc.  

Contd. from previous slide 

 If we perform the aforesaid exercise on the x-momentum equation, we obtain  

 

 

 

  

using rules of time averages, 

 

We obtain  

https://nptel.ac.in/courses/112104118/lecture-32/32-6_contd_mean_motion_fluct.htm#eqn_32.8
https://nptel.ac.in/courses/112104118/lecture-33/33-1_derivation.htm#eqn_33.1
https://nptel.ac.in/courses/112104118/lecture-32/32-6_contd_mean_motion_fluct.htm#eqn_32.6
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 Introducing simplifications arising out of continuity Eq. (33.3a), we shall obtain. 

                                                                                                                                                   

 Performing a similar treatment on y and z momentum equations, finally we obtain the 

momentum equations in the form. 

In x direction, 

     
(33.5a) 

In y direction, 

   
(33.5b) 

In z direction, 

   
(33.5c)  

 

 Comments on the governing equation :  

1. The left hand side of Eqs (33.5a)-(33.5c) are essentially similar to the steady-state 

Navier-Stokes equations if the velocity components u, v and w are replaced by , 

and .  

2. The same argument holds good for the first two terms on the right hand side of 

Eqs (33.5a)-(33.5c).  

3. However, the equations contain some additional terms which depend on turbulent 

fluctuations of the stream. These additional terms can be interpreted as 

components of a stress tensor. 

 Now, the resultant surface force per unit area due to these terms may be considered as  

In x direction,  

          

(33.6a)  

In y direction,  

 

(33.6b) 
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In z direction,  

      

(33.6c)  

  

 Comparing Eqs (33.5) and (33.6), we can write  

 

           

(33.7) 

 

 It can be said that the mean velocity components of turbulent flow satisfy the same 

Navier-Stokes equations of laminar flow. However, for the turbulent flow, the laminar 

stresses must be increased by additional stresses which are given by the stress tensor 

(33.7). These additional stresses are known as apparent stresses of turbulent flow or 

Reynolds stresses . Since turbulence is considered as eddying motion and the aforesaid 

additional stresses are added to the viscous stresses due to mean motion in order to 

explain the complete stress field, it is often said that the apparent stresses are caused by 

eddy viscosity . The total stresses are now  

 

(33.8) 

and so on. The apparent stresses are much larger than the viscous components, and the viscous 

stresses can even be dropped in many actual calculations .  

Contd. from previous slide 

 If we perform the aforesaid exercise on the x-momentum equation, we obtain  

 

 

 

  

using rules of time averages, 
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We obtain  

               

   

 Introducing simplifications arising out of continuity Eq. (33.3a), we shall obtain. 

                                                                                                                                                   

 Performing a similar treatment on y and z momentum equations, finally we obtain the 

momentum equations in the form. 

In x direction, 

     
(33.5a) 

In y direction, 

   
(33.5b) 

In z direction, 

   
(33.5c)  

 

 Comments on the governing equation :  

1. The left hand side of Eqs (33.5a)-(33.5c) are essentially similar to the steady-state 

Navier-Stokes equations if the velocity components u, v and w are replaced by , 

and .  

2. The same argument holds good for the first two terms on the right hand side of 

Eqs (33.5a)-(33.5c).  

3. However, the equations contain some additional terms which depend on turbulent 

fluctuations of the stream. These additional terms can be interpreted as 

components of a stress tensor. 
 Now, the resultant surface force per unit area due to these terms may be considered as  

In x direction,  

          

(33.6a)  
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In y direction,  

 

(33.6b) 

In z direction,  

      

(33.6c)  

  

 Comparing Eqs (33.5) and (33.6), we can write  

 

           

(33.7) 

 

 It can be said that the mean velocity components of turbulent flow satisfy the same 

Navier-Stokes equations of laminar flow. However, for the turbulent flow, the laminar 

stresses must be increased by additional stresses which are given by the stress tensor 

(33.7). These additional stresses are known as apparent stresses of turbulent flow or 

Reynolds stresses . Since turbulence is considered as eddying motion and the aforesaid 

additional stresses are added to the viscous stresses due to mean motion in order to 

explain the complete stress field, it is often said that the apparent stresses are caused by 

eddy viscosity . The total stresses are now  

 

(33.8) 

and so on. The apparent stresses are much larger than the viscous components, and the viscous 

stresses can even be dropped in many actual calculations .  

Turbulent Boundary Layer Equations  

 For a two-dimensional flow (w = 0)over a flat plate, the thickness of turbulent boundary layer is 

assumed to be much smaller than the axial length and the order of magnitude analysis may be 

applied. As a consequence, the following inferences are drawn:  
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 The turbulent boundary layer equation together with the equation of continuity becomes  

 

(33.9)  

  

 

(33.10)  

   

 A comparison of Eq. (33.10) with laminar boundary layer Eq. (23.10) depicts that: u, v and p are 

replaced by the time average values and ,and laminar viscous force per unit volume is 

replaced by where is the laminar shear stress and is the turbulent 

shear stress.  

Boundary Conditions  

 All the components of apparent stresses vanish at the solid walls and only stresses which act near the 

wall are the viscous stresses of laminar flow. The boundary conditions, to be satisfied by the mean 

velocity components, are similar to laminar flow.  

 A very thin layer next to the wall behaves like a near wall region of the laminar flow. This layer is 

known as laminar sublayer and its velocities are such that the viscous forces dominate over the 

inertia forces. No turbulence exists in it (see Fig. 33.3).  

 For a developed turbulent flow over a flat plate, in the near wall region, inertial effects are 

insignificant, and we can write from Eq.33.10, 

 

  

https://nptel.ac.in/courses/112104118/lecture-23/23-3_lift_drag_flow_rotate_cylinder.htm#eqn_23.10
https://nptel.ac.in/courses/112104118/lecture-33/33-3_turb_boundary_layer.htm#eqn_33.10
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Fig 33.3 Different zones of a turbulent flow past a wall  

 

which can be integrated as , =constant  

 We know that the fluctuating components, do not exist near the wall, the shear stress on the wall is 

purely viscous and it follows  

 

However, the wall shear stress in the vicinity ofthe laminar sublayer is estimated as  

 

(33.11a)  

where Us is the fluid velocity at the edge of the sublayer. The flow in the sublayer is specified by a velocity 

scale (characteristic of this region).  

 We define the friction velocity,  

 

(33.11b)  

 

as our velocity scale. Once is specified, the structure of the sub layer is specified. It has been confirmed 

experimentally that the turbulent intensity distributions are scaled with . For example, maximum value of 

the is always about . The relationship between and the can be determined from Eqs (33.11a) 

and (33.11b) as  

 

Let us assume . Now we can write  
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       where    is a proportionality constant  
(33.12a)  

or  

 

(33.12b)  

Hence, a non-dimensional coordinate may be defined as, which will help us estimating different 

zones in a turbulent flow. The thickness of laminar sublayer or viscous sublayer is considered to be 

.  

 

Turbulent effect starts in the zone of and in a zone of , laminar and turbulent motions 

coexist. This domain is termed as buffer zone. Turbulent effects far outweight the laminar effect in the zone 

beyond and this regime is termed as turbulent core .  

  

 For flow over a flat plate, the turbulent shear stress ( ) is constant throughout in the y 

direction and this becomes equal to at the wall. In the event of flow through a channel, the 

turbulent shear stress ( ) varies with y and it is possible to write  

 

(33.12c)  

where the channel is assumed to have a height 2h and is the distance measured from the centreline of the 

channel . Figure 33.1 explains such variation of turbulent stress.  

Shear Stress Models  

 In analogy with the coefficient of viscosity for laminar flow, J. Boussinesq introduced a mixing 

coefficient for the Reynolds stress term, defined as  

 

 Using the shearing stresses can be written as  

 

such that the equation  

 

may be written as  

 

(33.13)  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 32

9 

 

The term νt is known as eddy viscosity and the model is known as eddy viscosity model .  

 Unfortunately the value of νt is not known. The term ν is a property of the fluid whereas νt is 

attributed to random fluctuations and is not a property of the fluid. However, it is necessary to find 

out empirical relations between νt, and the mean velocity. The following section discusses relation 

between the aforesaid apparent or eddy viscosity and the mean velocity components  

  

Prandtl's Mixing Length Hypothesis  

  

 Consider a fully developed turbulent boundary layer . The stream wise mean velocity varies only 

from streamline to streamline. The main flow direction is assumed parallel to the x-axis (Fig. 33.4).  

 The time average components of velocity are given by . The fluctuating 

component of transverse velocity transports mass and momentum across a plane at y1 from the 

wall. The shear stress due to the fluctuation is given by  

 

(33.14)  

 Fluid, which comes to the layer y1 from a layer (y1- l) has a positive value of . If the lump of fluid 

retains its original momentum then its velocity at its current location y1 is smaller than the velocity 

prevailing there. The difference in velocities is then  

  

 

(33.15)  

 
Fig. 33.4   One-dimensional parallel flow and Prandtl's mixing length hypothesis  

  

The above expression is obtained by expanding the function in a Taylor series and neglecting all 

higher order terms and higher order derivatives. l is a small length scale known as Prandtl's mixing length . 

Prandtl proposed that the transverse displacement of any fluid particle is, on an average, 'l' .  

continued.. 
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 Consider another lump of fluid with a negative value of . This is arriving at from . If 

this lump retains its original momentum, its mean velocity at the current lamina will be somewhat 

more than the original mean velocity of . This difference is given by  

  

 

(33.16)  

 The velocity differences caused by the transverse motion can be regarded as the turbulent velocity 

components at .  

 We calculate the time average of the absolute value of this fluctuation as  

  

 

(33.17)  

 Suppose these two lumps of fluid meet at a layer The lumps will collide with a velocity and 

diverge. This proposes the possible existence of transverse velocity component in both directions 

with respect to the layer at . Now, suppose that the two lumps move away in a reverse order from 

the layer with a velocity . The empty space will be filled from the surrounding fluid creating 

transverse velocity components which will again collide at . Keeping in mind this argument and 

the physical explanation accompanying Eqs (33.4), we may state that  

  

 

or,     

along with the condition that the moment at which is positive, is more likely to be negative and 

conversely when is negative. Possibly, we can write at this stage  

  

 

                                 

(33.18)  

where C1 and C2 are different proportionality constants. However, the constant C2 can now be included in 

still unknown mixing length and Eg. (33.18) may be rewritten as  

  

 

 For the expression of turbulent shearing stress we may write  

  

                   
(33.19)  

 After comparing this expression with the eddy viscosity Eg. (33.14), we may arrive at a more precise 

definition,  
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(33.20a)  

where the apparent viscosity may be expressed as  

  

 

(33.20b)  

and the apparent kinematic viscosity is given by  

  

 

(33.20c)  

 The decision of expressing one of the velocity gradients of Eq. (33.19) in terms of its modulus as 

was made in order to assign a sign to according to the sign of .  

 Note that the apparent viscosity and consequently,the mixing length are not properties of fluid. They 

are dependent on turbulent fluctuation.  

 But how to determine the value of the mixing length? Several correlations, using experimental 

results for have been proposed to determine .  

 

However, so far the most widely used value of mixing length in the regime of isotropic turbulence is 

given by  

 

(33.21)  

where is the distance from the wall and is known as von Karman constant .  

Universal Velocity Distribution Law And Friction Factor In Duct Flows For Very 

     Large Reynolds Numbers  

 For flows in a rectangular channel at very large Reynolds numbers the laminar sublayer 

can practically be ignored. The channel may be assumed to have a width 2h and the x axis 

will be placed along the bottom wall of the channel.  

 Consider a turbulent stream along a smooth flat wall in such a duct and denote the 

distance from the bottom wall by y, while u(y) will signify the velocity. In the 

neighbourhood of the wall, we shall apply  

 

  

  

 According to Prandtl's assumption, the turbulent shearing stress will be  

 

(34.1) 

  

At this point, Prandtl introduced an additional assumption which like a plane Couette flow takes a 
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constant shearing stress throughout, i.e  

 

(34.2) 

  

          where denotes the shearing stress at the wall.  

  

 Invoking once more the friction velocity , we obtain  

 

(34.3) 

 

 

  (34.4) 

  

On integrating we find  

 

  (34.5) 

  

 Despite the fact that Eq. (34.5) is derived on the basis of the friction velocity in the 

neighbourhood of the wall because of the assumption that = constant, we shall 

use it for the entire region. At y = h (at the horizontal mid plane of the channel), we have 

. The constant of integration is eliminated by considering  

 

  

 

 

  

  

Substituting C in Eq. (34.5), we get  

 

  (34.6) 

  

Equation (34.6) is known as universal velocity defect law of Prandtl and its distribution has been 

shown in Fig. 34.1 

.  
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Fig 34.1 Distibution of universal velocity defect law of Prandtl in a turbulent channel flow  

  

Here, we have seen that the friction velocity is a reference parameter for velocity.Equation 

(34.5) can be rewritten as 

 

where  
 

...Contd. from previous slide 

 The no-slip condition at the wall cannot be satisfied with a finite constant of integration. This is 

expected that the appropriate condition for the present problem should be that at a very small 

distance  from the wall. Hence, Eq. (34.5) becomes  

 

  (34.7) 

  

 The distance is of the order of magnitude of the thickness of the viscous layer. Now we can write 

Eq. (34.7) as  
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  (34.8) 

  

           where , the unknown is included in .  

Equation (34.8) is generally known as the universal velocity profile because of the fact that it is applicable 

from moderate to a very large Reynolds number.  

However, the constants and have to be found out from experiments. The aforesaid profile is not only 

valid for channel (rectangular) flows, it retains the same functional relationship for circular pipes as well . It 

may be mentioned that even without the assumption of having a constant shear stress throughout, the 

universal velocity profile can be derived.  

 Experiments, performed by J. Nikuradse, showed that Eq. (34.8) is in good agreement with 

experimental results. Based on Nikuradse's and Reichardt's experimental data, the empirical 

constants of Eq. (34.8) can be determined for a smooth pipe as  

 

  (34.9) 

  

          This velocity distribution has been shown through curve (b) in Fig. 34.2 

.  
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Fig 34.2   The universal velocity distribution law for smooth pipes  

  

 However, the corresponding friction factor concerning Eq. (34.9) is  

 

  (34.10) 

  

the universal velocity profile does not match very close to the wall where the viscous shear predominates the 

flow.  

  

 Von Karman suggested a modification for the laminar sublayer and the buffer zone which are  

 

  (34.11) 

 

 

  (34.12) 

  

          Equation (34.11) has been shown through curve(a) in Fig. 34.2.  

  

 It may be worthwhile to mention here that a surface is said to be hydraulically smooth so long  

 

  (34.13) 

  

          where is the average height of the protrusions inside the pipe.  

Physically, the above expression means that for smooth pipes protrusions will not be extended outside the 

laminar sublayer. If protrusions exceed the thickness of laminar sublayer, it is conjectured (also justified 

though experimental verification) that some additional frictional resistance will contribute to pipe friction 

due to the form drag experienced by the protrusions in the boundary layer.  

 In rough pipes experiments indicate that the velocity profile may be expressed as:  

 

  (34.14) 

  

          At the centre-line, the maximum velocity is expressed as  

 

  (34.15) 
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Note that no longer appears with and . This means that for completely rough zone of turbulent flow, 

the profile is independent of Reynolds number and a strong function of pipe roughness .  

 However, for pipe roughness of varying degrees, the recommendation due to Colebrook and White 

works well. Their formula is  

 

  (34.16) 

  

          where is the pipe radius  

For , this equation produces the result of the smooth pipes (Eq.(34.10)). For , it gives the 

expression for friction factor for a completely rough pipe at a very high Reynolds number which is given by  

 

  (34.17)  

Turbulent flow through pipes has been investigated by many researchers because of its enormous practical 

importance.  

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers  

 The entry length of a turbulent flow is much shorter than that of a laminar flow, J. Nikuradse 

determined that a fully developed profile for turbulent flow can be observed after an entry length of 

25 to 40 diameters. We shall focus to fully developed turbulent flow in this section.  

 Considering a fully developed turbulent pipe flow (Fig. 34.3) we can write  

 

  (34.18)  

or  

 

  (34.19)  
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Fig. 34.3 Fully developed turbulent pipe flow  

It can be said that in a fully developed flow, the pressure gradient balances the wall shear stress only and has 

a constant value at any . However, the friction factor ( Darcy friction factor ) is defined in a fully 

developed flow as  

 

  (34.20)  

Comparing Eq.(34.19) with Eq.(34.20), we can write  

 

  (34.21)  

H. Blasius conducted a critical survey of available experimental results and established the empirical 

correlation for the above equation as  

where  (34.22)  

 It is found that the Blasius's formula is valid in the range of Reynolds number of Re ≤10
5
. At the 

time when Blasius compiled the experimental data, results for higher Reynolds numbers were not 

available. However, later on, J. Nikuradse carried out experiments with the laws of friction in a very 

wide range of Reynolds numbers, 4 x 10
3
 ≤ Re ≤ 3.2 x 10

6
. The velocity profile in this range follows:  

 

  (34.23)  

where is the time mean velocity at the pipe centre and is the distance from the wall . The exponent n 

varies slightly with Reynolds number. In the range of Re ~ 10
5
, n is 7.  

Fully Developed Turbulent Flow In A Pipe For Moderate Reynolds Numbers  

 The ratio of and for the aforesaid profile is found out by considering the volume flow rate Q as  
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From equation (34.23)    

 

  

or  

 

  

or  

 

  

or  

 

  

or 

 

  (34.24a)  

 Now, for different values of n (for different Reynolds numbers) we shall obtain different values of 

from Eq.(34.24a). On substitution of Blasius resistance formula (34.22) in Eq.(34.21), the 

following expression for the shear stress at the wall can be obtained. 

 

  

putting                       

and where       
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or  

 

  

or  

 

  

  

 For n=7, becomes equal to 0.8. substituting in the above equation, we get  

 

  

Finally it produces  

 

  (34.24b)  

or  

 

  

 

where is friction velocity. However, may be spitted into and and we obtain  

 

    

or  

 

(34.25a) 

 Now we can assume that the above equation is not only valid at the pipe axis (y = R) but also at 

any distance from the wall y and a general form is proposed as  

 

  (34.25b)  

 Concluding Remarks :  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 34

0 

1. It can be said that (1/7)th power velocity distribution law (24.38b) can be derived from Blasius's 

resistance formula (34.22) .  

2. Equation (34.24b) gives the shear stress relationship in pipe flow at a moderate Reynolds number, i.e 

. Unlike very high Reynolds number flow, here laminar effect cannot be neglected and the 

laminar sub layer brings about remarkable influence on the outer zones.  

3. The friction factor for pipe flows, , defined by Eq. (34.22) is valid for a specific range of Reynolds 

number and for a particular surface condition.  

 Skin Friction Coefficient For Boundary Layers On A Flat Plate  

 Calculations of skin friction drag on lifting surface and on aerodynamic bodies are somewhat similar 

to the analyses of skin friction on a flat plate. Because of zero pressure gradient, the flat plate at zero 

incidence is easy to consider. In some of the applications cited above, the pressure gradient will 

differ from zero but the skin friction will not be dramatically different so long there is no separation.  

 We begin with the momentum integral equation for flat plate boundary layer which is valid for both 

laminar and turbulent flow.  

 

   (34.26a)  

 Invoking the definition of , Eq.(34.26a) can be written as  

 

  (34.26b)  

 Due to the similarity in the laws of wall, correlations of previous section may be applied to the flat 

plate by substituting for R and for the time mean velocity at the pipe centre.The rationale for 

using the turbulent pipe flow results in the situation of a turbulent flow over a flat plate is to consider 

that the time mean velocity, at the centre of the pipe is analogous to the free stream velocity, both the 

velocities being defined at the edge of boundary layer thickness. 

Finally, the velocity profile will be [following Eq. (34.24)]  

  

 for  (34.27)  

Evaluating momentum thickness with this profile, we shall obtain  

 

(34.28)  

Consequently, the law of shear stress (in range of ) for the flat plate is found out by making use of 

the pipe flow expression of Eq. (34.24b) as  
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Substituting for and for R in the above expression, we get  

 

  (34.29)  

Once again substituting Eqs (34.28) and (34.29) in Eq.(34.26), we obtain  

  

.     

  

 

  

 

(34.30) 

Continued...Skin Friction Coefficient For Boundary Layers On A Flat Plate  

 For simplicity, if we assume that the turbulent boundary layer grows from the leading edge of the 

plate we shall be able to apply the boundary conditions x = 0, δ = 0 which will yield C = 0, and Eq. 

(34.30) will become From Eqs (34.26b), (34.28) and (34.31), it is possible to calculate the average 

skin friction coefficient on a flat plate as  

 

  

or,    

  

or,    
(34.31) 

Where      

From Eqs (34.26b), (34.28) and (34.31), it is possible to calculate the average skin friction coefficient on a 

flat plate as  

 

  (34.32)  
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It can be shown that Eq. (34.32) predicts the average skin friction coefficient correctly in the regime of 

Reynolds number below .  

 This result is found to be in good agreement with the experimental results in the range of Reynolds 

number between and which is given by  

 

  (34.33)  

Equation (34.33) is a widely accepted correlation for the average value of turbulent skin friction coefficient 

on a flat plate.  

 With the help of Nikuradse's experiments, Schlichting obtained the semi empirical equation for the 

average skin friction coefficient as 

 

  (34.34)  

Equation (34.34) was derived asssuming the flat plate to be completely turbulent over its entire length . In 

reality, a portion of it is laminar from the leading edge to some downstream position. For this purpose, it was 

suggested to use  

 

  (34.35a)  

where A has various values depending on the value of Reynolds number at which the transition takes place.  

 If the trasition is assumed to take place around a Reynolds number of , the average skin 

friction correlation of Schlichling can be written as 

 

  (34.35b)  

All that we have presented so far, are valid for a smooth plate.  

 Schlichting used a logarithmic expression for turbulent flow over a rough surface and derived 

 

  (34.36)  

 

Exercise Problems    

1.Estimate the power required to move a flat plate, 15 m. long and 4 m. wide, in oil 

at 4m/sec, under the following cases:  

a) The boundary layer is assumed laminar over the entire surface of the plate. (Ans. 1665.5 N-m/sec)  
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b) Transition to turbulence occurs at and plate is smooth.(Ans. 9486 N-m/sec)  

c) The boundary layer is turbulent over the entire plate which is smooth.(Ans. 10023.94 N-m/sec)  

d) The boundary layer is turbulent over the entire rough plate with .(Ans. 17200 N-m/sec)  

2. Water is transported through a horizontal pipeline, 800 m. long, 

with a maximum velocity of 3m/sec. If the Reynolds number is , find the diameter of the pipe (with and 

without the use of Moody Diagram ).  

Also calculate the thickness of laminar sub-layer and the buffer layer, and find the power required to 

maintain the flow. Calculate your results for a fully rough pipe with .  

(Ans. Diameter of the pipe 0.8 m., laminar sub-layer thickness 0.1 mm, buffer layer thickness 1.3 mm, 

power required 50250 W)  

3. Find the frictional drag on the top and sides of a box-shaped moving van 2.4 m wide, 3.0 m high, and 10.5 

m long traveling at 100km/h through air ( ). Assume that the vehicle has a rounded nose so that 

the flow does not seperate from the top and side. also assume that a turbulent boundary layer starts 

immediately at the leading edge.  

Also, find the thickness of the boundary layer and the shear stress at the trailing edge.  

(Ans. Drag = 105.9 N, B.L. = 0.136m, Shear stress = 0.904 Pa)  

Recap 

   In this course you have learnt the following 

  

 Turbulent motion is an irregular motion of fluid particles in a flow field. However, for 

homogeneous and isotropic turbulence, the flow field can be described by time-mean motions 

and fluctuating components. This is called Reynolds decomposition of turbulent flow. 

  

 In a three dimensional flow field, the velocity components and the pressure can be expressed 

in terms of the time-averages and the corresponding fluctuations. Substitution of these 

dependent variables in the Navier-Stokes equations for incompressible flow and subsequent 

time averaging yield the governing equations for the turbulent flow. The mean velocity 

components of turbulent flow satisfy the same Navier-Stokes equations for laminar flow. 

However, for the turbulent flow, the laminar stresses are increased by additional stresses 

arising out  of the fluctuating velocity components. These additional stresses are known as 

apparent stresses of turbulent flow or Reynolds stresses.In analogy with the laminar shear 

stresses, the turbulent shear stresses can be expressed in terms of mean velocity gradients and a 

mixing coefficient known as eddy viscosity. The eddy viscosity (νt) can be expressed as 

, where l is known as Prandtl's mixing length.  

  

 For fully developed turbulent duct flows at high Reynolds numbers, the velocity profile is 

given by  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 34

4 

 

where is the time mean velocity at any and is the friction velocity given by . 

The constants A1 and D1 are determined experimentally. For the smooth pipes, A1 and D1 are 2.5 and 

5.5 respectively. Corresponding friction factor, f is given by 

 

Exercise Problems  -  Chapter 10  

1.Estimate the power required to move a flat plate, 15 m. long and 4 m. wide, in oil 

at 4m/sec, under the following cases:  

a) The boundary layer is assumed laminar over the entire surface of the plate. (Ans. 1665.5 N-m/sec)  

b) Transition to turbulence occurs at and plate is smooth.(Ans. 9486 N-m/sec)  

c) The boundary layer is turbulent over the entire plate which is smooth.(Ans. 10023.94 N-m/sec)  

d) The boundary layer is turbulent over the entire rough plate with .(Ans. 17200 N-m/sec)  

2. Water is transported through a horizontal pipeline, 800 m. long, 

with a maximum velocity of 3m/sec. If the Reynolds number is , find the diameter of the pipe (with and 

without the use of Moody Diagram ).  

Also calculate the thickness of laminar sub-layer and the buffer layer, and find the power required to 

maintain the flow. Calculate your results for a fully rough pipe with .  

(Ans. Diameter of the pipe 0.8 m., laminar sub-layer thickness 0.1 mm, buffer layer thickness 1.3 mm, 

power required 50250 W)  

3. Find the frictional drag on the top and sides of a box-shaped moving van 2.4 m wide, 3.0 m high, and 10.5 

m long traveling at 100km/h through air ( ). Assume that the vehicle has a rounded nose so that 

the flow does not seperate from the top and side. also assume that a turbulent boundary layer starts 

immediately at the leading edge.  

Also, find the thickness of the boundary layer and the shear stress at the trailing edge.  

(Ans. Drag = 105.9 N, B.L. = 0.136m, Shear stress = 0.904 Pa)  
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Introduction 

 A complete analytical solution for the equation of motion in the case of a laminar flow is available, 

even the advanced theories in the analysis of turbulent flow depend at some point on experimentally 

derived information. Flow through pipes is usually turbulent in practice.  

 One of the most important items of information that an hydraulic engineer needs is the power 

required to force fluid at a certain steady rate through a pipe or pipe network system. This 

information is furnished in practice through some routine solution of pipe flow problems with the 

help of available empirical and theoretical information.  

 This lecture deals with the typical approaches to the solution of pipe flow problems in practice.  

Concept of Friction Factor in a pipe flow:  

 The friction factor in the case of a pipe flow was already mentioned in lecture 26.  

 We will elaborate further on friction factor or friction coefficient in this section.  

 Skin friction coefficient for a fully developed flow through a closed duct is defined as  

 

(35.1)  

 

where, V is the average velocity of flow given by , Q and A are the volume flow rate through the 

duct and the cross-sectional area of the duct respectively.  

From a force balance of a typical fluid element (Fig. 35.1) in course of its flow through a duct of constant 

cross-sectional area, we can write  

 

(35.2)  

 

FIG 35.1 Force Balance of a fluid element in the course of flow through a duct  
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where, is the shear stress at the wall and is the piezometric pressure drop over a length of L . A and 

S are respectively the cross-sectional area and wetted perimeter of the duct.  

Substituting the expression (35.2) in Eq. (35.1), we have,  

 

(35.3)  

where, and is known as the hydraulic diameter .  

 

In case of a circular pipe, Dh=D, the diameter of the pipe. The coefficient Cf defined by Eqs (35.1) or (35.3) 

is known as Fanning's friction factor .  

 To do away with the factor 1/4 in the Eq. (35.3), Darcy defined a friction factor f (Darcy's friction 

factor) as  

 

(35.4)  

 Comparison of Eqs (35.3) and (35.4) gives . Equation (35.4) can be written for a pipe flow 

as  

 

(35.5)  

 Equation (35.5) is written in a different fashion for its use in the solution of pipe flow problems in 

practice as  

 

(35.6a)  

or in terms of head loss (energy loss per unit weight)  

 

(35.6b)  

where, hf represents the loss of head due to friction over the length L of the pipe.  

 Equation (35.6b) is frequently used in practice to determine hf  

 In order to evaluate hf, we require to know the value of f. The value of f can be determined from 

Moody's Chart. 

Variation of Friction Factor  

 In case of a laminar fully developed flow through pipes, the friction factor, f is found from the exact 

solution of the Navier-Stokes equation as discussed in lecture 26. It is given by  

 

(35.7)  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 34

8 

 In the case of a turbulent flow, friction factor depends on both the Reynolds number and the 

roughness of pipe surface.  

 Sir Thomas E. Stanton (1865-1931) first started conducting experiments on a number of pipes of 

various diameters and materials and with various fluids. Afterwards, a German engineer Nikuradse 

carried out experiments on flows through pipes in a very wide range of Reynolds number.  

 A comprehensive documentation of the experimental and theoretical investigations on the laws of 

friction in pipe flows has been presented in the form of a diagram, as shown in Fig. 35.2, by L.F. 

Moody to show the variation of friction factor, f with the pertinent governing parameters, namely, 

the Reynolds number of flow and the relative roughness of the pipe. This diagram is known as 

Moody's Chart which is employed till today as the best means for predicting the values of f .  

 

Fig. 35.2 Friction Factors for pipes (adapted from Trans. ASME, 66,672, 1944)  

Figure 35.2 depicts that  

 The friction factor f at a given Reynolds number, in the turbulent region, depends on the relative 

roughness, defined as the ratio of average roughness to the diameter of the pipe, rather than the 

absolute roughness.  

 For moderate degree of roughness, a pipe acts as a smooth pipe up to a value of Re where the curve 

of f vs Re for the pipe coincides with that of a smooth pipe. This zone is known as the smooth zone 

of flow .  

 The region where f vs Re curves (Fig. 35.2) become horizontal showing that f is independent of Re, 

is known as the rough zone and the intermediate region between the smooth and rough zone is 

known as the transition zone.  

 The position and extent of all these zones depend on the relative roughness of the pipe. In the smooth 

zone of flow, the laminar sublayer becomes thick, and hence, it covers appreciably the irregular 

surface protrusions. Therefore all the curves for smooth flow coincide.  

 With increasing Reynolds number, the thickness of sublayer decreases and hence the surface bumps 

protrude through it. The higher is the roughness of the pipe, the lower is the value of Re at which the 

curve of f vs Re branches off from smooth pipe curve (Fig. 35.2).  

 In the rough zone of flow, the flow resistance is mainly due to the form drag of those protrusions. 

The pressure drop in this region is approximately proportional to the square of the average velocity 

of flow. Thus f becomes independent of Re in this region.  
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In practice, there are three distinct classes of problems relating to flow through a single pipe line as follows:  

1. The flow rate and pipe diameter are given. One has to determine the loss of head over a given length 

of pipe and the corresponding power required to maintain the flow over that length.  

2. The loss of head over a given length of a pipe of known diameter is given. One has to find out the 

flow rate and the transmission of power accordingly.  

3. The flow rate through a pipe and the corresponding loss of head over a part of its length are given. 

One has to find out the diameter of the pipe.  

In the first category of problems, the friction factor f is found out explicitly from the given values of flow 

rate and pipe diameter. Therefore, the loss of head hf and the power required, P can be calculated by the 

straightforward application of Eq.(35.6b).  

Now Let's do some Examples  

 

Example 1 

 

Example 2  

 

Example 3 

 Problem  

Water at 15
0
C flow through a 200m long galvanized steel pipe of diameter 250 mm and at 0.225 

m
3
/s. Note that ninematic viscosity of water at 15

0
c=1.14×10

-5
 m

2
/s and average surface roughness 

for galvanized steel=0.15 mm. 

Determine - 

(a) Loss of head due to friction. 

(b) Pumping power required to maintain the above flow.  
 

Click for the Solution  

 

(a) 

Average flow velocity  

Therefore, Reynolds number  

 

Relative roughness  

 

From Fig. 35.2,     f = 0.02        

Hence, using Eq. (35.6b)  

    [ for circular pipes   ]  

javascript:openpopup('hyperlink/examp_35_1.htm')
javascript:openpopup('hyperlink/examp_35_2.htm')
javascript:openpopup('hyperlink/examp_35_3.htm')
https://nptel.ac.in/courses/112104118/lecture-35/hyperlink/examp1_soln.htm
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(b) 

Power required to maintain a flow at the rate of Q under a loss of head of is given by  

 

 

Problem  

Oil flows through a cast iron pipe of 250 mm diameter such that the loss of head over a pipe length 

of 100 m is 4 m of the oil. Determine the flow rate of oil through the pipe. 

Given:  Kinematic viscosity of the oil = 10
-5

 m
2
/s 

            Average surface roughness of iron = 0.25 mm  

   

 

Click for the Solution  

Since the velocity is unknown, Re is unknown.  

Relative rougness  

A guess of the friction factor at this relative roughness is made from Fig. 35.2 as f = 0.02 Then Eq. (35.6b) 

gives a first trial  

 

  

 

  

 

  

Hence,  

 

  

At this Re, f =0.023 (Fig 35.2). The second step of iteration involves recalculation of v with f=0.0225 as 

 

  

This gives     and          

https://nptel.ac.in/courses/112104118/lecture-35/hyperlink/examp2_soln.htm
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The value of f at this Re = 0.0235.  

Therefore, the flow rate  

Problem  

Water flows through a galvanized iron pipe at 0.09 m
3
/s. Determine the size of the pipe needed to transmit 

water a distance 200 m with a head loss 10 m. 

Given: Kinematic viscosity of the water = 1.14 ×10
-5

 m
2
/s  

             Average surface roughness for galvanized iron = 0.15 mm  

 

Click for the Solution  

 

  

From (35.6b),  

 

  

 

  

 

(35.8) 

and  

 

(35.9)  

                                                                           

                                                                                                                                                     

First, a guess in f is made as 0.024.  

Then from Eq. (35.8) D = 0.2 m and from Eq. (35.9)  

The relative roughness  

With the values of Re and , the updated value of f is found from Fig. 35.2 as 0.018. With this value of f, 

recalculation of D and Re from Eqs (35.8) and (35.9) gives  

D =0.188 m    

Re=5.323×10
5
   

Also, 

 

  

The new values of Re and predict  

https://nptel.ac.in/courses/112104118/lecture-35/hyperlink/examp3_soln.htm
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Hence D=0.188 m  

Concept of Flow Potential and Flow Resistance  

 Consider the flow of water from one reservoir to another as shown in Fig. 35.3. The two reservoirs A 

and B are maintained with constant levels of water. The difference between these two levels is 

as shown in the figure. Therefore water flows from reservoir A to reservoir B .  

 

Fig 35.3 Flow of liquid from one reservoir to another  

 Application of Bernoulli's equation between two points A and B at the free surfaces in the two 

reservoirs gives  

     
  

 

(35.10)  

where is the loss of head in the course of flow from A to B .  

 Therefore, Eq. (35.10) states that under steady state, the head causing flow becomes equal to the 

total loss of head due to the flow.  

 Considering the possible hydrodynamic losses, the total loss of head can be written in terms of its 

different components as  

                

(35.11) 

  

Loss of heat at 

entry to the 

pipe 

from reservoir 

A  

Friction loss in 

pipe over its 

length L  

Exit loss to the  

reservoir B  
  

where, V is the average velocity of flow in the pipe.  

(contd from previous...) Concept of Flow Potential and Flow Resistance  
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The velocity V in the above equation is usually substituted in terms of flow rate Q , since, under steady state, 

the flow rate remains constant throughout the pipe even if its diameter changes. Therefore, replacing V in 

Eq. (35.11) as we finally get  

           

  

or,        (35.12) 

where  

(35.13) 

The term R is defined as the flow resistance .  

In a situation where f becomes independent of Re, the flow resistance expressed by Eg. (35.13) becomes 

simply a function of the pipe geometry. With the help of Eq. (35.10), Eq. (35.12) can be written as  

 

(35.14)  

 in Eq. (35.14) is the head causing the flow and is defined as the difference in flow potentials 

between A and B.  

 

This equation is comparable to the voltage-current relationship in a purely resistive electrical circuit. 

In a purely resistive electrical circuit, , where is the voltage or electrical potential 

difference across a resistor whose resistance is R and the electrical current flowing through it is I.  

 The difference however is that while the voltage drop in an electrical circuit is linearly proportional 

to current, the difference in the flow potential in a fluid circuit is proportional to the square of the 

flow rate.  

 Therefore, the fluid flow system as shown in Fig. 35.3 and described by Eq. (35.14) can be expressed 

by an equivalent electrical network system as shown in Fig. 35.4.  

 

Fig 35.4 Equivalent electrical network system for a simple pipe flow problem shown in Fig.35.3  

Flow Through Branched Pipes  

In several practical situations, flow takes place under a given head through different pipes jointed together 

either in series or in parallel or in a combination of both of them.  

Pipes in Series  

 If a pipeline is joined to one or more pipelines in continuation, these are said to constitute pipes in series. A 

typical example of pipes in series is shown in Fig. 36.1. Here three pipes A, B and C are joined in series.  
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Fig 36.1 Pipes in series  

In this case, rate of flow Q remains same in each pipe. Hence,  

 

  

  

 If the total head available at Sec. 1 (at the inlet to pipe A) is which is greater than , the total head at 
Sec. 2 (at the exit of pipe C), then the flow takes place from 1 to 2 through the system of pipelines in series.  

 Application of Bernoulli's equation between Secs.1 and 2 gives  

 

  

 where, is the loss of head due to the flow from 1 to 2. Recognizing the minor and major losses 

associated with the flow, can be written as  

 

(36.1) 

  
Friction loss 

in pipe A  

Loss due to 

enlargement at  

entry to pipe B  

Friction loss 

in pipe B  

Loss due  

to abrupt 

contraction 

at entry 

to pipe C  

Friction loss in 

pipe C  

   The subscripts A, B and C refer to the quantities in pipe A, B and C respectively. Cc is the coefficient of 

contraction.  

 The flow rate Q satisfies the equation  

 

(36.2)  

Velocities VA, VB and VC in Eq. (36.1) are substituted from Eq. (36.2), and we get  
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(36.3)  

 

  

 

(36.4) 

 

Equation (36.4) states that the total flow resistance is equal to the sum of the different resistance 

components. Therefore, the above problem can be described by an equivalent electrical network system as 

shown in Fig. 36.2.  

 
Fig 36.2 Equivalent electrical network system for through pipes in series  

Pipes In Parallel  

 When two or more pipes are connected, as shown in Fig. 36.3, so that the flow divides and 

subsequently comes together again, the pipes are said to be in parallel.  

 In this case (Fig. 36.3), equation of continuity gives  

 

(36.5)  

where, Q is the total flow rate and and are the flow rates through pipes A and B respectively.  

 Loss of head between the locations 1 and 2 can be expressed by applying Bernoulli's equation either 

through the path 1-A-2 or 1-B-2.  

 Therefore, we can write  

 

Fig 36.3 Pipes in Parallel  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 35

6 

      

  

and      

 Equating the above two expressions, we get -  

           
(36.6)  

 

where,    

 

            

Equations (36.5) and (36.6) give - 

 

(36.7) 

 

where,     (36.8)  

 The flow system can be described by an equivalent electrical circuit as shown in Fig. 36.4.  

 
Fig 36.4 Equivalent electrical network system for flow through pipes in parallel  

From the above discussion on flow through branched pipes (pipes in series or in parallel, or in combination 

of both), the following principles can be summarized:  

1. The friction equation must be satisfied for each pipe.  

2. There can be only one value of head at any point.  

3. Algebraic sum of the flow rates at any junction must be zero. i.e., the total mass flow rate towards 

the junction must be equal to the total mass flow rate away from it.  

4. Algebraic sum of the products of the flux (Q
2
) and the flow resistance (the sense being determined 

by the direction of flow) must be zero in any closed hydraulic circuit.  
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The principles 3 and 4 can be written analytically as  

   at a node (Junction)  (36.9)  

 

   in a loop  (36.10)  

While Eq. (36.9) implies the principle of continuity in a hydraulic circuit, Eq. (36.10) is referred to as 

pressure equation of the circuit.  

Pipe Network: Solution by Hardy Cross Method  

 The distribution of water supply in practice is often made through a pipe network comprising a 

combination of pipes in series and parallel. The flow distribution in a pipe network is determined 

from Eqs(36.9) and (36.10).  

 The solution of Eqs (36.9) and (36.10) for the purpose is based on an iterative technique with an 

initial guess in Q  

 The method was proposed by Hardy-Cross and is described below:  

 The flow rates in each pipe are assumed so that the continuity (Eq. 36.9) at each node is 

satisfied. Usually the flow rate is assumed more for smaller values of resistance R and vice 

versa.  

 If the assumed values of flow rates are not correct, the pressure equation Eq. (36.10) will not 

be satisfied. The flow rate is then altered based on the error in satisfying the Eq. (36.10).  

 Let Q0 be the correct flow in a path whereas the assumed flow be Q. The error dQ in flow is then 

defined as  

           (36.11)  

Let     (36.12a)  

and   (36.12b)  

Then according to Eq. (36.10)  

               in a loop  (36.13a)  

 

and          in a loop  (36.13b)  

Where 'e' is defined to be the error in pressure equation for a loop with the assumed values of flow rate in 

each path.  

From Eqs (36.13a) and (36.13b) we have  

      

 

or,   (36.14)  

Where dh (= h - h' ) is the error in pressure equation for a path. Again from Eq. (36.12a), we can write  
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or,   (36.15)  

Substituting the value of dh from Eq. (36.15) in Eq. (36.14) we have  

       

Considering the error dQ to be the same for all hydraulic paths in a loop, we can write  

        
(36.16)  

The Eq. (36.16) can be written with the help of Eqs (36.12a) and (36.12b) as  

      
(36.17)  

The error in flow rate dQ is determined from Eq. (36.17) and the flow rate in each path of a loop is then 

altered according to Eq. (36.11).  

 

The Hardy-Cross method can also be applied to a hydraulic circuit containing a pump or a turbine. The 

pressure equation (Eq. (36.10)) is only modified in consideration of a head source (pump) or a head sink 

(turbine) as  

       (36.18)  

where is the head delivered by a source in the circuit. Therefore, the value of to be substituted in 

Eq. (36.18) will be positive for a pump and negative for a turbine.  

 

Let's Solve a Problem  

Problem  

A pipe network with two loops is shown in Fig. 36.5. Determine the flow in each pipe for an 

inflow of 5 units at the junction A and outflows of 2.0 units and 3.0 units at junctions D and C 

respectively. The resistance R for different pipes are shown in the figure.  

  

 

Click for Solution  

javascript:openpopup('hyperlink/examp_36_1.htm')
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/examp_soln_1st_trial.htm
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Flow direction is assumed positive clockwise for both the loops ABD and BCD . The iterative solutions 

based on Hardy-Cross method has been made. The five trials have been made and the results of each trial is 

shown in Fig. 36.5; for each trial, d Q is calculated from Eq. (36.17). After fifth trial, the error d Q is so 

small that it changes the flow only in the third place of decimal. Hence the calculation has not been 

continued beyond the fifth trial. 

First Tri 

First Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  2
2
 = 480  2 120 2 = 480 300  (1.2)

2
 = 432 2 300 1.2 = 720 

400  (0.8)
2
 = 256  2 400 0.8 = 640  -150  (1.8)

2
 = -486  2 150 1.8 = 540 

-200  3 
2
 = -1800  2 200  3 = 1200  -400  (0.8)

2
 = -256  2 400 0.8 = 640 

       

Σ R|Q|Q = -1064  2Σ R|Q| = 2320  Σ R|Q|Q = - 310 2Σ R|Q| = 1900  

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after first trial  

Second Trial 

Second Trial  

Loop ABD  Loop BCD  
  

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/1st_trial.htm
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/2nd_trial.htm
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R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.46)
2
 = 726.19  2 120 2.46 = 590.40  300  (1.36)

2
 = 554.88  2 300 1.36 = 816  

400  (1.10)
2
 = 484.00  2 400 1.10 = 880.00 -150  (1.64)

2
 = -403.44 2 150 1.64 = 492 

-1200  (2.54)
2
 = -

1290.32 

2 200  2.54 = 

1016.00  
-400  (1.10)

2
 = -484.00 2 400 1.10= 880  

       

Σ R|Q|Q = -50.13 2Σ R|Q| = 2486.40 Σ R|Q|Q = - 332.56 2Σ R|Q| = 2188  

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after second trial  

Third Trial 

hird Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.48)
2
 = 738.05 2 120 2.48 = 595.20  300  (1.51)

2
 = 684.03 2 300  1.51 = 906.00  

400  (0.97)
2
 = 376.36 2 400 0.97 = 776.00 -150  (1.49)

2
 = -333.01 2 150 1.49 = 447 

-200  (2.52)
2
 = -

1270.08 

2 200  2.52 = 

1008.00  
-400  (0.97)

2
 = -376.36 2 400  0.97= 776.00  

       

Σ R|Q|Q = -155.67 2Σ R|Q| = 2379.20 Σ R|Q|Q = - 25.34 2Σ R|Q| = 2129 

 

 
 

  

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/third_trial.htm
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Fig 36.6 a   Flow Distribution in a pipe network after third trial  

Fourth Trial 

Fourth Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.54)
2
 = 774.20 2 120  2.54 = 609.60  300  (1.52)

2
 = 693.12 2 300  1.52 = 912.00  

400  (1.02)
2
 = 416.16 2 400  1.02 = 816.00 -150  (1.48)

2
 = -328.56 

2 150 1.48 = 

444.00 

-200  (2.46)
2
 = -

1210.32 
2 200  2.46 = 984.00  -400  (1.02)

2
 = -416.16 2 400  1.02 = 816.00  

       

Σ R|Q|Q = -19.96 2Σ R|Q| = 2409.60 Σ R|Q|Q = - 51.6 2Σ R|Q| = 2172 

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after fourth trial  

Fifth Trial 

Fifth Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.58)
2
 = 779.08 2 120  2.58 = 619.20  300  (1.54)

2
 = 711.48 2 300  1.54 = 924.00  

400  (1.008)
2
 = 406.42 

2 400  1.008 = 

806.40 
-150  (1.46)

2
 = -319.74 

2 150 1.46 = 

438.00 

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/fourth_trial.htm
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/fifth_trial.htm
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-200  (2.452)
2
 = -

1202.46 

2 200  2.452 = 

980.80  
-400  (1.08)

2
 = -406.42 

2 400  1.008 = 

806.00  

       

Σ R|Q|Q = -16.96 2Σ R|Q| = 2406.40 Σ R|Q|Q = - 14.68 2Σ R|Q| = 2168.40 

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after fifth trial  

Flow Through Pipes With Side Tappings  

 In course of flow through a pipe, a fluid may be withdrawn from the side tappings along the length of 

the pipe as shown in Fig. 37.1  

 If the side tappings are very closely spaced, the loss of head over a given length of pipe can be 

obtained as follows:  

 

 
Fig. 37.1 Flow through pipes with side tappings  

 The rate of flow through the pipe, under this situation, decreases in the direction of flow due to side 

tappings. Therefore, the average flow velocity at any section of the pipe is not constant.  

 The frictional head loss over a small length dx of the pipe at any section can be written as  

 

(37.1) 
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where, is the average flow velocity at that section.  

 If the side tappings are very close together, Eq. (37.1) can be integrated to determine the loss of head 

due to friction over a given length L of the pipe, provided, can be replaced in terms of the length 

of the pipe.  

 Let us consider, for this purpose, a Section 1-1 at the upstream just after which the side tappings are 

provided. If the tappings are uniformly and closely spaced, so that the fluid is removed at a uniform 

rate q per unit length of the pipe, then the volume flow rate Qx at a distance x from the inlet Section 

1-1 can be written as  

 

  

where, is the volume flow rate at Sec.1-1.  

 Hence,  

 

(37.2)  

Substituting from Eq. (37.2) into Eq. (37.1), we have,  

 

(37.3)  

Therefore, the loss of head due to friction over a length L is given by  

 

(37.4a)  

 Here, the friction factor f has been assumed to be constant over the length L of the pipe. If the entire 

flow at Sec.1-1 is drained off over the length L , then,  

 

  

Equation (37.4a), under this situation, becomes  

 

(37.4b)  

 where, V0 is the average velocity of flow at the inlet Section 1-1.  

 

Equation (37.4b) indicates that the loss of head due to friction over a length L of a pipe, where the 

entire flow is drained off uniformly from the side tappings, becomes one third of that in a pipe of 

same length and diameter, but without side tappings.  

Losses In Pipe Bends  
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 Bends are provided in pipes to change the direction of flow through it. An additional loss of head, 

apart from that due to fluid friction, takes place in the course of flow through pipe bend.  

 The fluid takes a curved path while flowing through a pipe bend as shown in Fig. 37.2.              

 

Fig.  37.2 Flow through pipe bend  

Whenever a fluid flows in a curved path, there must be a force acting radially inwards on the fluid to provide 

the inward acceleration, known as centripetal acceleration .  

This results in an increase in pressure near the outer wall of the bend, starting at some point A (Fig. 37.2) 

and rising to a maximum at some point B . There is also a reduction of pressure near the inner wall giving a 

minimum pressure at C and a subsequent rise from C to D . Therefore between A and B and between C 

and D the fluid experiences an adverse pressure gradient (the pressure increases in the direction of flow).  

 

Fluid particles in this region, because of their close proximity to the wall, have low velocities and cannot 

overcome the adverse pressure gradient and this leads to a separation of flow from the boundary and 

consequent losses of energy in generating local eddies. Losses also take place due to a secondary flow in 

the radial plane of the pipe because of a change in pressure in the radial depth of the pipe.  

 

This flow, in conjunction with the main flow, produces a typical spiral motion of the fluid which persists 

even for a downstream distance of fifty times the pipe diameter from the central plane of the bend. This 

spiral motion of the fluid increases the local flow velocity and the velocity gradient at the pipe wall, and 

therefore results in a greater frictional loss of head than that which occurs for the same rate of flow in a 

straight pipe of the same length and diameter.  

 

The additional loss of head (apart from that due to usual friction) in flow through pipe bends is known as 

bend loss and is usually expressed as a fraction of the velocity head as , where V is the average 

velocity of flow through the pipe. The value of K depends on the total length of the bend and the ratio of 

radius of curvature of the bend and pipe diameter R/D. The radius of curvature R is usually taken as the 

radius of curvature of the centre line of the bend. The factor K varies slightly with Reynolds number Re in 

the typical range of Re encountered in practice, but increases with surface roughness.  

Losses In Pipe Fittings  

 An additional loss of head takes place in the course of flow through pipe fittings like valves, 

couplings and so on. In-general, more restricted the passage is, greater is the loss of head.  
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 For turbulent flow, the losses are proportional to the square of the average flow velocity and are 

usually expressed by , where V is the average velocity of flow. The value of K depends on 

the exact shape of the flow passages. Typical values of K are  

Approximate Loss Coefficients, K for Commercial Pipe Fittings .  

Type and position of fittings  Values of K  
   

Globe valve,wide open  10  

Gate valve, wide open  0.2  

Gate valve, three-quarters open  1.15  

Gate valve, half open  5.6  

Gate valve,  quarter open  24  

Pump foot valve  1.5  

90°elbow(threaded) 0.9  

45°elbow(threaded) 0.4  

Side outlet of T junction  1.8  

 

 

 Since the eddies generated by fittings persist for some distance downstream, the total loss of head 

caused by two fittings close together is not necessarily the same as the sum of the losses which,each 

alone would cause.  

These losses are sometimes expressed in terms of an equivalent length of an unobstructed straight 

pipe in which an equal loss would occur for the same average flow velocity. That is 

 

(37.5)  

where, represents the equivalent length which is usually expressed in terms of the pipe diameter 

as given by Eq. (37.5). Thus depends upon the friction factor f , and therefore on the 

Reynolds number and roughness of the pipe.  

Power Transmission By A Pipeline  

 In certain occasions, hydraulic power is transmitted by conveying fluid through a pipeline. For 

example, water from a reservoir at a high altitude is often conveyed by a pipeline to an impulse 

hydraulic turbine in an hydroelectric power station. The hydrostatic head of water is thus transmitted 

by a pipeline. Let us analyse the efficiency of power transmission under this situation.  
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Fig. 37.3 Transmission of hydraulic power by a pipeline to a turbine  

The potential head of water in the reservoir = H ( the difference in the water level in the reservoir and the 

turbine center)  

                                                                

The head available at the pipe exit (or at the turbine entry)  

Where is the loss of head in the pipeline due to friction.  

 Assuming that the friction coefficient and other loss coefficients are constant, we can write  

 

  

Where Q is the volume flow rate and R is the hydraulic resistance of the pipeline. Therefore, the power 

available P at the exit of the pipeline becomes  

 

  

For P to be maximum, for a given head H, dP/dQ should be zero. This gives  

 (37.6) 

or,   
  

   

 is always negative which shows that P has only a maximum value (not a minimum) with Q.  

 From Eq. (37.6), we can say that maximum power is obtained when one third of the head available at 

the source (reservoir) is lost due to friction in the flow.  

 The efficiency of power transmission is defined as  
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(37.7) 

  

1. The efficiency equals to unity for the trivial case of Q = 0.  

2. For flow to commence and hence is a monotonically decreasing function of Q from a 

maximum value of unity to zero.  

3. The zero value of corresponds to the situation given by   when 

the head H available at the reservoir is totally lost to overcome friction in the flow through 

the pipe.  

 The efficiency of transmission at the condition of maximum power delivered is obtained by 

substituting RQ
2
 from Eq. (37.6) in Eq. (37.7) as  

   

 

  

Therefore the maximum power transmission efficiency through a pipeline is 67%.  

  

Exercise Problems    

1. Calculate the force F required on the piston to discharge of water through a syringe (see Fig. 

37.4), taking into account the frictional loss in the syringe needle only. Assume fully developed laminar 

flow in the syringe needle. Take the dynamic viscosity of water .  

 

Figure 37.4  

  

2. A hydrocarbon oil (viscosity 0.025 pa-s and density 900 kg/m
3
 ) is transported using a 0.6 m diameter, 10 

km long pipe. The maximum allowable pressure drop across the pipe length is 1 MPa. Due to a maintenance 

schedule on this pipeline, it is required to use a 0.4 m diameter, 10 km long pipe to pump the oil at the same 

volumetric flow rate as in the earlier case. Estimate the pressure drop for the 0.4 m diameter pipe. Assume 

both pipes to be hydrodynamically smooth and in the range of operating conditions, the Fanning friction 

factor is given by:  
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3. Two reservoirs 1 and 2 are connected as shown in the Fig 37.5 through a turbine T. Given the friction 

factor relation  

 

for the connecting pipes, the turbine characteristics of water [ Q in m
3
/s] and an ideal draft tube 

at the discharge end, find (a) the volume flow rate between the two reservoirs and (b) the power developed 

by the turbine. Note:  

 

 

 

 

Use an initial guess for power developed by the turbine as 1 MW. Show only two iterations . Also H is 

head available at the turbine.  

 

figure 37.5  

Recap 
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   In this course you have learnt the following 

  

 The Fanning’s friction coefficient for a flow through a closed duct,  in 

terms of wall shear stress, and Cf  = ( ¼)(Dh/L)ΔP*/(1/2) ρV
2 

in  terms of piezometric pressure 

drop Darcy’s friction factor is defined as f = 4Cf  

  

 Loss of head in a pipe flow is expressed in terms of Darcy’s friction factor as  h f = 

f(L/D)(V
2
/2g) 

  

 Friction factor in case of laminar fully developed flow is found by N-S equation and is given 

by f = 64/Re. Friction factor for turbulent flow depends both on Re and the roughness at pipe 

surface. 

  

 Flows, in practice, takes place through several pipes together either in series or parallel or in 

combination of both of them. The relationship between the head causing the flow ΔH and flow 

rate Q can be expressed as ΔH= RQ
2
, where R is the flow resistance in the hydraulic path. 

  

 The loss of head due to friction over a length L of a pipe. Where the entire flow is drained off 

uniformly from the side tappings, becomes 1/3 of that in a pipe of same length and diameter, 

but without side tappings. 

  

 An additional head loss over that due to pipe friction takes place in a flow through pipe bends 

and pipe fittings like valves, couplings and so on.  

  

 The hydraulic power can be transmitted by a pipeline. For a maximum power transmission, the 

head due to friction in the flow equals to one third of the head at source to be transmitted. The 

maximum power transmitted efficiency is 67%. 

    

Flow Through Branched Pipes  

In several practical situations, flow takes place under a given head through different pipes jointed together 

either in series or in parallel or in a combination of both of them.  

Pipes in Series  

 If a pipeline is joined to one or more pipelines in continuation, these are said to constitute pipes in series. A 

typical example of pipes in series is shown in Fig. 36.1. Here three pipes A, B and C are joined in series.  

 
Fig 36.1 Pipes in series  

In this case, rate of flow Q remains same in each pipe. Hence,  
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 If the total head available at Sec. 1 (at the inlet to pipe A) is which is greater than , the total head at 

Sec. 2 (at the exit of pipe C), then the flow takes place from 1 to 2 through the system of pipelines in series.  

 Application of Bernoulli's equation between Secs.1 and 2 gives  

 

  

  

where, is the loss of head due to the flow from 1 to 2. Recognizing the minor and major losses associated 

with the flow, can be written as  

 

(36.1) 

  
Friction loss 

in pipe A  

Loss due to 

enlargement at  

entry to pipe B  

Friction loss 

in pipe B  

Loss due  

to abrupt 

contraction 

at entry 

to pipe C  

Friction loss in 

pipe C  

    

The subscripts A, B and C refer to the quantities in pipe A, B and C respectively. Cc is the coefficient of 

contraction.  

 The flow rate Q satisfies the equation  

 

(36.2)  

Velocities VA, VB and VC in Eq. (36.1) are substituted from Eq. (36.2), and we get  

 

(36.3)  

 

  

 

(36.4) 
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Equation (36.4) states that the total flow resistance is equal to the sum of the different resistance 

components. Therefore, the above problem can be described by an equivalent electrical network system as 

shown in Fig. 36.2.  

 
Fig 36.2 Equivalent electrical network system for through pipes in series  

 

Pipes In Parallel  

 When two or more pipes are connected, as shown in Fig. 36.3, so that the flow divides and 

subsequently comes together again, the pipes are said to be in parallel.  

 In this case (Fig. 36.3), equation of continuity gives  

 

(36.5)  

where, Q is the total flow rate and and are the flow rates through pipes A and B respectively.  

 Loss of head between the locations 1 and 2 can be expressed by applying Bernoulli's equation either 

through the path 1-A-2 or 1-B-2.  

 Therefore, we can write  

 

Fig 36.3 Pipes in Parallel  

      

  

and      
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Equating the above two expressions, we get -  

           
(36.6)  

 

where,    

 

            

Equations (36.5) and (36.6) give - 

 

(36.7) 

 

where,     (36.8)  

 The flow system can be described by an equivalent electrical circuit as shown in Fig. 36.4.  

 
Fig 36.4 Equivalent electrical network system for flow through pipes in parallel  

 

From the above discussion on flow through branched pipes (pipes in series or in parallel, or in combination 

of both), the following principles can be summarized:  

1. The friction equation must be satisfied for each pipe.  

2. There can be only one value of head at any point.  

3. Algebraic sum of the flow rates at any junction must be zero. i.e., the total mass flow rate towards 

the junction must be equal to the total mass flow rate away from it.  

4. Algebraic sum of the products of the flux (Q
2
) and the flow resistance (the sense being determined 

by the direction of flow) must be zero in any closed hydraulic circuit.  

 

The principles 3 and 4 can be written analytically as  

   at a node (Junction)  (36.9)  

 

   in a loop  (36.10)  
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While Eq. (36.9) implies the principle of continuity in a hydraulic circuit, Eq. (36.10) is referred to as 

pressure equation of the circuit.  

Pipe Network: Solution by Hardy Cross Method  

 The distribution of water supply in practice is often made through a pipe network comprising a 

combination of pipes in series and parallel. The flow distribution in a pipe network is determined 

from Eqs(36.9) and (36.10).  

 The solution of Eqs (36.9) and (36.10) for the purpose is based on an iterative technique with an 

initial guess in Q  

 The method was proposed by Hardy-Cross and is described below:  

 The flow rates in each pipe are assumed so that the continuity (Eq. 36.9) at each node is 

satisfied. Usually the flow rate is assumed more for smaller values of resistance R and vice 

versa.  

 If the assumed values of flow rates are not correct, the pressure equation Eq. (36.10) will not 

be satisfied. The flow rate is then altered based on the error in satisfying the Eq. (36.10).  

 Let Q0 be the correct flow in a path whereas the assumed flow be Q. The error dQ in flow is then 

defined as  

           (36.11)  

Let     (36.12a)  

and   (36.12b)  

Then according to Eq. (36.10)  

               in a loop  (36.13a)  

 

and          in a loop  (36.13b)  

Where 'e' is defined to be the error in pressure equation for a loop with the assumed values of flow rate in 

each path.  

From Eqs (36.13a) and (36.13b) we have  

      

 

or,   (36.14)  

Where dh (= h - h' ) is the error in pressure equation for a path. Again from Eq. (36.12a), we can write  

      

 

or,   (36.15)  

Substituting the value of dh from Eq. (36.15) in Eq. (36.14) we have  

       

Considering the error dQ to be the same for all hydraulic paths in a loop, we can write  
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(36.16)  

The Eq. (36.16) can be written with the help of Eqs (36.12a) and (36.12b) as  

      
(36.17)  

The error in flow rate dQ is determined from Eq. (36.17) and the flow rate in each path of a loop is then 

altered according to Eq. (36.11).  

 

The Hardy-Cross method can also be applied to a hydraulic circuit containing a pump or a turbine. The 

pressure equation (Eq. (36.10)) is only modified in consideration of a head source (pump) or a head sink 

(turbine) as  

       (36.18)  

where is the head delivered by a source in the circuit. Therefore, the value of to be substituted in 

Eq. (36.18) will be positive for a pump and negative for a turbine.  

 

Let's Solve a Problem  

Problem  

A pipe network with two loops is shown in Fig. 36.5. Determine the flow in each pipe 

for an inflow of 5 units at the junction A and outflows of 2.0 units and 3.0 units at 

junctions D and C respectively. The resistance R for different pipes are shown in the 

figure.  

  

 

Click for Solution  

 

Flow direction is assumed positive clockwise for both the loops ABD and BCD . The iterative solutions 

based on Hardy-Cross method has been made. The five trials have been made and the results of each trial is 

shown in Fig. 36.5; for each trial, d Q is calculated from Eq. (36.17). After fifth trial, the error d Q is so 

small that it changes the flow only in the third place of decimal. Hence the calculation has not been 

continued beyond the fifth trial. 

javascript:openpopup('hyperlink/examp_36_1.htm')
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/examp_soln_1st_trial.htm
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First Trial  

First Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  2
2
 = 480  2 120 2 = 480 300  (1.2)

2
 = 432 2 300 1.2 = 720 

400  (0.8)
2
 = 256  2 400 0.8 = 640  -150  (1.8)

2
 = -486  2 150 1.8 = 540 

-200  3 
2
 = -1800  2 200  3 = 1200  -400  (0.8)

2
 = -256  2 400 0.8 = 640 

       

Σ R|Q|Q = -1064  2Σ R|Q| = 2320  Σ R|Q|Q = - 310 2Σ R|Q| = 1900  

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after first trial  

Second Trial 

Second Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.46)
2
 = 726.19  2 120 2.46 = 590.40  300  (1.36)

2
 = 554.88  2 300 1.36 = 816  

400  (1.10)
2
 = 484.00  2 400 1.10 = 880.00 -150  (1.64)

2
 = -403.44 2 150 1.64 = 492 

-1200  (2.54)
2
 = -

1290.32 

2 200  2.54 = 

1016.00  
-400  (1.10)

2
 = -484.00 2 400 1.10= 880  

       

Σ R|Q|Q = -50.13 2Σ R|Q| = 2486.40 Σ R|Q|Q = - 332.56 2Σ R|Q| = 2188  

 

 
 

  

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/1st_trial.htm
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/2nd_trial.htm
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Fig 36.6 a   Flow Distribution in a pipe network after second trial  

Third Trial 

Third Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.48)
2
 = 738.05 2 120 2.48 = 595.20  300  (1.51)

2
 = 684.03 2 300  1.51 = 906.00  

400  (0.97)
2
 = 376.36 2 400 0.97 = 776.00 -150  (1.49)

2
 = -333.01 2 150 1.49 = 447 

-200  (2.52)
2
 = -

1270.08 

2 200  2.52 = 

1008.00  
-400  (0.97)

2
 = -376.36 2 400  0.97= 776.00  

       

Σ R|Q|Q = -155.67 2Σ R|Q| = 2379.20 Σ R|Q|Q = - 25.34 2Σ R|Q| = 2129 

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after third trial  

Fourth Trial 

Fourth Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.54)
2
 = 774.20 2 120  2.54 = 609.60  300  (1.52)

2
 = 693.12 2 300  1.52 = 912.00  

400  (1.02)
2
 = 416.16 2 400  1.02 = 816.00 -150  (1.48)

2
 = -328.56 

2 150 1.48 = 

444.00 

-200  (2.46)
2
 = - 2 200  2.46 = 984.00  -400  (1.02)

2
 = -416.16 2 400  1.02 = 816.00  

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/third_trial.htm
https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/fourth_trial.htm
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1210.32 

       

Σ R|Q|Q = -19.96 2Σ R|Q| = 2409.60 Σ R|Q|Q = - 51.6 2Σ R|Q| = 2172 

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after fourth trial  

Fifth Trial 

Fifth Trial  

Loop ABD  Loop BCD  
  

R|Q|Q 2R|Q| R|Q|Q 2R|Q| 

120  (2.58)
2
 = 779.08 2 120  2.58 = 619.20  300  (1.54)

2
 = 711.48 2 300  1.54 = 924.00  

400  (1.008)
2
 = 406.42 

2 400  1.008 = 

806.40 
-150  (1.46)

2
 = -319.74 

2 150 1.46 = 

438.00 

-200  (2.452)
2
 = -

1202.46 

2 200  2.452 = 

980.80  
-400  (1.08)

2
 = -406.42 

2 400  1.008 = 

806.00  

       

Σ R|Q|Q = -16.96 2Σ R|Q| = 2406.40 Σ R|Q|Q = - 14.68 2Σ R|Q| = 2168.40 

 

 
 

  

 

Fig 36.6 a   Flow Distribution in a pipe network after fifth trial  

https://nptel.ac.in/courses/112104118/lecture-36/hyperlink/fifth_trial.htm
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Flow Through Pipes With Side Tappings  

 In course of flow through a pipe, a fluid may be withdrawn from the side tappings along the length of 

the pipe as shown in Fig. 37.1  

 If the side tappings are very closely spaced, the loss of head over a given length of pipe can be 

obtained as follows:  

 

 
Fig. 37.1 Flow through pipes with side tappings  

 The rate of flow through the pipe, under this situation, decreases in the direction of flow due to side 

tappings. Therefore, the average flow velocity at any section of the pipe is not constant.  

 The frictional head loss over a small length dx of the pipe at any section can be written as  

 

(37.1) 

where, is the average flow velocity at that section.  

 If the side tappings are very close together, Eq. (37.1) can be integrated to determine the loss of head 

due to friction over a given length L of the pipe, provided, can be replaced in terms of the length 

of the pipe.  

 Let us consider, for this purpose, a Section 1-1 at the upstream just after which the side tappings are 

provided. If the tappings are uniformly and closely spaced, so that the fluid is removed at a uniform 

rate q per unit length of the pipe, then the volume flow rate Qx at a distance x from the inlet Section 

1-1 can be written as  

 

  

where, is the volume flow rate at Sec.1-1.  

 Hence,  

 

(37.2)  

Substituting from Eq. (37.2) into Eq. (37.1), we have,  
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(37.3)  

Therefore, the loss of head due to friction over a length L is given by  

 

(37.4a)  

 Here, the friction factor f has been assumed to be constant over the length L of the pipe. If the entire 

flow at Sec.1-1 is drained off over the length L , then,  

 

  

Equation (37.4a), under this situation, becomes  

 

(37.4b)  

 where, V0 is the average velocity of flow at the inlet Section 1-1.  

 

Equation (37.4b) indicates that the loss of head due to friction over a length L of a pipe, where the 

entire flow is drained off uniformly from the side tappings, becomes one third of that in a pipe of 

same length and diameter, but without side tappings.  

Losses In Pipe Bends  

 Bends are provided in pipes to change the direction of flow through it. An additional loss of head, 

apart from that due to fluid friction, takes place in the course of flow through pipe bend.  

 The fluid takes a curved path while flowing through a pipe bend as shown in Fig. 37.2.              

 

Fig.  37.2 Flow through pipe bend  
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Whenever a fluid flows in a curved path, there must be a force acting radially inwards on the fluid to provide 

the inward acceleration, known as centripetal acceleration .  

This results in an increase in pressure near the outer wall of the bend, starting at some point A (Fig. 37.2) 

and rising to a maximum at some point B . There is also a reduction of pressure near the inner wall giving a 

minimum pressure at C and a subsequent rise from C to D . Therefore between A and B and between C 

and D the fluid experiences an adverse pressure gradient (the pressure increases in the direction of flow).  

 

Fluid particles in this region, because of their close proximity to the wall, have low velocities and cannot 

overcome the adverse pressure gradient and this leads to a separation of flow from the boundary and 

consequent losses of energy in generating local eddies. Losses also take place due to a secondary flow in 

the radial plane of the pipe because of a change in pressure in the radial depth of the pipe.  

 

This flow, in conjunction with the main flow, produces a typical spiral motion of the fluid which persists 

even for a downstream distance of fifty times the pipe diameter from the central plane of the bend. This 

spiral motion of the fluid increases the local flow velocity and the velocity gradient at the pipe wall, and 

therefore results in a greater frictional loss of head than that which occurs for the same rate of flow in a 

straight pipe of the same length and diameter.  

 

The additional loss of head (apart from that due to usual friction) in flow through pipe bends is known as 

bend loss and is usually expressed as a fraction of the velocity head as , where V is the average 

velocity of flow through the pipe. The value of K depends on the total length of the bend and the ratio of 

radius of curvature of the bend and pipe diameter R/D. The radius of curvature R is usually taken as the 

radius of curvature of the centre line of the bend. The factor K varies slightly with Reynolds number Re in 

the typical range of Re encountered in practice, but increases with surface roughness.  

 Losses In Pipe Fittings  

 An additional loss of head takes place in the course of flow through pipe fittings like valves, 

couplings and so on. In-general, more restricted the passage is, greater is the loss of head.  

 For turbulent flow, the losses are proportional to the square of the average flow velocity and are 

usually expressed by , where V is the average velocity of flow. The value of K depends on 

the exact shape of the flow passages. Typical values of K are  

Approximate Loss Coefficients, K for Commercial Pipe Fittings .  

Type and position of fittings  Values of K  
   

Globe valve,wide open  10  

Gate valve, wide open  0.2  

Gate valve, three-quarters open  1.15  

Gate valve, half open  5.6  

Gate valve,  quarter open  24  

Pump foot valve  1.5  

90°elbow(threaded) 0.9  

45°elbow(threaded) 0.4  

Side outlet of T junction  1.8  

 Since the eddies generated by fittings persist for some distance downstream, the total loss of head 

caused by two fittings close together is not necessarily the same as the sum of the losses which,each 
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alone would cause.  

These losses are sometimes expressed in terms of an equivalent length of an unobstructed straight 

pipe in which an equal loss would occur for the same average flow velocity. That is 

 

(37.5)  

where, represents the equivalent length which is usually expressed in terms of the pipe diameter 

as given by Eq. (37.5). Thus depends upon the friction factor f , and therefore on the 

Reynolds number and roughness of the pipe.  

Power Transmission By A Pipeline  

 In certain occasions, hydraulic power is transmitted by conveying fluid through a pipeline. For 

example, water from a reservoir at a high altitude is often conveyed by a pipeline to an impulse 

hydraulic turbine in an hydroelectric power station. The hydrostatic head of water is thus transmitted 

by a pipeline. Let us analyse the efficiency of power transmission under this situation.  

 

Fig. 37.3 Transmission of hydraulic power by a pipeline to a turbine  

The potential head of water in the reservoir = H ( the difference in the water level in the reservoir and the 

turbine center)  

                                                                  

The head available at the pipe exit (or at the turbine entry)  

Where is the loss of head in the pipeline due to friction.  

 Assuming that the friction coefficient and other loss coefficients are constant, we can write  

 

  

Where Q is the volume flow rate and R is the hydraulic resistance of the pipeline. Therefore, the power 

available P at the exit of the pipeline becomes  
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For P to be maximum, for a given head H, dP/dQ should be zero. This gives  

 (37.6) 

or,   
  

   

 is always negative which shows that P has only a maximum value (not a minimum) with Q.  

 From Eq. (37.6), we can say that maximum power is obtained when one third of the head available at 

the source (reservoir) is lost due to friction in the flow.  

 The efficiency of power transmission is defined as  

 

(37.7) 

 The efficiency equals to unity for the trivial case of Q = 0.  

1. For flow to commence and hence is a monotonically decreasing function of Q from a 

maximum value of unity to zero.  

2. The zero value of corresponds to the situation given by   when 

the head H available at the reservoir is totally lost to overcome friction in the flow through 

the pipe.  

 The efficiency of transmission at the condition of maximum power delivered is obtained by 

substituting RQ
2
 from Eq. (37.6) in Eq. (37.7) as  

   

 

  

Therefore the maximum power transmission efficiency through a pipeline is 67%.  

Exercise Problems  -  Chapter 11  

1. Calculate the force F required on the piston to discharge of water through a syringe (see Fig. 

37.4), taking into account the frictional loss in the syringe needle only. Assume fully developed laminar 

flow in the syringe needle. Take the dynamic viscosity of water .  
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Figure 37.4  

 2. A hydrocarbon oil (viscosity 0.025 pa-s and density 900 kg/m
3
 ) is transported using a 0.6 m diameter, 10 

km long pipe. The maximum allowable pressure drop across the pipe length is 1 MPa. Due to a maintenance 

schedule on this pipeline, it is required to use a 0.4 m diameter, 10 km long pipe to pump the oil at the same 

volumetric flow rate as in the earlier case. Estimate the pressure drop for the 0.4 m diameter pipe. Assume 

both pipes to be hydrodynamically smooth and in the range of operating conditions, the Fanning friction 

factor is given by:  

 

3. Two reservoirs 1 and 2 are connected as shown in the Fig 37.5 through a turbine T. Given the friction 

factor relation  

 

for the connecting pipes, the turbine characteristics of water [ Q in m
3
/s] and an ideal draft tube 

at the discharge end, find (a) the volume flow rate between the two reservoirs and (b) the power developed 

by the turbine. Note:  

 

 

 

 

Use an initial guess for power developed by the turbine as 1 MW. Show only two iterations . Also H is 

head available at the turbine.  
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figure 37.5  

Recap 

   In this course you have learnt the following 

  

 The Fanning’s friction coefficient for a flow through a closed duct,  in 

terms of wall shear stress, and Cf  = ( ¼)(Dh/L)ΔP*/(1/2) ρV
2 

in  terms of piezometric pressure 

drop Darcy’s friction factor is defined as f = 4Cf  

  

 Loss of head in a pipe flow is expressed in terms of Darcy’s friction factor as  h f = 

f(L/D)(V
2
/2g) 

  

 Friction factor in case of laminar fully developed flow is found by N-S equation and is given 

by f = 64/Re. Friction factor for turbulent flow depends both on Re and the roughness at pipe 

surface. 

  

 Flows, in practice, takes place through several pipes together either in series or parallel or in 

combination of both of them. The relationship between the head causing the flow ΔH and flow 

rate Q can be expressed as ΔH= RQ
2
, where R is the flow resistance in the hydraulic path. 

  

 The loss of head due to friction over a length L of a pipe. Where the entire flow is drained off 

uniformly from the side tappings, becomes 1/3 of that in a pipe of same length and diameter, 

but without side tappings. 

  

 An additional head loss over that due to pipe friction takes place in a flow through pipe bends 

and pipe fittings like valves, couplings and so on.  

  

 The hydraulic power can be transmitted by a pipeline. For a maximum power transmission, the 

head due to friction in the flow equals to one third of the head at source to be transmitted. The 

maximum power transmitted efficiency is 67%. 
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Compressible Flow 
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Introduction  

 Compressible flow is often called as variable density flow. For the flow of all liquids and for the 

flow of gases under certain conditions, the density changes are so small that assumption of constant 

density remains valid.  

 Let us consider a small element of fluid of volume . The pressure exerted on the element by the 

neighbouring fluid is p . If the pressure is now increased by an amount dp , the volume of the 

element will correspondingly be reduced by the amount d .The compressibility of the fluid K is 

thus defined as  

 

(38.1)  

  

However, when a gas is compressed, its temperature increases. Therefore, the above mentioned definition of 

compressibility is not complete unless temperature condition is specified. When the temperature is 

maintained at a constant level, the isothermal compressibility is defined as  

 

(38.2)  

  

 Compressibility is a property of fluids. Liquids have very low value of compressibility (for ex. 

compressibility of water is 5  10
-10

 m
2
/N at 1 atm under isothermal condition), while gases have 

very high compressibility (for ex. compressibility of air is 10
-5

 m
2
/N at 1 atm under isothermal 

condition). 

 If the fluid element is considered to have unit mass and v is the specific volume (volume per unit 

mass) , the density is . In terms of density; Eq. (38.1) becomes  

 

(38.3) 

 

  

We can say that from Eqn (38.1) for a change in pressure, dp, the change in density is  

       (38.4)  
 

  

 If we also consider the fluid motion, we shall appreciate that the flows are initiated and maintained 

by changes in pressure on the fluid. It is also known that high pressure gradient is responsible for 

high speed flow. However, for a given pressure gradient dp , the change in density of a liquid 
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will be much smaller than the change in density of a gas (as seen in Eq. (38.4)). 

  

So, for flow of gases, moderate to high pressure gradients lead to substantial changes in the density. Due to 

such pressure gradients, gases flow with high velocity. Such flows, where is a variable, are known as 

compressible flows.  

  

 Recapitulating Chapter 1, we can say that the proper criterion for a nearly incompressible flow is a 

small Mach number,  

 

(38.5) 

  

where V is the flow velocity and a is the speed of sound in the fluid. For small Mach number, 

changes in fluid density are small everywhere in the flow field. 

 In this chapter we shall treat compressible flows which have Mach numbers greater than 0.3 and 

exhibit appreciable density changes. The Mach number is the most important parameter in 

compressible flow analysis. Aerodynamicists make a distinction between different regions of Mach 

number.  

Categories of flow for external aerodynamics.  

 Ma < 0.3: incompressible flow; change in density is negligible.  

 0.3< Ma < 0.8: subsonic flow; density changes are significant but shock waves do not 

appear.  

 0.8< Ma < 1.2: transonic flow; shock waves appear and divide the subsonic and 

supersonic regions of the flow. Transonic flow is characterized by mixed regions of 

locally subsonic and supersonic flow 

 1.2 < Ma < 3.0: supersonic flow; flow field everywhere is above acoustic speed. 

Shock waves appear and across the shock wave, the streamline changes direction 

discontinuously.  

 3.0< Ma : hypersonic flow; where the temperature, pressure and density of the flow 

increase almost explosively across the shock wave.  

 For internal flow, it is to be studied whether the flow is subsonic ( Ma < 1) or supersonic (Ma > 

1). The effect of change in area on velocity changes in subsonic and supersonic regime is of 

considerable interest. By and large, in this chapter we shall mostly focus our attention to internal 

flows.  

Perfect Gas  

 A perfect gas is one in which intermolecular forces are neglected. The equation of state 

for a perfect gas can be derived from kinetic theory. It was synthesized from laboratory 

experiments by Robert Boyle, Jacques Charles, Joseph Gay-Lussac and John Dalton. For 

a perfect gas, it can be written  
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(38.6)  

  

where p is pressure ( N/m
2 
), is the volume of the system (m

3
 ), M is the mass of the 

system (kg), R is the characteristic gas constant (J/kg K) and T is the temperature ( K ). 

This equation of state can be written as  

 

(38.7)  

  

where v is the specific volume (m
3
/kg). Also,  

 

(38.8)  

where is the density (kg/m
3
 ).  

 In another approach, which is particularly useful in chemically reacting systems, the 

equation of state is written as  

 

(38.9)  

  

where N is the number of moles in the system, and is the universal gas constant which 

is same for all gases 

 

.  

 Recall that a mole of a substance is that amount which contains a mass equal to the 

molecular weight of the gas and which is identified with the particular system of units 

being used. For example, in case of oxygen (O2), 1 kilogram-mole (or kg. mol) has a mass 

of 32 kg. Because the masses of different molecules are in the same ratio as their 

molecular weights; 1 mol of different gases always contains the same number of 

molecules, i.e. 1 kg-mol always contains 6.02 ×10
26

 molecules, independent of the species 

of the gas. Dividing Eq. (38.9) by the number of moles of the system yields  

 

(38.10)  

  

: Vol. per unit mole 

  

If Eq. (38.9) is divided by the mass of the system, we can write  

 

(38.11)  

  

 where v is the specific volume as before and is the mole-mass ratio (kg- mol/kg). Also, 

Eq. (38.9) can be divided by system volume, which results in  
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(38.12)  

  

 where C is the concentration (kg - mol/m
3
 )  

 The equation of state can also be expressed in terms of particles. If NA is the number of 

molecules in a mole (Avogadro constant, which for a kilogram- mole is 6.02 ×10
26

 

particles), from Eq. (38.12) we obtain  

 

(38.13)  

 

In the above equation, NAC is the number density, i.e. number of particles per unit volume and 

is the gas constant per particle, which is nothing but Boltzmann constant.  

 

Finally, Eq. (38.13) can be written as  

 

(38.14)  

where n: number density 

          : Boltzmann constant.  

 

 It is interesting to note that there exist a variety of gas constants whose use depends on the 

equation in consideration.  

1.Universal gas constant- When the equation deals with moles, it is in use. It is same for all the 

gases.  

= 8314 J/( Kg-mol-K)  

2.Characteristic gas constant- When the equation deals with mass, the characteristic gas constant 

(R) is used. It is a gas constant per unit mass and it is different for different gases. As such 

, where M is the molecular weight. For air at standard conditions,  

R = 287 J/(kg-K)  

3.Boltzmann constant- When the equation deals with molecules, Boltzmann constant is used. It 

is a gas constant per unit molecule .  

= 1.38 X 10
 -23

J / K  
 

  

Application of the perfect gas theory 

a. It has been experimentally determined that at low pressures (1 atm or less) and at high 

temperature (273 K and above), the value of ( the well known compressibility z, of a 

gas) for most pure gases differs from unity by a quanity less than one percent ( the well 
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known compressibility z, of a gas).  

b. Also, that at very low temperatures and high pressures the molecules are densely packed. 

Under such circumstances, the gas is defined as real gas and the perfect gas equation of 

state is replaced by the famous Van-der-Waals equation which is  

 

(38.15) 

  

where a and b are constants and depend on the type of the gas.  

In conclusion, it can be said that for a wide range of applications related to compressible 

flows, the temperatures and pressures are such that the equation of state for the perfect gas 

can be applied with high degree of confidence.  

 

Internal Energy and Enthalpy 

 

 Microscopic view of a gas is a collection of particles in random motion. Energy of a 

particle consists of translational energy, rotational energy, vibrational energy and 

specific electronic energy. All these energies summed over all the particles of the gas, 

form the specific internal energy, e , of the gas.  

  

 Imagine a gas in thermodynamic equilibrium,i.e., gradients in velocity, pressure, 

temperature and chemical concentrations do not exist.  

Then the enthalpy, h , is defined as , where is the specific volume.  

 

 

  

(38.16) 

  
 

If the gas is not chemically reacting and the intermolecular forces are neglected, the system can 

be called as a thermally perfect gas, where internal energy and enthalpy are functions of 

temperature only. One can write  

 

 

 

 

(38.17)  

For a calorically perfect gas,  
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(38.18)  

   

  

Please note that in most of the compressible flow applications, the pressure and temperatures are 

such that the gas can be considered as calorically perfect.  

 For calorically perfect gases, we assume constant specific heats and write  

 

(38.19)  

 The specific heats at constant pressure and constant volume are defined as  

          
(38.20)  

 

Equation (38.19), can be rewritten as  

 

(38.21)  

  Also . So we can rewrite Eq. (38.21) as  

 

(38.22)  

 

 
 

In a similar way, from Eq. (38.19) we can write  

 

(38.23)  

 

First Law of Thermodynamics 

 Let us imagine a control-mass system with a fixed mass of gas. If amount of heat is added to the 

system across the system-boundary and if is the work done on the system by the surroundings, 

then there will be an eventual change in internal energy of the system which is denoted by de and we 

can write  

 

(38.24) 

This is first law of thermodynamics. Here, de is an exact differential and its value depends only on initial 

and final states of the system. However, and are dependent on the path of the process. A process 
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signifies the way by which heat can be added and the work is done on/by the system. (Note that heat added 

to system is taken as positive and work done on the system is taken as positive)  

 In this chapter we are interested in isentropic process which is a combination of adiabatic (no heat is 

added to or taken away from the system) and reversible process (occurs through successive stages, 

each stage consists of an infinitesimal small gradient and is an equilibrium state). In an isentropic 

process, entropy of a system remains constant ( as seen in the following lecture).  

Entropy and Second Law of Thermodynamics  

 Equation (38.24) does not tell us about the direction (i.e., a hot body with respect to its 

surrounding will gain temperature or cool down) of the process. To determine the proper 

direction of a process, we define a new state variable, entropy, which is  

 

(38.25)  

where s is the entropy of the system, is the heat added reversibly to the system and T is the 

temperature of the system. It may be mentioned that Eqn. (38.25) is valid if both external and 

internal irreversibilities are maintained during the process of heat addition  

 

 Entropy is a state variable and it can be associated with any type of process, reversible 

or irreversible. An effective value of can always be assigned to relate initial and end 

points of an irreversible process, where the actual amount of heat added is . One can 

write  

 

(38.26)  

 

It states that the change in entropy during a process is equal to actual heat added divided by the 

temperature plus a contribution from the irreversible dissipative phenomena. It may be mentioned 

that dsirrev implies internal irreversibilities if T is the temperature at the system boundary. If T is 

the temperature of the surrounding dsirrev implies both external and internal irreversibilities. The 

irreversible phenomena always increases the entropy, hence  

 

(38.27)  

 Significance of greater than sign is understandable. The equal sign represents a reversible 

process. On combining Eqs (38.26) and (38.27) we get.  

 

(38.28)  

If the process is adiabatic, , Eq. (38.28) yields 

 

(38.29)  
 

 Equations (38.28) and (38.29) are the expressions for the second law of thermodynamics. 

The second law tells us in what direction the process will take place. The direction of a 

process is such that the change in entropy of the system plus surrounding is always 
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positive or zero (for a reversible adiabatic process). In conclusion, it can be said that the 

second law governs the direction of a natural process.  

 For a reversible process, it can be said that where is change in volume 

and from the first law of thermodynamics it can be written as  

 

(38.30)  
 

 If the process is reversible, we use the definition of entropy in the form the 

Eq. (38.30) then becomes, 

          
(38.31) 

 

 Another form can be obtained in terms of enthalpy. For example, by definition  

        

Differentiating, we obtain  

 

(38.32)  

Combining Eqs (38.31) and (38.32), we have  

 

(38.33)  

 Equations (38.31) and (38.33) are termed as first Tds equation and second Tds 

equation, respectively.  

  

 For a thermally perfect gas, we have (from Eq. 38.20) , substitute this in Eq. 

(38.33) to obtain  

 

(38.34)  

Further substitution of into Eq. (38.34) yields  

 

(38.35)  

 

Integrating Eq. (38.35) between states 1 and 2,  

 

(38.36)  

If is a variable, we shall require gas tables; but for constant , we obtain the analytic 

expression 
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(38.37)  

In a similar way, starting with Eq. (38.31) and making use of the relation the change in 

entropy can also be written as  

 

(38.38)  

 

Isentropic Relation 

 An isentropic process is a reversible-adiabatic process. For an adiabatic process =0, and for a 

reversible process, =0. From Eq. (38.26), for an isentropic process, . However, in Eq. 

(38.37), substitution of isentropic condition yields 

 
 

or  

 

or  

 

(38.39)  

Using , we have  

 

(38.40)  

Considering Eq. (38.38), in a similar way, yields  

 

 

   

or  

   (38.41)  

Using , we get  
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(38.42)  

 Using we can write  

 

(38.43)  

 Combining Eq. (38.40) with Eq. (38.43), we find,  

 

(38.44)  

This is a key relation to be remembered throughout the chapter. 

 

Speed of Sound  

 The so-called sound speed is the rate of propogation of a pressure pulse of infinitesimal strength 

through a still fluid. It is a thermodynamic property of a fluid. 

 A pressure pulse in an incompressible flow behaves like that in a rigid body. A displaced particle 

displaces all the particles in the medium. In a compressible fluid, on the other hand, displaced mass 

compresses and increases the density of neighbouring mass which in turn increases density of the 

adjoining mass and so on. Thus, a disturbance in the form of an elastic wave or a pressure wave 

travels through the medium. If the amplitude and theerfore the strength of the elastic wave is 

infinitesimal, it is termed as acoustic wave or sound wave.  

 Figure 39.1(a) shows an infinitesimal pressure pulse propagating at a speed " a " towards still fluid 

(V = 0) at the left. The fluid properties ahead of the wave are p,T and , while the properties 

behind the wave are p+dp, T+dT and . The fluid velocity dV is directed toward the left 

following wave but much slower.  

 In order to make the analysis steady, we superimpose a velocity " a " directed towards right, on the 

entire system (Fig. 39.1(b)). The wave is now stationary and the fluid appears to have velocity " a " 

on the left and (a - dV) on the right. The flow in Fig. 39.1 (b) is now steady and one dimensional 

across the wave. Consider an area A on the wave front. A mass balance gives  
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Fig 39.1: Propagation of a sound wave  

(a) Wave Propagating into still Fluid        (b) Stationary Wave  

  
  

 

 

(39.1)  

This shows that  

        (a) if dρ is positive.  

        (b) A compression wave leaves behind a fluid moving in the direction of the wave (Fig. 

39.1(a)).  

        (c) Equation (39.1) also signifies that the fluid velocity on the right is much smaller than the 

wave speed " a ". Within the framework of infinitesimal strength of the wave (sound wave), this " 

a " itself is very small.  

 Applying the momentum balance on the same control volume in Fig. 39.1 (b). It says that 

the net force in the x direction on the control volume equals the rate of outflow of x 

momentum minus the rate of inflow of x momentum. In symbolic form, this yields  

  

In the above expression, Aρa is the mass flow rate. The first term on the right hand side represents 

the rate of outflow of x-momentum and the second term represents the rate of inflow of x 

momentum.  

 Simplifying the momentum equation, we get  
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(39.2)  

If the wave strength is very small, the pressure change is small.  

Combining Eqs (39.1) and (39.2), we get  

 

(39.3a)  

The larger the strength of the wave ,the faster the wave speed; i.e., powerful explosion 

waves move much faster than sound waves.In the limit of infinitesimally small strength, 

we can write  

 

(39.3b)  

Note that  

(a) In the limit of infinitesimally strength of sound wave, there are no velocity gradients on either 

side of the wave. Therefore, the frictional effects (irreversible) are confined to the interior of the 

wave.  

(b) Moreover, the entire process of sound wave propagation is adiabatic because there is no 

temperature gradient except inside the wave itself.  

(c) So, for sound waves, we can see that the process is reversible adiabatic or isentropic.  

So the correct expression for the sound speed is  

 

(39.4)  

For a perfect gas, by using of , and , we deduce the speed of sound as  

 

(39.5)  

For air at sea-level and at a temperature of 15
0
C, a=340 m/s  

 

Pressure Field Due to a Moving Source  

 Consider a point source emanating infinitesimal pressure disturbances in a still fluid, in which the speed of 

sound is "a". If the point disturbance, is stationary then the wave fronts are concentric spheres. As shown in 
Fig. 39.2(a), wave fronts are present at intervals of Δt . 
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 Now suppose that source moves to the left at speed U < a. Figure 39.2(b) shows four locations of the source, 1 

to 4, at equal intervals of time , with point 4 being the current location of the source.  

 At point 1, the source emanated a wave which has spherically expanded to a radius in an interval of time 
3Δt . During this time the source has moved to the location 4 at a distance of 3uΔt from point 1. The figure 

also shows the locations of the wave fronts emitted while the source was at points 2 and 3, respectively.  

 When the source speed is supersonic U > a (Fig. 39.2(c)), the point source is ahead of the disturbance and an 
observer in the downstream location is unaware of the approaching source. The disturbance emitted at 

different  

 

Fig 39.2 Wave fronts emitted from a point source in a still fluid when the source speed is  

(a) U = 0 (still Source)    (b) U < a (Subsonic)   (c) U > a (Supersonic)  

see animated view here  

U=a  

 

  

U<a  

 

  

https://nptel.ac.in/courses/112104118/lecture-39/anims.htm
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U>a 

 

   

 

points of time are enveloped by an imaginary conical surface known as "Mach Cone". The half angle of 

the cone , is known as Mach angle and given by  

  

 

 Since the disturbances are confined to the cone, the area within the cone is known as zone of action and the 

area outside the cone is zone of silence .  

An observer does not feel the effects of the moving source till the Mach Cone covers his position.  

Basic Equations for One-Dimensional Flow 

 Here we will study a class of compressible flows that can be treated as one dimensional flow. Such a 
simplification is meaningful for flow through ducts where the centreline of the ducts does not have a large 

curvature and the cross-section of the ducts does not vary abruptly.  

 In one dimension, the flow can be studied by ignoring the variation of velocity and other properties across the 

normal direction of the flow. However, these distributions are taken care of by assigning an average value 
over the cross-section (Fig. 39.3).  

 The area of the duct is taken as A(x) and the flow properties are taken as p(x), ρ(x), V(x) etc. The forms of the 

basic equations in a one-dimensional compressible flow are;  

 Continuity Equation 

 Energy Equation 

 Bernoulli and Euler Equations 

 Momentum Principle for a Control Volume  

 Continuity Equation  

 

For steady one-dimensional flow, the equation of continuity is  

  

 

Differentiating(after taking log), we get  

https://nptel.ac.in/courses/112104118/lecture-39/39-4_continuity_eqn.htm#cont_eqn
https://nptel.ac.in/courses/112104118/lecture-39/39-4_continuity_eqn.htm#energy_eqn
https://nptel.ac.in/courses/112104118/lecture-39/39-5_bernoulli_eqn.htm#bern_eqn
https://nptel.ac.in/courses/112104118/lecture-39/39-5_bernoulli_eqn.htm#moment
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(39.6)  

Energy Equation 

Consider a control volume within the duct shown by dotted lines in Fig. 39.3. The first law of 

thermodynamics for a control volume fixed in space is  

 

(39.7)  

where is the kinetic energy per unit mass.  

Let us discuss the various terms from above equation:  

o The first term on the left hand side signifies the rate of change of energy (internal + kinetic) 

within the control volume 

o The second term depicts the flux of energy out of control surface. 

o The first term on the right hand side represents the work done on the control surface  

o The second term on the right means the heat transferred through the control surface.  

It is to be noted that dA is directed along the outward normal.  

 Assuming steady state, the first term on the left hand side of Eq. (39.7) is zero. Writing 

 (where the subscripts are for Sections 1 and 2), the second term on the left of 

Eq. (39.7) yields  

 

The work done on the control surfaces is  

 

The rate of heat transfer to the control volume is  

 

where Q is the heat added per unit mass (in J/kg).  

 Invoking all the aforesaid relations in Eq. (39.7) and dividing by , we get  

 

(39.8)  
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We know that the density is given by /VA , hence the first term on the right may be expressed in terms 

of (specific volume=1/ρ).  

Equation (39.8) can be rewritten as  

 

(39.9)  

  

 NOTE:- is the work done (per unit mass) by the surrounding in pushing fluid into the control 

volume. Following a similar argument, is the work done by the fluid inside the control volume 

on the surroundings in pushing fluid out of the control volume.  

 Since Eq. (39.9) gets reduced to  

 

(39.10)  

This is energy equation, which is valid even in the presence of friction or non-equilibrium conditions 

between secs 1 and 2.  

 It is evident that the sum of enthalpy and kinetic energy remains constant in an adiabatic flow. 

Enthalpy performs a similar role that internal energy performs in a nonflowing system. The 

difference between the two types of systems is the flow work p  required to push the fluid through 

a section.  

Bernoulli and Euler Equations  

 For inviscid flows, the steady form of the momentum equation is the Euler equation,  

 

(39.11)  

Integrating along a streamline, we get the Bernoulli's equation for a compressible flow as  

 

(39.12)  

 For adiabatic frictionless flows the Bernoulli's equation is identical to the energy equation. Recall, 

that this is an isentropic flow, so that the Tds equation is given by  

 

For isentropic flow, ds=0 

Therefore, 
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Hence, the Euler equation (39.11) can also be written as  

 

   

This is identical to the adiabatic form of the energy Eq. (39.10).  

Momentum Principle for a Control Volume 

For a finite control volume between Sections 1 and 2 (Fig. 39.3), the momentum principle is  

 

(39.13)  

where F is the x-component of resultant force exerted on the fluid by the walls. Note that the momentum 

principle, Eq. (39.13), is applicable even when there are frictional dissipative processes within the control 

volume.   

 

 

Fig 39.3 One-Dimensional Approximation  

 

Stagnation and Sonic Properties  

 The stagnation properties at a point are defined as those which are to be obtained if the local flow 

were imagined to cease to zero velocity isentropically. As we will see in the later part of the text, 

stagnation values are useful reference conditions in a compressible flow.  

Let us denote stagnation properties by subscript zero. Suppose the properties of a flow (such as T, p , ρ etc.) 

are known at a point, the stangation enthalpy is, thus, defined as  
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where h is flow enthalpy and V is flow velocity.  

 For a perfect gas , this yields,  

 

(40.1)  

which defines the Stagnation Temperature  

Now, can be expressed as  

  

 

Since, 

 

 

  

  

 

(40.2) 

If we know the local temperature (T) and Mach number (Ma) , we can find out the stagnation temperature 

T0 .  

  

 Consequently, isentropic(adiabatic) relations can be used to obtain stagnation pressure and 

stagnation density as  

 

(40.3)  

 

(40.4) 

Values of and as a function of Mach number can be generated using the above 

relationships and the tabulated results are known as Isentropic Table . Interested readers are suggested to 

refer the following books  
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1. J.Spruk, Fluid Mechanics, Springer, Heidelberg , NewYork, 1997  

2. K.Muradidhar and G.Biswas, Advanced Engineering Fluid Mechanics, Second Edition, Narosa, 2005  

Contd. 

Note that in general the stagnation properties can vary throughout the flow field.  

Let us consider some special cases :-  

Case 1: Adiabatic Flow: 

(from eqn 39.10) is constant throughout the flow. It follows that the are constant 

throughout an adiabatic flow, even in the presence of friction. 

Hence, all stagnation properties are constant along an isentropic flow. If such a flow starts from a large 

reservoir where the fluid is practically at rest, then the properties in the reservoir are equal to the stagnation 

properties everywhere in the flow Fig (40.1)  

 

Fig 40.1: An isentropic process starting from a reservoir  

Case 2: Sonic Flow (Ma=1)  

The sonic or critical properties are denoted by asterisks: p*, ρ*, a*, and T* . These properties are attained if 

the local fluid is imagined to expand or compress isentropically until it reaches Ma = 1.  

Important- 

The total enthalpy, hence T0 , is conserved as long as the process is adiabatic, irrespective of 

frictional effects.  

   

From Eq. (40.1), we note that  

 

 

(40.5a) 
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This gives the relationship between the fluid velocity V, and local temperature (T), in an adiabatic flow.  

Putting T=0 we obtain maximum attainable velocity as,  

 

(40.5b)  

 Considering the condition, when Mach number, Ma=1, for a compressible flow we can write from Eq. 

(40.2), (40.3) and (40.4),  

 

(40.6a)  

 

(40.6b)  

 

(40.6c)  

 For diatomic gases, like air , the numerical values are  

 
 The fluid velocity and acoustic speed are equal at sonic condition and is  

 

(40.7a)  

or  

 

(40.7b)  

We shall employ both stagnation conditions and critical conditions as reference conditions in a variety of 

one dimensional compressible flows.  

Effect of Area Variation on Flow Properties in Isentropic Flow  

In considering the effect of area variation on flow properties in isentropic flow, we shall determine the effect 

on the velocity V and the pressure p .  

From Eq . (39.11), we can write  

 

 

   

Dividing by , we obtain  



Fluid Mechanics Notes Compiled from NPTEL 
 

Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept., Hirasugar Institute of Technology, Nidasoshi 40

6 

 

(40.8)  

A convenient differential form of the continuity equation can be obtained from Eq. (39.6) as  

 

 

Substituting from Eq. (40.8),  

 

  

 

(40.9)  

Invoking the relation (39.3b) for isentropic process in Eq. (40.9), we get  

 

(40.10)  

 From Eq.(40.10), we see that for Ma<1 an area change causes a pressure change of the same sign, i.e. 

positive dA means positive dp for Ma<1 . For Ma>1 , an area change causes a pressure change of 

opposite sign.  

 Again, substituting from Eq. (40.8) into Eq. (40.10), we obtain  

 

(40.11)  

From Eq. (40.11) we see that Ma<1 an area change causes a velocity change of opposite sign, i.e. positive 

dA means negative dV for Ma<1 . For Ma>1 an area change causes a velocity change of same sign.  

These results can be summarized in fig 40.2. Equations (40.10) and (40.11) lead to the following important 

conclusions about compressible flows:  

1. At subsonic speeds(Ma<1) a decrease in area increases the speed of flow. A subsonic nozzle should 

have a convergent profile and a subsonic diffuser should possess a divergent profile. The flow 

behaviour in the regime of Ma<1 is therefore qualitatively the same as in incompressible flows.  

2. In supersonic flows (Ma>1) the effect of area changes are different. According to Eq. (40.11), a 

supersonic nozzle must be built with an increasing area in the flow direction. A supersonic diffuser 

must be a converging channel. Divergent nozzles are used to produce supersonic flow in missiles and 

launch vehicles.  
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Fig 40.2 Shapes of nozzles and diffusers in subsonic and supersonic regimes  

Convergent - Divergent Nozzle  

Suppose a nozzle is used to obtain a supersonic stream starting from low speeds at the inlet (Fig. 40.3). Then 

the Mach number should increase from Ma=0 near the inlet to Ma>1 at the exit. It is clear that the nozzle 

must converge in the subsonic portion and diverge in the supersonic portion. Such a nozzle is called a 

convergent-divergent nozzle. A convergent-divergent nozzle is also called a de laval nozzle, after Carl 

G.P. de Laval who first used such a configuration in his steam turbines in late nineteenth century.  

From Fig. 40.3 it is clear that the Mach number must be unity at the throat, where the area is neither 

increasing nor decreasing. This is consistent with Eq. (40.11) which shows that dV can be nonzero at the 

throat only if Ma =1. It also follows that the sonic velocity can be achieved only at the throat of a nozzle 

or a diffuser.  

 

Fig 40.3 A Convergent-Divergent Nozzle 

The condition, however, does not restrict that Ma must necessarily be unity at the throat. According to Eq. 

(40.11), a situation is possible where Ma ≠ 1 at the throat if dV = 0 there. For an example, the flow in a 

convergent-divergent duct may be subsonic everywhere with Ma increasing in the convergent portion and 

decreasing in the divergent portion with Ma ≠ 1 at the throat (see Fig. 40.4).  
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Fig 40.4 Convergent-Divergent duct with Ma ≠ 1 at throat  

The first part of the duct is acting as a nozzle, whereas the second part is acting as a diffuser. 

Alternatively, we may have a convergent divergent duct in which the flow is supersonic everywhere with 

Ma decreasing in the convergent part and increasing in the divergent part and again Ma ≠ 1 at the throat (see 

Fig. 40.5)  

 

Fig 40.5 Convergent-Divergent duct with Ma ≠ 1 at throat  

Isentropic Flow in a Converging Nozzle  

Consider the mass flow rate of an ideal gas through a converging nozzle. If the flow is isentropic, we can 

write  

 

     

where is flow velocity, is area, is the density of the field. 

This can equivalently be written as-  
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(40.12) 

In the expression (40.12), and R are constant 

 The discharge per unit area is a function of Ma only. There exists a particular value of Ma for 

which it is maximum. Differentiating with respect to Ma and equating it to zero, we get  

 
                    

 

 

 

 

Hence, discharge is maximum when Ma = 1.  

 We know that . By logarithmic differentiation, we get  

 

(40.13) 

We also know that  
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By logarithmic differentiation, we get  

 

(40.14)  

From Eqs(40.13) and (40.14) , we get  

 

  

 

(40.15)  

From Eqs (40.11) and (40.15), we get  

 

 

 

(40.16) 

By substituting Ma=1 in Eq. (40.16), we get dA = 0 or A = constant.  

 Ma=1 can occur only at the throat and nowhere else, and this happens only when the discharge is 

maximum. When Ma = 1 , the discharge is maximum and the nozzle is said to be choked.  

 

The properties at the throat are termed as critical properties which are already expressed through Eq. 

(40.6a), (40.6b) and (40.6c). By substituting Ma = 1 in Eq. (40.12), we get  

 

(40.17)  

(as we have earlier designated critical or sonic conditions by a superscript asterisk). Dividing Eq. (40.17) by 

Eq. (40.12) we obtain  

 

(40.18)  
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From Eq. (40.18) we see that a choice of Ma gives a unique value of A/A* . The following figure shows 

variation of A / A * with Ma (Fig 40.6). Note that the curve is double valued; that is, for a given value of 

A/A* (other than unity), there are two possible values of Mach number. This signifies the fact that the 

supersonic nozzle is diverging.  

 

Fig 40.6: Variation of A/A* with Ma in isentropic flow for = 1.4  

The area ratio, as a function of Mach number, is also included in the Isentropic Table (see Spruk [1], 

Muralidhar and Biswas [2].  

Pressure Distribution and Choking in a Converging Nozzle  

 Consider a convergent nozzle as shown in Fig. 40.7(a). Figure 40.7(b) shows the pressure ratio p/ p0 

along the length of the nozzle.  

 The inlet conditions of the gas are at the stagnation state (p0, T0) which are constants. The pressure at 

the exit plane of the nozzle is denoted by PE and the back pressure is PB which can be varied by the 

adjustment of the valve. At the condition P0 = PE = PB there shall be no flow through the nozzle.  

 The pressure is P0 throughout, as shown by condition (i) in Fig. 40.7(b). As PB is gradually reduced, 

the flow rate shall increase. The pressure will decrease in the direction of flow as shown by 

condition (ii) in Fig. 40.7(b). The exit plane pressure PE shall remain equal to PB so long as the 

maximum discharge condition is not reached. Condition (iii) in Fig. 40.7(b) illustrates the pressure 

distribution in the maximum discharge situation.  

 When attains its maximum value, given by substituting Ma = 1 in Eq. (40.12), PE is equal to p* . 

Since the nozzle does not have a diverging section, further reduction in back pressure PB will not 

accelerate the flow to supersonic condition. As a result, the exit pressure PE shall continue to remain 

at p * even though PBis lowered further.  

 The convergent-nozzle discharge against the variation of back pressure is shown in Fig. 40.8. We are 

aware, that the maximum value of (m/A) at Ma = 1 is stated as the choked flow. With a given nozzle, 

the flow rate cannot be increased further. Thus neither the nozzle exit pressure, nor the mass flow 

rate are affected by lowering PB below p *.  
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Fig 40.7 (a) Compressible flow through a converging nozzle 

(b) Pressure distribution along a converging nozzle for different values of back pressure 

 

 

Fig. 40.8 Mass flow rate and the variation of back pressure in a converging nozzle 

However for PB less than p *, the flow leaving the nozzle has to expand to match the lower back pressure as 

shown by condition (iv) in Fig. 40.7(b). This expansion process is three-dimensional and the pressure 

distribution cannot be predicted by one-dimensional theory. Experiments reveal that a series of shocks form 

in the exit stream, resulting in an increase in entropy.  

  Isentropic Flow in a Converging-Diverging Nozzle  

 Consider the flow in a convergent-divergent nozzle (Fig. 40.9). The upstream stagnation conditions 

are assumed constant; the pressure in the exit plane of the nozzle is denoted by PE ; the nozzle 

discharges to the back pressure, PB .  

 With the valve initially closed, there is no flow through the nozzle; the pressure is constant at P0. 

Opening the valve slightly produces the pressure distribution shown by curve (i). Completely 

subsonic flow is discerned.  

 Then PB is lowered in such a way that sonic condition is reached at the throat (ii). The flow rate 

becomes maximum for a given nozzle and the stagnation conditions.  
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 On further reduction of the back pressure, the flow upstream of the throat does not respond. 

However, if the back pressure is reduced further (cases (iii) and (iv)), the flow initially becomes 

supersonic in the diverging section, but then adjusts to the back pressure by means of a normal shock 

standing inside the nozzle. In such cases, the position of the shock moves downstream as PB is 

decreased, and for curve (iv) the normal shock stands right at the exit plane.  

 The flow in the entire divergent portion up to the exit plane is now supersonic. When the back 

pressure is reduced even further (v), there is no normal shock anywhere within the nozzle, and the jet 

pressure adjusts to PB by means of oblique shock waves outside the exit plane. A converging 

diverging nozzle is generally intended to produce supersonic flow near the exit plane.  

 If the back pressure is set at (vi), the flow will be isentropic throughout the nozzle, and supersonic at 

nozzle exit. Nozzles operating at PB (corresponding to curve (vi) in Fig. 40.8) are said to be at design 

conditions. Rocket-propelled vehicles use converging-diverging nozzles to accelerate the exhaust 

gases to the maximum possible velocity to produce high thrust.  

 

 

Fig 40.9: Pressure Distribution along a Converging-Diverging Nozzle for different values of back pressure 

PB  

Normal Shocks  

 Shock waves are highly localized irreversibilities in the flow . 

 Within the distance of a mean free path, the flow passes from a supersonic to a subsonic state, the 

velocity decreases suddenly and the pressure rises sharply. A shock is said to have occurred if there 

is an abrupt reduction of velocity in the downstream in course of a supersonic flow in a passage or 

around a body.  

 Normal shocks are substantially perpendicular to the flow and oblique shocks are inclined at any 

angle.  

 Shock formation is possible for confined flows as well as for external flows.  

 Normal shock and oblique shock may mutually interact to make another shock pattern. 
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Fig 41.1 Different type of Shocks  

Figure below shows a control surface that includes a normal shock.  

 

Fig 41.2 One Dimensional Normal Shock  
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 The fluid is assumed to be in thermodynamic equilibrium upstream and downstream of the shock, the 

properties of which are designated by the subscripts 1 and 2, respectively. (Fig 41.2).  

Continuity equation can be written as  

 

(41.1)  

where G is the mass velocity kg/ m
2
 s, and is mass flow rate  

From momentum equation, we can write 

 

(41.2a)  

(41.2b) 

where p + ρV
2
 is termed as Impulse Function .  

The energy equation is written as  

 

(41.3)  

where h0 is stagnation enthalpy.  

From the second law of thermodynamics, we know  

 

  

To calculate the entropy change, we have  

 

  

For an ideal gas  

 

 

For an ideal gas the equation of state can be written as  

 

(41.4) 

For constant specific heat, the above equation can be integrated to give  

 

(41.5)  
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Equations (41.1), (41.2a), (41.3), (41.4) and (41.5) are the governing equations for the flow of an ideal gas 

through normal shock.  

If all the properties at state 1 (upstream of the shock) are known, then we have six unknowns 

in these five equations.  

We know relationship between h and T [Eq. (38.17)] for an ideal gas, . For an ideal gas with 

constant specific heats, 

 

(41.6)  

  Thus, we have the situation of six equations and six unknowns.  

 If all the conditions at state "1"(immediately upstream of the shock) are known, how many possible 

states 2 (immediate downstream of the shock) are there? The mathematical answer indicates that 

there is a unique state 2 for a given state 1. 

Fanno Line Flows 

 If we consider a problem of frictional adiabatic flow through a duct, the governing Eqs (41.1), (41.3), 

(38.8), (41.5) and (41.6) are valid between any two points "1" and "2".  

 Equation (41.2a) requires to be modified in order to take into account the frictional force, Rx, of the 

duct wall on the flow and we obtain  

 

So, for a frictional flow, we have the situation of six equations and seven unknowns.  

 If all the conditions of "1" are known, the no. of possible states for "2" is 2. With an infinite number 

of possible states "2" for a given state "1", what do we observe if all possible states "2" are plotted on 

a T - s diagram, The locus of all possible states "2" reachable from state "1" is a continuous curve 

passing through state "1". The question is how to determine this curve? The simplest way is to 

assume different values of T2. For an assumed value of T2, the corresponding values of all other 

properties at " 2 " and Rx can be determined.  
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Fig 41.3 Fanno line representation of constant area adiabatic flow  

 The locus of all possible downstream states is called Fanno line and is shown in Fig. 41.3. Point 

" b " corresponds to maximum entropy where the flow is sonic. This point splits the Fanno line 

into subsonic (upper) and supersonic (lower) portions.  

 If the inlet flow is supersonic and corresponds to point 1 in Fig. 41.3, then friction causes the 

downstream flow to move closer to point "b" with a consequent decrease of Mach number towards 

unity.  

 Note that each point on the curve between point 1 and "b" corresponds to a certain duct length L. As 

L is made larger, the conditions at the exit move closer to point "b". Finally, for a certain value of L, 

the flow becomes sonic.  

Any further increase in L is not possible without a drastic revision of the inlet conditions.  

 Consider the alternative case where the inlet flow is subsonic, say, given the point 1' in Fig. 41.3. As 

L increases, the exit conditions move closer to point "b". If L is increased to a sufficiently large 

value, then point "b" is reached and the flow at the exit becomes sonic. The flow is again choked and 

any further increase in L is not possible without an adjustment of the inlet conditions.  

Rayleigh Line Flows 

 Consider the effects of heat transfer on a frictionless compressible flow through a duct, the governing 

Eq. (41.1), (41.2a), (41.5), (38.8) and (41.6) are valid between any two points "1" and "2". 

 Equation (41.3) requires to be modified in order to account for the heat transferred to the flowing 

fluid per unit mass, dQ , and we obtain  

 

(41.8) 

  

 So, for frictionless flow of an ideal gas in a constant area duct with heat transfer, we have a situation 

of six equations and seven unknowns. If all conditions at state "1" are known, there exists infinite 

number of possible states "2". With an infinite number of possible states "2" for a given state "1", we 
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find if all possible states "2" are plotted on a T- s diagram, The locus of all possible states "2" 

reachable from state "1" is a continuous curve passing through state "1".  

 Again, the question arises as to how to determine this curve? The simplest way is to assume different 

values of T2 . For an assumed value of T2, the corresponding values of all other properties at "2" and 

dQ can be determined. The results of these calculations are shown in the figure below. The curve in 

Fig. 41.4 is called the Rayleigh line.  

 

Fig 41.4 Rayleigh line representation of frictionless flow in a constant area duct with heat transfer  

 At the point of maximum temperature (point "c" in Fig. 41.4) , the value of Mach number for an 

ideal gas is . At the point of maximum entropy( point "b") , the Mach number is unity.  

 On the upper branch of the curve, the flow is always subsonic and it increases monotonically as we 

proceed to the right along the curve. At every point on the lower branch of the curve, the flow is 

supersonic, and it decreases monotonically as we move to the right along the curve.  

 Irrespective of the initial Mach number, with heat addition, the flow state proceeds to the right and 

with heat rejection, the flow state proceeds to the left along the Rayleigh line. For example , 

Consider a flow which is at an initial state given by 1 on the Rayleigh line in fig. 41.4. If heat is 

added to the flow, the conditions in the downstream region 2 will move close to point "b". The 

velocity reduces due to increase in pressure and density, and Ma approaches unity. If dQ is 

increased to a sufficiently high value, then point "b" will be reached and flow in region 2 will be 

sonic. The flow is again choked, and any further increase in dQ is not possible without an adjustment 

of the initial condition. The flow cannot become subsonic by any further increase in dQ .  

he Physical Picture of the Flow through a Normal Shock 

 It is possible to obtain physical picture of the flow through a normal shock by employing some of the 

ideas of Fanno line and Rayleigh line Flows. Flow through a normal shock must satisfy Eqs (41.1), 

(41.2a), (41.3), (41.5), (38.8) and (41.6).  

 Since all the condition of state "1" are known, there is no difficulty in locating state "1" on T-s 

diagram. In order to draw a Fanno line curve through state "1", we require a locus of mathematical 

states that satisfy Eqs (41.1), (41.3), (41.5), (38.8) and (41.6). The Fanno line curve does not satisfy 

Eq. (41.2a).  
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 While Rayleigh line curve through state "1" gives a locus of mathematical states that satisfy Eqs 

(41.1), (41.2a), (41.5), (38.8) and (41.6). The Rayleigh line does not satisfy Eq. (41.3). Both the 

curves on a same T-s diagram are shown in Fig. 41.5. 

 We know normal shock should satisfy all the six equations stated above. At the same time, for a 

given state" 1", the end state "2" of the normal shock must lie on both the Fanno line and Rayleigh 

line passing through state "1." Hence, the intersection of the two lines at state "2" represents the 

conditions downstream from the shock. 

 In Fig. 41.5, the flow through the shock is indicated as transition from state "1" to state "2". This is 

also consistent with directional principle indicated by the second law of thermodynamics, i.e. s2>s1.  

 From Fig. 41.5, it is also evident that the flow through a normal shock signifies a change of speed 

from supersonic to subsonic. Normal shock is possible only in a flow which is initially supersonic.  

 

Fig 41.5  Intersection of Fanno line and Rayleigh line and the solution for normal shock condition  

Calculation of Flow Properties Across a Normal Shock 

 The easiest way to analyze a normal shock is to consider a control surface around the wave as shown 

in Fig. 41.2. The continuity equation (41.1), the momentum equation (41.2) and the energy 

equation (41.3) have already been discussed earlier. The energy equation can be simplified for an 

ideal gas as  

 

(40.9)  

  By making use of the equation for the speed of sound eq. (39.5) and the equation of state for ideal gas eq. 

(38.8), the continuity equation can be rewritten to include the influence of Mach number as: 

 

(40.10)  

 

Introducing the Mach number in momentum equation, we have 

 

 

 

Therefore , 
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(40.11)  

Rearranging this equation for the static pressure ratio across the shock wave, we get  

 

(40.12)  

 As already seen, the Mach number of a normal shock wave is always greater than unity in the 

upstream and less than unity in the downstream, the static pressure always increases across the shock 

wave.  

 The energy equation can be written in terms of the temperature and Mach number using the 

stagnation temperature relationship (40.9) as  

 

(40.13)  

Substituting Eqs (40.12) and (40.13) into Eq. (40.10) yields the following relationship for the Mach numbers 

upstream and downstream of a normal shock wave:  

 

(40.14)  

Then, solving this equation for as a function of we obtain two solutions. One solution is trivial 

, which signifies no shock across the control volume. The other solution is  

 

(40.15)  

in Eq. (40.15) results in  

Equations (40.12) and (40.13) also show that there would be no pressure or temperature increase across the 

shock. In fact, the shock wave corresponding to is the sound wave across which, by definition, 

pressure and temperature changes are infinitesimal. Therefore, it can be said that the sound wave represents 

a degenerated normal shock wave. The pressure, temperature and Mach number (Ma2) behind a normal 

shock as a function of the Mach number Ma1, in front of the shock for the perfect gas can be represented in a 

tabular form (known as Normal Shock Table). The interested readers may refer to Spurk[1] and Muralidhar 

and Biswas[2].  

Oblique Shock  

 The discontinuities in supersonic flows do not always exist as normal to the flow direction. There are 

oblique shocks which are inclined with respect to the flow direction. Refer to the shock structure on 

an obstacle, as depicted qualitatively in Fig.41.6. 

 The segment of the shock immediately in front of the body behaves like a normal shock. 
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 Oblique shock can be observed in following cases-  

1. Oblique shock formed as a consequence of the bending of the shock in the free-stream direction 
(shown in Fig.41.6)  

2. In a supersonic flow through a duct, viscous effects cause the shock to be oblique near the walls, 

the shock being normal only in the core region. 
3. The shock is also oblique when a supersonic flow is made to change direction near a sharp 

corner 

 

Fig 41.6 Normal and oblique Shock in front of an Obstacle  

 The relationships derived earlier for the normal shock are valid for the velocity components normal to the 

oblique shock. The oblique shock continues to bend in the downstream direction until the Mach number of the 

velocity component normal to the wave is unity. At that instant, the oblique shock degenerates into a so 

called Mach wave across which changes in flow properties are infinitesimal.  

 Let us now consider a two-dimensional oblique shock as shown in Fig.41.7 below  

 

Fig 41.7 Two dimensional Oblique Shock 

For analyzing flow through such a shock, it may be considered as a normal shock on which a velocity (parallel to 

the shock) is superimposed. The change across shock front is determined in the same way as for the normal shock. 

The equations for mass, momentum and energy conservation , respectively, are 
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(41.16)  

 

 

(41.17)  

 

(41.18)  

These equations are analogous to corresponding equations for normal shock. In addition to these, we have  

    and      

Modifying normal shock relations by writing and in place of and , we obtain  

 

(41.19)  

 

 

(41.20)  

 

 

(41.21)  

Note that although <1, might be greater than 1. So the flow behind an oblique shock may 

be supersonic although the normal component of velocity is subsonic.  

In order to obtain the angle of deflection of flow passing through an oblique shock, we use the relation 

 

 

Having substituted from Eq. (41.20), we get the relation (see steps here)  

https://nptel.ac.in/courses/112104118/lecture-41/derivation.htm
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(41.22)  

Sometimes, a design is done in such a way that an oblique shock is allowed instead of a normal shock. The losses for 

the case of oblique shock are much less than those of normal shock.This is the reason for making the nose angle of the 

fuselage of a supersonic aircraft small. 

Supplementary Questions  

I. Air enters a diffuser at 27
0
C and 1 N / M

2
. The approach velocity is 300m/sec, assume the flow to be 

isentropic. If the velocity of the air leaving the diffuser is 60m/sec, calculate the entrance and exit Mach 

numbers, the static pressure at exit and the percent change in cross-sectional area between entrance and exit.  

Ans. Ma(entrance) = 0.864, Ma(exit) = 0.1616, p(exit) = 1.6 N/m 
2
 , increase in area=258%  

  

II. Carbon dioxide discharges to the atmosphere through a 10mm diameter hole in the wall of a tank in 

which the pressure is 8 bars(gauge) and temperature is 20
0
C. What is the velocity of the jet ? Take γ =1.3 

and R=188 J/KgK and atmospheric presuure=1 bar. 

Ans. 249.54 m/sec  

 III. Air flows isentropically through a duct. At a given point the area is and the Mach number is 0.4. 

At another point in the duct, the area is 0.36 m
2
. What is the Mach number at the second point? What would 

the area be at a point where Ma=1?  

Ans. Ma=0.64 or 1.4516, A= 0.3144 m
2 
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 IV. The stagnation temperature and stagnation pressure of air in a reservoir supplying a convergent-

divergent nozzle are are 450K and 4 N/m
2
 respectively. The nozzle throat area is 1 cm

2
 and the nozzle exit 

area is 3 cm
2
. A shock is noted at a position in the diverging portion where the area is 2 cm

2
. 

 

(i) What are the exit pressure, temperature and velocity?( The Mach no. just before the shock is 2.1972) 

Ans. p(exit)= 2.3386 N/m
2
, T(exit)=441 K, V(exit)=137.2 m/sec 

(ii) What value of the back pressure would cause the shock to stand in the exit plane of the nozzle so that the 

flow through the nozzle is completely supersonic? 

Ans. p= 1.505 N/m
2
  

(iii) What value of the back pressure would result in completely isentropic flow interior and exterior to the 

nozzle? 

Ans. p= 0.1892 N/m
2
(supersonic flow at exit); (subsonic flow at exit)  

   Recap 

   In this course you have learnt the following 

  

 Fluid density varies mainly due to a large Ma flow. This leads to a situation where continuity & 

momentum equation can be coupled to the energy equation and the equation of state to solve four 

unknowns- P, T, V, ρ. 

  

 The stagnation enthalpy and hence T0 are conserved in isentropic flows. The effect of area variation 

in on flow properties in an isentropic flow is of great significance. This reveals the phenomenon of 

choking at the sonic velocity in the throat of a nozzle. 

  
 At choke condition, the ratio of throat pressure to stagnation pressure is constant and is equal to 

0.528 for γ =1.4. 

  
 At supersonic velocities, the normal shock wave appears across which the gas discontinuity reverts 

to the subsonic conditions. 

  

 Fanno and Rayleigh line flows both entail choking of the exit flow. The conditions before and after 

a normal shock are defined by the points of intersection of Fanno and Rayleigh lines on a T-s 

Diagram. 

  

 If a supersonic flow is made to change its direction, the oblique shock is evolved. The oblique 

shock continues to bend in the downstream direction until the Mach Number of the velocity 

component normal to the wave is unity. 

 



 

INTRODUCTION AND 

BASIC CONCEPTS 



Schlieren image 

showing the thermal 

plume produced 

by Professor 

Cimbala as he 

welcomes you to the 

fascinating world of 

fluid mechanics. 
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Objectives 

• Understand the basic concepts of Fluid Mechanics. 

• Recognize the various types of fluid flow problems 

encountered in practice.  

• Model engineering problems and solve them in a 

systematic manner. 

• Have a working knowledge of accuracy, precision, 

and significant digits, and recognize the importance 

of dimensional homogeneity in engineering 

calculations. 
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1–1 ■ INTRODUCTION 

Fluid mechanics deals 

with liquids and gases in 

motion or at rest. 

Mechanics: The oldest physical 

science that deals with both stationary 

and moving bodies under the influence 

of forces.  

Statics: The branch of mechanics that 

deals with bodies at rest. 

Dynamics: The branch that deals with 

bodies in motion.  

Fluid mechanics: The science that 

deals with the behavior of fluids at rest 

(fluid statics) or in motion (fluid 

dynamics), and the interaction of fluids 

with solids or other fluids at the 

boundaries.  

Fluid dynamics: Fluid mechanics is 

also referred to as fluid dynamics by 

considering fluids at rest as a special 

case of motion with zero velocity. 
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Hydrodynamics: The study of the motion of fluids 

that can be approximated as incompressible (such as 

liquids, especially water, and gases at low speeds). 

Hydraulics: A subcategory of hydrodynamics, which 

deals with liquid flows in pipes and open channels.  

Gas dynamics: Deals with the flow of fluids that 

undergo significant density changes, such as the flow 

of gases through nozzles at high speeds.  

Aerodynamics: Deals with the flow of gases 

(especially air) over bodies such as aircraft, rockets, 

and automobiles at high or low speeds.  

Meteorology, oceanography, and hydrology: Deal 

with naturally occurring flows. 
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What is a Fluid? 

Fluid: A substance in the liquid 

or gas phase. 

A solid can resist an applied 

shear stress by deforming.  

A fluid deforms continuously 

under the influence of a shear 

stress, no matter how small.  

In solids, stress is proportional 

to strain, but in fluids, stress is 

proportional to strain rate.  

When a constant shear force is 

applied, a solid eventually stops 

deforming at some fixed strain 

angle, whereas a fluid never 

stops deforming and 

approaches a constant rate of 

strain. 

Deformation of a rubber block 

placed between two parallel plates 

under the influence of a shear 

force. The shear stress shown is 

that on the rubber—an equal but 

opposite shear stress acts on the 

upper plate. 
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Stress: Force per unit area.  

Normal stress: The normal 

component of a force acting on a 

surface per unit area. 

Shear stress: The tangential 

component of a force acting on a 

surface per unit area.  

Pressure: The normal stress in a 

fluid at rest.  

Zero shear stress: A fluid at rest is 

at a state of zero shear stress. 

When the walls are removed or a 

liquid container is tilted, a shear 

develops as the liquid moves to 

re-establish a horizontal free 

surface. 

The normal stress and shear stress at 

the surface of a fluid element. For 

fluids at rest, the shear stress is zero 

and pressure is the only normal stress. Compiled by 
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Unlike a liquid, a gas 

does not form a 

free surface, and it 

expands to fill the 

entire available 

space. 

In a liquid, groups of molecules can move relative to each other, but the 

volume remains relatively constant because of the strong cohesive 

forces between the molecules. As a result, a liquid takes the shape of the 

container it is in, and it forms a free surface in a larger container in a 

gravitational field.  

A gas expands until it encounters the walls of the container and fills the 

entire available space. This is because the gas molecules are widely 

spaced, and the cohesive forces between them are very small. Unlike 

liquids, a gas in an open container cannot form a free surface. 
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The arrangement of atoms in different phases: (a) molecules are at 

relatively fixed positions in a solid, (b) groups of molecules move about each 

other in the liquid phase, and (c) individual molecules move about at random 

in the gas phase. 

Intermolecular bonds are strongest in solids and weakest in gases.  

Solid: The molecules in a solid are arranged in a pattern that is repeated 

throughout.  

Liquid: In liquids molecules can rotate and translate freely. 

Gas: In the gas phase, the molecules are far apart from each other, and 

molecular ordering is nonexistent.  
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Gas and vapor are often used as synonymous words.  

Gas: The vapor phase of a substance is customarily called a gas when it 

is above the critical temperature. 

Vapor: Usually implies that the current phase is not far from a state of 

condensation. 

On a microscopic scale, pressure 

is determined by the interaction of 

individual gas molecules. 

However, we can measure the 

pressure on a macroscopic scale 

with a pressure gage. 

Macroscopic or classical approach: 

Does not require a knowledge of the 

behavior of individual molecules and 

provides a direct and easy way to 

analyze engineering problems.  

Microscopic or statistical approach: 

Based on the average behavior of 

large groups of individual molecules. 
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Application Areas of Fluid Mechanics 

Fluid dynamics is used extensively 

in the design of artificial hearts. 

Shown here is the Penn State 

Electric Total Artificial Heart. 
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1–2 ■ A BRIEF HISTORY 

OF FLUID MECHANICS 

Segment of Pergamon pipeline. Each clay 

pipe section was 13 to 18 cm in diameter. 

A mine hoist powered by 

a reversible water wheel. 
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Osborne Reynolds’ original apparatus for demonstrating the 

onset of turbulence in pipes, being operated by John Lienhard 

at the University of Manchester in 1975. 
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The Wright brothers take flight at Kitty Hawk. 

Old and new wind turbine 

technologies north of Woodward, 

OK. The modern turbines have 1.6 

MW capacities. 
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1–3 ■ THE NO-SLIP CONDITION 

The development of a velocity 
profile due to the no-slip condition 
as a fluid flows over a blunt nose. 

A fluid flowing over a stationary 

surface comes to a complete stop at 

the surface because of the no-slip 

condition. 

Flow separation during flow over a curved surface. 

Boundary layer: The 

flow region adjacent to 

the wall in which the 

viscous effects (and 

thus the velocity 

gradients) are 

significant. Compiled by 
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1–4 ■ CLASSIFICATION OF FLUID FLOWS 

Viscous versus Inviscid Regions of Flow 

Viscous flows: Flows in which the frictional effects are significant. 

Inviscid flow regions:  In many flows of practical interest, there are regions 

(typically regions not close to solid surfaces) where viscous forces are 

negligibly small compared to inertial or pressure forces.  

The flow of an originally 

uniform fluid stream 

over a flat plate, and 

the regions of viscous 

flow (next to the plate 

on both sides) and 

inviscid flow (away from 

the plate). 
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Internal versus External Flow 

External flow over a tennis ball, and the 

turbulent wake region behind. 

External flow:  The flow of an unbounded fluid over a surface such 

as a plate, a wire, or a pipe. 

Internal flow: The flow in a pipe or duct if the fluid is completely 

bounded by solid surfaces.  

• Water flow in a pipe is 

internal flow, and 

airflow over a ball is 

external flow .  

• The flow of liquids in a 

duct is called open-

channel flow if the duct 

is only partially filled 

with the liquid and 

there is a free surface. 
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Compressible versus Incompressible Flow 

Incompressible flow: If the 

density of flowing fluid remains 

nearly constant throughout (e.g., 

liquid flow).  

Compressible flow: If the density 

of fluid changes during flow (e.g., 

high-speed gas flow) 

When analyzing rockets, spacecraft, 

and other systems that involve high-

speed gas flows, the flow speed is 

often expressed by Mach number 

Schlieren image of the spherical shock 

wave produced by a bursting ballon 

at the Penn State Gas Dynamics Lab. 

Several secondary shocks are seen in 

the air surrounding the ballon. 

Ma = 1 Sonic flow  

Ma < 1 Subsonic flow 

Ma > 1 Supersonic flow 

Ma >> 1 Hypersonic flow 
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Laminar versus Turbulent Flow 

Laminar flow: The highly 

ordered fluid motion 

characterized by smooth 

layers of fluid. The flow of 

high-viscosity fluids such as 

oils at low velocities is 

typically laminar.  

Turbulent flow: The highly 

disordered fluid motion that 

typically occurs at high 

velocities and is 

characterized by velocity 

fluctuations. The flow of low-

viscosity fluids such as air at 

high velocities is typically 

turbulent.  

Transitional flow: A flow 

that alternates between 

being laminar and turbulent. Laminar, transitional, and turbulent flows 

over a flat plate. Compiled by 
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Natural (or Unforced) 

versus Forced Flow 

Forced flow: A fluid is forced 

to flow over a surface or in a 

pipe by external means such 

as a pump or a fan.  

Natural flow: Fluid motion is 

due to natural means such as 

the buoyancy effect, which 

manifests itself as the rise of 

warmer (and thus lighter) fluid 

and the fall of cooler (and thus 

denser) fluid. 
In this schlieren image of a girl in a 

swimming suit, the rise of lighter, warmer air 

adjacent to her body indicates that humans 

and warm-blooded animals are surrounded 

by thermal plumes of rising warm air. 
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Steady versus Unsteady Flow 

• The term steady implies no change at 

a point with time.  

• The opposite of steady is unsteady.  

• The term uniform implies no change 

with location over a specified region. 

• The term periodic refers to the kind of 

unsteady flow in which the flow 

oscillates about a steady mean. 

• Many devices such as turbines, 

compressors, boilers, condensers, 

and heat exchangers operate for long 

periods of time under the same 

conditions, and they are classified as 

steady-flow devices.  

Oscillating wake of a blunt-based airfoil 

at Mach number 0.6. Photo (a) is an 

instantaneous image, while photo (b) is 

a long-exposure (time-averaged) image. Compiled by 
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Comparison of (a) instantaneous snapshot of an unsteady 

flow, and (b) long exposure picture of the same flow. Compiled by 

Prof.S.N.Topannavar, Mech. 

Engg. Dept. HIT Nidasoshi 



One-, Two-, and Three-Dimensional Flows 

• A flow field is best characterized by its 

velocity distribution. 

• A flow is said to be one-, two-, or three-

dimensional if the flow velocity varies in 

one, two, or three dimensions, respectively.  

• However, the variation of velocity in certain 

directions can be small relative to the 

variation in other directions and can be 

ignored. 

The development of the velocity profile in a circular pipe. V = V(r, z) and thus the 

flow is two-dimensional in the entrance region, and becomes one-dimensional 

downstream when the velocity profile fully develops and remains unchanged in 

the flow direction, V = V(r). 

Flow over a car antenna is 

approximately two-dimensional 

except near the top and bottom of 

the antenna. 
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1–5 ■ SYSTEM AND CONTROL VOLUME 
• System: A quantity of matter or a region 

in space chosen for study.  

• Surroundings: The mass or region 
outside the system 

• Boundary: The real or imaginary surface 
that separates the system from its 
surroundings. 

• The boundary of a system can be fixed or 
movable. 

• Systems may be considered to be closed 
or open.  

• Closed system 
(Control mass):             
A fixed amount 
of mass, and no 
mass can cross 
its boundary. 
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• Open system (control volume): A properly 
selected region in space.  

• It usually encloses a device that involves 
mass flow such as a compressor, turbine, or 
nozzle. 

• Both mass and energy can cross the 
boundary of a control volume. 

• Control surface: The boundaries of a control 
volume. It can be real or imaginary. 

An open system (a 

control volume) with one 

inlet and one exit. 
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1–6 ■ IMPORTANCE OF 

DIMENSIONS AND UNITS 

• Any physical quantity can be characterized 
by dimensions.  

• The magnitudes assigned to the dimensions 
are called units.  

• Some basic dimensions such as mass m, 
length L, time t, and temperature T are 
selected as primary or fundamental 
dimensions, while others such as velocity V, 
energy E, and volume V are expressed in 
terms of the primary dimensions and are 
called secondary dimensions, or derived 
dimensions. 

• Metric SI system: A simple and logical 
system based on a decimal relationship 
between the various units. 

• English system: It has no apparent 
systematic numerical base, and various units 
in this system are related to each other 
rather arbitrarily. Compiled by 
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Some SI and English Units 

The SI unit prefixes are used in all 

branches of engineering. 

The definition of the force units. 

Work = Force  Distance 

1 J = 1 N∙m 

1 cal = 4.1868 J 

1 Btu = 1.0551 kJ 
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The relative magnitudes of the force 

units newton (N), kilogram-force 

(kgf), and pound-force (lbf). 

The weight of a unit 

mass at sea level. 

A body weighing 

150 kgf on earth 

will weigh only 25 

lbf on the moon. 

W  weight 

m  mass 

g  gravitational 

acceleration 
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A typical match yields about one Btu (or 

one kJ) of energy if completely burned. Compiled by 
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Unity Conversion Ratios 
All nonprimary units (secondary units) can be 

formed by combinations of primary units.  

Force units, for example, can be expressed as 

They can also be expressed more conveniently 

as unity conversion ratios as 

Unity conversion ratios are identically equal to 1 and 

are unitless, and thus such ratios (or their inverses) 

can be inserted conveniently into any calculation to 

properly convert units. 

Dimensional homogeneity 
All equations must be dimensionally homogeneous. 

To be dimensionally 

homogeneous, all the 

terms in an equation 

must have the same unit. 
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Always check the units in your 

calculations. 

Every unity conversion ratio (as well 

as its inverse) is exactly equal to one. 

Shown here are a few commonly used 

unity conversion ratios. 
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A quirk in 

the metric 

system of 

units. Compiled by 
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1–7 ■ MATHEMATICAL MODELING 

OF ENGINEERING PROBLEMS 

Experimental vs. Analytical Analysis 

An engineering device or process can be studied either experimentally 

(testing and taking measurements) or analytically (by analysis or 

calculations). 

The experimental approach has the advantage that we deal with the 

actual physical system, and the desired quantity is determined by 

measurement, within the limits of experimental error. However, this 

approach is expensive, time-consuming, and often impractical.  

The analytical approach (including the numerical approach) has the 

advantage that it is fast and inexpensive, but the results obtained are 

subject to the accuracy of the assumptions, approximations, and 

idealizations made in the analysis.  
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Modeling in Engineering 

Mathematical modeling of 

physical problems. 

Why do we need differential 

equations? The descriptions of most 

scientific problems involve equations 

that relate the changes in some key 

variables to each other.  

In the limiting case of infinitesimal or 

differential changes in variables, we 

obtain differential equations that provide 

precise mathematical formulations for 

the physical principles and laws by 

representing the rates of change as 

derivatives.  

Therefore, differential equations are 

used to investigate a wide variety of 

problems in sciences and engineering.  

Do we always need differential 

equations? Many problems 

encountered in practice can be solved 

without resorting to differential 

equations and the complications 

associated with them. 
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Simplified models are often used 

in fluid mechanics to obtain 

approximate solutions to difficult 

engineering problems. 

Here, the helicopter's rotor is 

modeled by a disk, across which is 

imposed a sudden change in 

pressure. The helicopter's body is 

modeled by a simple ellipsoid. This 

simplified model yields the 

essential features of the overall air 

flow field in the vicinity of the 

ground. 

Complex model  

(very accurate )  

          vs.  

Simple model  

(not-so-accurate) 

The right choice is usually 

the simplest model that 

yields satisfactory results. 
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1–8 ■ PROBLEM-SOLVING TECHNIQUE 

• Step 1: Problem Statement 

• Step 2: Schematic 

• Step 3: Assumptions and Approximations 

• Step 4: Physical Laws 

• Step 5: Properties 

• Step 6: Calculations 

• Step 7: Reasoning, Verification, and Discussion 
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A step-by-step approach can greatly 

simplify problem solving. 

The assumptions made 

while solving an 

engineering problem must 

be reasonable and 

justifiable. Compiled by 
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The results obtained from an 

engineering analysis must be 

checked for reasonableness. 

Neatness and organization are 

highly valued by employers. 
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1–9 ■ ENGINEERING 

SOFTWARE PACKAGES 

An excellent word-processing 

program does not make a person a 

good writer; it simply makes a good 

writer a more efficient writer. 

All the computing power and the 

engineering software packages available 

today are just tools, and tools have 

meaning only in the hands of masters.  

Hand calculators did not eliminate the 

need to teach our children how to add or 

subtract, and sophisticated medical 

software packages did not take the place 

of medical school training.  

Neither will engineering software 

packages replace the traditional 

engineering education. They will simply 

cause a shift in emphasis in the courses 

from mathematics to physics. That is, 

more time will be spent in the classroom 

discussing the physical aspects of the 

problems in greater detail, and less time 

on the mechanics of solution procedures. 
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EES (Engineering Equation Solver)  

(Pronounced as ease):  

EES is a program that solves systems of linear or 

nonlinear algebraic or differential equations 

numerically.  

It has a large library of built-in thermodynamic 

property functions as well as mathematical functions.  

Unlike some software packages, EES does not solve 

engineering problems; it only solves the equations 

supplied by the user. 
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1–10 ■ ACCURACY, PRECISION, 

AND SIGNIFICANT DIGITS 
Accuracy error (inaccuracy): The value of one 

reading minus the true value. In general, 

accuracy of a set of measurements refers to the 

closeness of the average reading to the true 

value. Accuracy is generally associated with 

repeatable, fixed errors. 

Precision error: The value of one reading 

minus the average of readings. In general, 

precision of a set of measurements refers to the 

fineness of the resolution and the repeatability 

of the instrument. Precision is generally 

associated with unrepeatable, random errors. 

Significant digits: Digits that are relevant and 

meaningful. 

Illustration of accuracy versus precision. Shooter 

A is more precise, but less accurate, while 

shooter B is more accurate, but less precise. Compiled by 
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A result with more significant digits 

than that of given data falsely implies 

more precision. 
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An instrument with many digits of resolution (stopwatch c) may 

be less accurate than an instrument with few digits of resolution 

(stopwatch a). What can you say about stopwatches b and d? 
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Summary 
• The No-Slip Condition 

• A Brief History of Fluid Mechanics 

• Classification of Fluid Flows 

 Viscous versus Inviscid Regions of Flow 

 Internal versus External Flow 

 Compressible versus Incompressible Flow 

 Laminar versus Turbulent Flow 

 Natural (or Unforced) versus Forced Flow 

 Steady versus Unsteady Flow 

 One-, Two-, and Three-Dimensional Flows 

• System and Control Volume 

• Importance of Dimensions and Units 

• Mathematical Modeling of Engineering Problems 

• Problem Solving Technique 

• Engineering Software Packages 

• Accuracy, Precision and Significant Digits 
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PROPERTIES OF FLUIDS 



A drop forms when 

liquid is forced out of a 

small tube. The shape 

of the drop is 

determined by a 

balance of pressure, 

gravity, and surface 

tension forces. 
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Objectives 

• Have a working knowledge of the basic properties of 

fluids and understand the continuum approximation. 

• Have a working knowledge of viscosity and the 

consequences of the frictional effects it causes in 

fluid flow. 

• Calculate the capillary rise (or drop) in tubes due to 

the surface tension effect. 
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• Property: Any characteristic of a 
system.  

• Some familiar properties are 
pressure P, temperature T, volume 
V, and mass m.  

• Properties are considered to be 
either intensive or extensive.  

• Intensive properties: Those that 
are independent of the mass of a 
system, such as temperature, 
pressure, and density.  

• Extensive properties: Those 
whose values depend on the size—
or extent—of the system. 

• Specific properties:  Extensive 
properties per unit mass. 

Criterion to differentiate intensive 

and extensive properties. 

2–1 ■ INTRODUCTION 
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Continuum 
• Matter is made up of atoms that are 

widely spaced in the gas phase. Yet it is 

very convenient to disregard the atomic 

nature of a substance and view it as a 

continuous, homogeneous matter with 

no holes, that is, a continuum.  

• The continuum idealization allows us to 

treat properties as point functions and to 

assume the properties vary continually 

in space with no jump discontinuities. 

• This idealization is valid as long as the 

size of the system we deal with is large 

relative to the space between the 

molecules.  

• This is the case in practically all 

problems. 

• In this text we will limit our consideration 

to substances that can be modeled as a 

continuum. 

Despite the relatively large gaps 

between molecules, a substance can 

be treated as a continuum because 

of the very large number of 

molecules even in an extremely 

small volume. 
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The length scale associated with most flows, such as seagulls 

in flight, is orders of magnitude larger than the mean free path 

of the air molecules. Therefore, here, and for all fluid flows 

considered in this book, the continuum idealization is 

appropriate. Compiled by Prof. 
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2–2 ■ DENSITY AND SPECIFIC GRAVITY 

Density is 

mass per unit 

volume; 

specific volume 

is volume per 

unit mass. 

Specific gravity: The ratio 
of the density of a 

substance to the density of 
some standard substance 
at a specified temperature 

(usually water at 4°C).  

Density 

Specific weight: The 
weight of a unit volume 
of a substance. 

Specific volume 
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Density of Ideal Gases 

Equation of state:  Any equation that relates the pressure, 

temperature, and density (or specific volume) of a substance.  

Ideal-gas equation of state:  The simplest and best-known 

equation of state for substances in the gas phase. 

Ru: The universal gas constant 

The thermodynamic temperature scale in the SI is the Kelvin scale.  

In the English system, it is the Rankine scale. 
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Air behaves as an ideal gas, even at 

very high speeds. In this schlieren 

image, a bullet traveling at about the 

speed of sound bursts through both 

sides of a balloon, forming two 

expanding shock waves. The 

turbulent wake of the bullet is also 

visible. 

An ideal gas is a hypothetical substance 

that obeys the relation Pv = RT. 

The ideal-gas relation closely 

approximates the P-v-T behavior of real 

gases at low densities.  

At low pressures and high temperatures, 

the density of a gas decreases and the gas 

behaves like an ideal gas.  

In the range of practical interest, many 

familiar gases such as air, nitrogen, 

oxygen, hydrogen, helium, argon, neon, 

and krypton and even heavier gases such 

as carbon dioxide can be treated as ideal 

gases with negligible error.  

Dense gases such as water vapor in steam 

power plants and refrigerant vapor in 

refrigerators, however, should not be 

treated as ideal gases since they usually 

exist at a state near saturation. 
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2–3 ■ VAPOR PRESSURE AND CAVITATION 

• Saturation temperature Tsat: The temperature at which 

a pure substance changes phase at a given pressure.  

• Saturation pressure Psat: The pressure at which a 

pure substance changes phase at a given temperature. 

• Vapor pressure (Pv): The pressure exerted by its vapor 

in phase equilibrium with its liquid at a given 

temperature. It is identical to the saturation pressure 

Psat of the liquid (Pv = Psat).  

• Partial pressure: The pressure of a gas or vapor in a 

mixture with other gases. For example, atmospheric air 

is a mixture of dry air and water vapor, and atmospheric 

pressure is the sum of the partial pressure of dry air and 

the partial pressure of water vapor. 
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The vapor pressure (saturation pressure) 

of a pure substance (e.g., water) is the 

pressure exerted by its vapor molecules 

when the system is in phase equilibrium 

with its liquid molecules at a given 

temperature. 
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• There is a possibility of the liquid 

pressure in liquid-flow systems 

dropping below the vapor 

pressure at some locations, and 

the resulting unplanned 

vaporization.  

• The vapor bubbles (called 

cavitation bubbles since they 

form “cavities” in the liquid) 
collapse as they are swept away 

from the low-pressure regions, 

generating highly destructive, 

extremely high-pressure waves.  

• This phenomenon, which is a 

common cause for drop in 

performance and even the 

erosion of impeller blades, is 

called cavitation, and it is an 

important consideration in the 

design of hydraulic turbines and 

pumps. 

Cavitation damage on a 16-mm by 23-mm 

aluminum sample tested at 60 m/s for 2.5 h. 

The sample was located at the cavity 

collapse region downstream of a cavity 

generator specifically designed to produce 

high damage potential. 
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2–4 ■ ENERGY AND SPECIFIC HEATS 
• Energy can exist in numerous forms such as thermal, mechanical, kinetic, 

potential, electric, magnetic, chemical, and nuclear, and their sum 

constitutes the total energy, E of a system.  

• Thermodynamics deals only with the change of the total energy.  

• Macroscopic forms of energy: Those a system possesses as a whole with 

respect to some outside reference frame, such as kinetic and potential 

energies. 

• Microscopic forms of energy: Those related to the molecular structure of a 

system and the degree of the molecular activity. 

• Internal energy, U: The sum of all the microscopic forms of energy. 

The macroscopic energy of an 

object changes with velocity and 

elevation. 

• Kinetic energy, KE: The energy that 

a system possesses as a result of its 

motion relative to some reference 

frame. 

• Potential energy, PE: The energy 

that a system possesses as a result 

of its elevation in a gravitational field. 
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At least six different forms of energy are encountered in bringing 

power from a nuclear plant to your home, nuclear, thermal, 

mechanical, kinetic, magnetic, and electrical.  Compiled by Prof. 
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for a P = const. 

process 

Energy of a flowing fluid 

The internal energy u represents the 

microscopic energy of a nonflowing 

fluid per unit mass, whereas enthalpy 

h represents the microscopic energy 

of a flowing fluid per unit mass. 

Enthalpy 

P/ is the flow energy, also 

called the flow work, which 

is the energy per unit mass 

needed to move the fluid 

and maintain flow. 

For a T = const. process 
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Specific Heats 
Specific heat at constant volume, cv: The energy required to raise the 

temperature of the unit mass of a substance by one degree as the 

volume is maintained constant. 

Specific heat at constant pressure, cp: The energy required to raise the 

temperature of the unit mass of a substance by one degree as the 

pressure is maintained constant. 

Specific heat is the energy 

required to raise the 

temperature of a unit mass 

of a substance by one 

degree in a specified way. 

Constant-

volume and 

constant-

pressure specific 

heats cv and cp 

(values are for 

helium gas). 
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2–5 ■ COMPRESSIBILITY 

AND SPEED OF SOUND 

Coefficient of Compressibility 

Fluids, like solids, compress when 

the applied pressure is increased 

from P1 to P2. 

We know from experience that the volume 

(or density) of a fluid changes with a 

change in its temperature or pressure.  

Fluids usually expand as they are heated or 

depressurized and contract as they are 

cooled or pressurized.  

But the amount of volume change is 

different for different fluids, and we need to 

define properties that relate volume 

changes to the changes in pressure and 

temperature.  

Two such properties are:  

the bulk modulus of elasticity    

the coefficient of volume expansion . Compiled by Prof. 
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Coefficient of compressibility  

(also called the bulk modulus of 

compressibility or bulk modulus of 

elasticity) for fluids 

The coefficient of compressibility represents the change in pressure 

corresponding to a fractional change in volume or density of the fluid 

while the temperature remains constant.  

What is the coefficient of compressibility of a truly incompressible 

substance (v = constant)? 

A large value of  indicates that a large change in pressure is needed 

to cause a small fractional change in volume, and thus a fluid with a 

large  is essentially incompressible.  

This is typical for liquids, and explains why liquids are usually 

considered to be incompressible. 
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Water hammer arrestors: (a) A large surge 

tower built to protect the pipeline against water 

hammer damage. (b) Much smaller arrestors 

used for supplying water to a household 

washing machine. 

Water hammer: Characterized by a sound that resembles the sound produced when 

a pipe is “hammered.” This occurs when a liquid in a piping network encounters an 

abrupt flow restriction (such as a closing valve) and is locally compressed.  

The acoustic waves that are produced strike the pipe surfaces, bends, and valves as 

they propagate and reflect along the pipe, causing the pipe to vibrate and produce 

the familiar sound.  

Water hammering can be quite destructive, leading to leaks or even structural 

damage. The effect can be suppressed with a water hammer arrestor. 
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The coefficient of compressibility of an ideal gas is equal to its 

absolute pressure, and the coefficient of compressibility of the gas 

increases with increasing pressure. 

The percent increase of density of an ideal gas during isothermal 

compression is equal to the percent increase in pressure. 

Isothermal compressibility: The inverse of the coefficient of 

compressibility.  

The isothermal compressibility of a fluid represents the fractional change 

in volume or density corresponding to a unit change in pressure. 
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Coefficient of Volume Expansion 

Natural convection over a 

woman’s hand. 

The density of a fluid depends more 

strongly on temperature than it does on 

pressure.  

The variation of density with 

temperature is responsible for 

numerous natural phenomena such as 

winds, currents in oceans, rise of 

plumes in chimneys, the operation of 

hot-air balloons, heat transfer by natural 

convection, and even the rise of hot air 

and thus the phrase “heat rises”.  
To quantify these effects, we need a 

property that represents the variation of 

the density of a fluid with temperature at 

constant pressure. 
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The coefficient of volume expansion 

(or volume expansivity): The variation of 

the density of a fluid with temperature at 

constant pressure.  

The volume expansion coefficient of an ideal 

gas (P = RT ) at a temperature T is 

equivalent to the inverse of the temperature: 

A large value of  for a fluid means a large 

change in density with temperature, 

and the product  T represents the fraction of 

volume change of a fluid that corresponds to a 

temperature change of T at constant pressure. 

The coefficient of volume expansion 

is a measure of the change in 

volume of a substance with 

temperature at constant pressure. Compiled by Prof. 
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In the study of natural convection currents, the condition of the main fluid body that 

surrounds the finite hot or cold regions is indicated by the subscript “infinity” to 
serve as a reminder that this is the value at a distance where the presence of the 

hot or cold region is not felt. In such cases, the volume expansion coefficient can 

be expressed approximately as 

The combined effects of pressure and 

temperature changes on the volume change 

of a fluid can be determined by taking the 

specific volume to be a function of T and P.  

The fractional change in volume (or density) 

due to changes in pressure and 

temperature can be expressed 

approximately as 
Vapor cloud around an F/A-18F 

Super Hornet as it flies near the 

speed of sound. 
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The variation of the coefficient of volume 

expansion of water with temperature in the 

range of 20°C to 50°C. 

Compiled by Prof. 

S.N.Topannavar, Mech. Engg. 

Dept. HIT Nidasoshi 



Speed of sound (sonic speed): The speed at which an infinitesimally 

small pressure wave travels through a medium. 

Propagation of a small 

pressure wave along a duct. 

Control volume moving with the 

small pressure wave along a duct. 

For an ideal gas 

For any fluid 

Speed of Sound and Mach Number 
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The speed of sound in air 

increases with temperature. At 

typical outside temperatures, c is 

about 340 m/s. In round numbers, 

therefore, the sound of thunder 

from a lightning strike travels about 

1 km in 3 seconds. If you see the 

lightning and then hear the thunder 

less than 3 seconds later, you 

know that the lightning is close, 

and it is time to go indoors! 
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The speed of sound 

changes with temperature 

and varies with the fluid. 

The Mach number can be different 

at different temperatures even if 

the flight speed is the same. 

Mach number Ma: The ratio of the 

actual speed of the fluid (or an object 

in still fluid) to the speed of sound in 

the same fluid at the same state. 

The Mach number depends on the 

speed of sound, which depends on 

the state of the fluid. 
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2–6 ■ VISCOSITY 
Viscosity: A property that represents the internal resistance of a fluid to 

motion or the “fluidity”.  
Drag force:  The force a flowing fluid exerts on a body in the flow 

direction. The magnitude of this force depends, in part, on viscosity 

A fluid moving relative to 

a body exerts a drag 

force on the body, partly 

because of friction 

caused by viscosity. 

The viscosity of a fluid is a 

measure of its “resistance to 

deformation.”  
Viscosity is due to the internal 

frictional force that develops 

between different layers of 

fluids as they are forced to 

move relative to each other. 
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The behavior of a fluid in laminar flow 

between two parallel plates when the upper 

plate moves with a constant velocity. 

Newtonian fluids: Fluids for 

which the rate of deformation is 

proportional to the shear 

stress. 

Shear 

stress 

Shear force 

  coefficient of viscosity 

Dynamic (absolute) viscosity  

kg/m  s  or  N  s/m2  or  Pa  s 

1 poise = 0.1 Pa  s  
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The rate of deformation (velocity gradient) 

of a Newtonian fluid is proportional to 

shear stress, and the constant of 

proportionality is the viscosity. 

Variation of shear stress with the rate 

of deformation for Newtonian and 

non-Newtonian fluids (the slope of a 

curve at a point is the apparent 

viscosity of the fluid at that point). 
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Dynamic viscosity, in general, 

does not depend on pressure, 

but kinematic viscosity does. 

Kinematic viscosity 

m2/s  or  stoke  

1 stoke = 1 cm2/s 

For gases 

For liquids 

For liquids, both the dynamic and 

kinematic viscosities are practically 

independent of pressure, and any small 

variation with pressure is usually 

disregarded, except at extremely high 

pressures.  

For gases, this is also the case for 

dynamic viscosity (at low to moderate 

pressures), but not for kinematic 

viscosity since the density of a gas is 

proportional to its pressure. 
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The viscosity of liquids decreases 

and the viscosity of gases 

increases with temperature. 

The viscosity of a fluid is directly related to 

the pumping power needed to transport a 

fluid in a pipe or to move a body through a 

fluid. 

Viscosity is caused by the cohesive forces 

between the molecules in liquids and by 

the molecular collisions in gases, and it 

varies greatly with temperature.  

In a liquid, the molecules possess more 

energy at higher temperatures, and they 

can oppose the large cohesive 

intermolecular forces more strongly. As a 

result, the energized liquid molecules can 

move more freely. 

In a gas, the intermolecular forces are 

negligible, and the gas molecules at high 

temperatures move randomly at higher 

velocities. This results in more molecular 

collisions per unit volume per unit time and 

therefore in greater resistance to flow. 
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The variation of 

dynamic 

(absolute) 

viscosity of 

common fluids 

with 

temperature at 

1 atm  

(1 Ns/m2  

= 1 kg/ms  

= 0.020886 

lbfs/ft2) Compiled by Prof. 
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This equation can be used to calculate the viscosity of a 

fluid by measuring torque at a specified angular velocity.  

Therefore, two concentric cylinders can be used as a 

viscometer, a device that measures viscosity. 

L    length of the cylinder 

      number of revolutions per unit time 
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2–7 ■ SURFACE TENSION 

AND CAPILLARY EFFECT 

Some consequences of surface tension: (a) drops of water beading 

up on a leaf, (b) a water strider sitting on top of the surface of water, 

and (c) a color schlieren image of the water strider revealing how 

the water surface dips down where its feet contact the water (it 

looks like two insects but the second one is just a shadow). 

• Liquid droplets behave like small balloons filled 

with the liquid on a solid surface, and the surface 

of the liquid acts like a stretched elastic membrane 

under tension.  

• The pulling force that causes this tension acts 

parallel to the surface and is due to the attractive 

forces between the molecules of the liquid.  

• The magnitude of this force per unit length is called 

surface tension (or coefficient of surface tension) 

and is usually expressed in the unit N/m.  

• This effect is also called surface energy [per unit 

area] and is expressed in the equivalent unit of N  
m/m2. 
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Attractive forces acting on a liquid 

molecule at the surface and deep 

inside the liquid. 
Stretching a liquid film with a U-

shaped wire, and the forces acting 

on the movable wire of length b. 

Surface tension: The work done per unit 

increase in the surface area of the liquid. Compiled by Prof. 
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The free-body 

diagram of half a 

droplet or air 

bubble and half 

a soap bubble. 
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Capillary Effect 

Capillary effect: The rise or fall of a liquid in a small-diameter tube inserted into the 

liquid.  

Capillaries: Such narrow tubes or confined flow channels. 

The capillary effect is partially responsible for the rise of water to the top of tall trees.  

Meniscus: The curved free surface of a liquid in a capillary tube. 

The contact angle for wetting and 

nonwetting fluids. 

The meniscus of colored water in a 

4-mm-inner-diameter glass tube. 

Note that the edge of the meniscus 

meets the wall of the capillary tube 

at a very small contact angle. 

The strength of the capillary effect is 

quantified by the contact (or wetting) 

angle, defined as the angle that the 

tangent to the liquid surface makes with 

the solid surface at the point of contact. 
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The capillary rise of water and the 

capillary fall of mercury in a small-

diameter glass tube. 

The forces acting on a liquid column 

that has risen in a tube due to the 

capillary effect. 

 Capillary rise is inversely proportional to the 

radius of the tube and density of the liquid.  
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Summary 

• Introduction 
 Continuum 

• Density and Specific Gravity 

 Density of Ideal Gases 

• Vapor Pressure and Cavitation 

• Energy and Specific Heats 

• Compressibility and Speed of Sound 

 Coefficient of Compressibility 

 Coefficient of Volume Expansion 

 Speed of Sound and Mach Number 

• Viscosity 

• Surface Tension and Capillary Effect 
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Statics  fluids at rest 

More on fluids. 

How can a steel boat float. 

A ship can float in a cup of water! 
Today’s weather 
Hurricane Rita:  26.52 in  
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Variation of pressure with  

depth in a liquid 

• Anybody the does 

scuba diving knows 

that the pressure 

increases as then 

dive to greater depths 

• The increasing water 

pressure with depth 

limits how deep a 

submarine can go 
crush depth 2200 ft 
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The deeper you go, the higher 

the pressure 

hypothetical volume 

of water inside a 

larger volume.  

 

 

W 

PTopA 

PBottomA 

density = mass/volume 

 

     = mass/Vol 

 

or  mass =    Vol 
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H 

W 

FTOP 

FBOTTOM 

Forces in a STATIC fluid (at rest) 

• W is the weight = mg of this 
volume 

• FTOP is the force on the top of 
the volume exerted by the 
fluid above it pushing down 

• FBOTTOM is the force on the 
volume due to the fluid below 
it pushing up 

• For this volume not to move 
(Static fluid) we must have 
that 

     FBOTTOM = FTOP + mg 
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Variation of pressure with depth 

 FBOTTOM - FTOP  =  mg = (density x Vol) x g 

   FBOTTOM - FTOP  =  A H g 

Since pressure is Force / area, Force = P x A 

  PBottom A – PTop A =  A H g,  or 

 

PBottom – PTop  =    H g  

 

The pressure below is greater 

 than the pressure above.  

rho 
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this layer of fluid must 

support all the fluid 

above it 

the block on the bottom 

supports all the blocks 

above it 

Why does P increase with depth? 
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Pressure in a fluid increases  

with depth h 

h 

Po = Patm 

P(h) 

  Pressure at depth h 

 

    P(h) = Po + gh 

 

    = density (kg/m3)  

        = 1000 kg/m3 for water 

The pressure at the surface is  

atmospheric pressure, 105 N/m2 
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How much does P increase 

• At the surface of a body of water  

the pressure is 1 atm  

= 100,000 Pa 

• As we go down into the water, 

at what depth does the pressure  

double, from 1 atm to 2 atm or 200,000 Pa 

• Want   g h = 100,000 Pa 

             1000 kg/m3 x 10 x h = 100,000 

• So h = 10 meters or about 30 feet 

100,000 Pa 

h 
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Pressure is always perpendicular 

to the surface of an object 
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Pressure depends only on depth 
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Pressure increases  

with depth, so the  

speed of water leaking 

from the bottom hole is 

larger than that from the  

higher ones. 
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Problem: how much does 1 gallon 

of water weigh? 

• At 20 C the density of water is 998 kg/m3 

• there are 264 gallons in one liter, so the 

volume of 1 gal is 1/264 m3 

• the mass of 1 gal of water is then 

998 kg/m3 x (1/264) m3/gal = 3.79 kg/gal 

• weight = mass x g = 3.79 kg x 9.8 m/s2 

= 37.1 N x 0.225 pounds/N 

= 8.3 pounds 
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Measuring atmospheric  

pressure - Barometers 

PATM PATM 

Inverted closed 

tube filled with 

liquid 

The column of liquid is 

held up by the pressure of 

the liquid in the tank. Near 

the surface this pressure 

is atmospheric pressure, so 

the atmosphere holds the 

liquid up. 

 

Pliquid Compiled by Prof. 
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Barometric pressure 

  Atmospheric pressure 

can support a column 

of water 10.3 m high, 

or a column of 

mercury (which is 

13.6 times as dense 

as water) 30 inches 

 high  the mercury 

barometer 

 

 
Today’s weather 
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Pascal’s Principle 
• If you apply pressure 

to an enclosed fluid, 
that pressure is 
transmitted equally to 
all parts of the fluid 

• If I exert extra 
pressure on the fluid 
with a piston, the 
pressure in the fluid 
increases everywhere 
by that amount 

• Cartesian diver 
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Pascal’s Vases 

• The fluid levels are the same in all each 

tube irrespective of their shape 
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A hydraulic car lift 

• Pressure is F x A 

• At the same depth the 

pressures are the same 

• so  F1 /A1 = F2 /A2, or 

 

 

 

• with a little force you can 

lift a heavy object! 

• the jack 

 

2

2 1

1

A
F F

A
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Water pumps 

• A ground level pump 

can only be used to 

cause water to rise to 

a certain maximum 

height since it uses 

atmospheric pressure 

to lift the water 

• for deeper wells the 

pump must be located 

at the bottom 
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Pressure depends only on depth 

• The pressure at the 

bottom of the lake is 

higher than at the top 

• The dam must be 

thicker at its base 

• The pressure does 

not depend on how 

far back the lake 

extends 

Dam 
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Blood Pressure 

• The blood pressure in 

your feet can be 

greater than the blood 

pressure in your head 

depending on 

whether a person is 

standing or reclining 
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Buoyancy – why things float 

• The trick is to keep the water on the outside of 

the ship, and 

• to avoid hitting icebergs (which also float), and 

• are easy to miss since 90 % of it is submerged. 

TITANIC 
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Buoyant Force 

W 

PTopA 

PBottomA 

submerged object 

that has a mass 

density ρO 

 

 

 

The density of the 

water is ρW 

h 

F = P  A 
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Buoyant force 

• The water pushes down on the top of the 

object, and pushes up on the bottom of the 

object 

• The difference between the upward force 

and the downward force is the buoyant 

force FB   

• since the pressure is larger on the 

bottom the buoyant force is UP  
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Archimedes principle 

• the pressure difference is ρW g h, so the 
buoyant force is 

• FB = P x A = ρW g h A 

•  = ρW g (volume of object) 

• = ρW (volume of object) g  

• = mass of displaced water x g  

• FB = weight of displaced water 

• This is Archimedes principle 

 

h 

object 
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Archimedes principle 

   The buoyant force on an object in 

 a fluid equals the weight of the 

 fluid which it displaces. 

–this works for objects in water 

–helium balloons (density of He = 0.18 kg/m3) 

–hot air balloons  the density of 

   hot air is lower than the density of cool 

   air so the weight of the cool air that is 

   displaced is larger than the weight 

   of the balloon 
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Will it float? 

• The object will float if the buoyant force is 
enough to support the object’s weight 

• The object will displace just enough water 
so that the buoyant force = its weight 

• If it displaces as much water as possible 
and this does not match its weight, it will 
sink. 

• Objects that have a density less than 
water will always float. 
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Floating objects 

lighter object heavier object 
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Floating in a 

 cup of water 

Only a thin layer of 

water around the hull 

is needed for the ship 

to float! 
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Oil Tankers 

empty 

tanker 

full 

tanker 
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Pressure; Pascal’s Principle 
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PRESSURE OF A FLUID 

Barometer 

air pressure pressure = height of mercury 

                   column  
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Gauge pressure – pressure  

above the atmospheric pressure. 

absolute (total) pressure = 

gauge pressure + atmospheric press. 
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Pressure is produced by the  

weight of the fluid above the  

surface. 
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                  force 

pressure =  ------ 

                   area 

  weight of fluid 

= ---------------- 

        area 

    mg 

= ----- 

   area 

    density · volume · g 

= ------------------------- 

           area 

    density · (area · height) · g 

= -------------------------------- 

                   area 
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pressure = density · height · g 

P = ρhg      gauge pressure 

SI units: 

pressure: N/m2  = Pascals (Pa) 

density: kg/m3 

height (depth): m 

P = ρhg + P0    absolute pressure 
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Standard atmospheric pressure 

760 mm Hg ≈ 30 in Hg 

Calculate 1 atm in Pascals 

P = ρgh 

ρHg = 13.6 x 103 kg/m3 

g = 9.8 N/kg     h = 0.760 m 

P = 1.013 x 105 Pa Compiled by Prof. 

S.N.Topannavar, Mech. 

Engg.Dept. HIT, Nidasoshi 



Why does a barometer use mercury 

and not water? 

If p = 1 atmosphere = 1.013 x 105  Pa 

ρ = 1.00 g/cm3 = 1.00 x 103 kg/m3 

Find height. 

10.3 m 
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Pressure of fluid depends on depth. 
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“Water seeks its own level” 

Pressure does not depend on volume, 

only on height (depth). 
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More pressure at greater depth 
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Measure blood pressure at upper arm 

same height as heart 
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Pascal’s Principle – The pressure 

 in an enclosed fluid is constant  

throughout the fluid. 

p1        =            p2 

F1                               F2 

---       =           --- 

A1                                A2 
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A = 1 cm2 
A = 50 cm2 

1 N ? 

p1        =          p2 

  1 N             F2 

-------   =    ------ 

 1 cm2             50 cm2 

50 N 
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If piston on left moves 10 cm, 

what distance does piston on right 

move? 

work1 = work2 

F1 d1    =  F2 d2 

 (1) (10)  = (50) d2 

0.2 cm Compiled by Prof. 
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Hydraulic lift 
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Area of brake cylinder > area of brake line 

force of brake cylinder > force of brake pedal 
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hydrostatic pressure 
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Pressure and Fluid Statics 
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Note to Instructors 

 These slides were developed1 during the spring semester 2005, as a teaching aid 

for the undergraduate Fluid Mechanics course (ME33:  Fluid Flow) in the Department of 

Mechanical and Nuclear Engineering at Penn State University.  This course had two 

sections, one taught by myself and one taught by Prof. John Cimbala.   While we gave 

common homework and exams, we independently developed lecture notes.  This was 

also the first semester that Fluid Mechanics:  Fundamentals and Applications was 

used at PSU.  My section had 93 students and was held in a classroom with a computer, 

projector, and blackboard.   While slides have been developed for each chapter of Fluid 

Mechanics:  Fundamentals and Applications, I used a combination of blackboard and 

electronic presentation.  In the student evaluations of my course, there were both positive 

and negative comments on the use of electronic presentation.  Therefore, these slides 

should only be integrated into your lectures with careful consideration of your teaching 

style and course objectives. 

 

Eric Paterson 
Penn State, University Park 
August 2005 

1 These slides were originally prepared using the LaTeX typesetting system (http://www.tug.org/)  
and the beamer class (http://latex-beamer.sourceforge.net/), but were translated to PowerPoint for  
wider dissemination by McGraw-Hill. 

http://www.tug.org/
http://latex-beamer.sourceforge.net/
http://latex-beamer.sourceforge.net/
http://latex-beamer.sourceforge.net/
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Pressure 

Pressure is defined as a normal force 
exerted by a fluid per unit area. 

Units of pressure are N/m2, which is called 
a pascal (Pa).  

Since the unit Pa is too small for pressures 
encountered in practice, kilopascal (1 kPa 
= 103 Pa) and megapascal (1 MPa = 106 
Pa) are commonly used. 

Other units include bar, atm, kgf/cm2, 
lbf/in2=psi. 
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Absolute, gage, and vacuum pressures 

Actual pressure at a give point is called 
the absolute pressure. 

Most pressure-measuring devices are 
calibrated to read zero in the atmosphere, 
and therefore indicate gage pressure, 
Pgage=Pabs - Patm. 

Pressure below atmospheric pressure are 
called vacuum pressure, Pvac=Patm - Pabs. 
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Absolute, gage, and vacuum pressures 
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Pressure at a Point 

Pressure at any point in a fluid is the same 
in all directions. 

Pressure has a magnitude, but not a 
specific direction, and thus it is a scalar 
quantity. 
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Variation of Pressure with Depth 

In the presence of a gravitational 
field, pressure increases with 
depth because more fluid rests 
on deeper layers.  

To obtain a relation for the 
variation of pressure with depth, 
consider rectangular element 

Force balance in z-direction gives  
 
 

Dividing by Dx and rearranging 
gives 

2 1

0

0

z z
F ma

P x P x g x z

 

D  D  D D 


2 1 s
P P P g z z D    D  D
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Variation of Pressure with Depth 

Pressure in a fluid at rest is independent of the 
shape of the container. 

Pressure is the same at all points on a horizontal 
plane in a given fluid. 
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Scuba Diving and Hydrostatic Pressure 
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Pressure on diver at 
100 ft? 

 

 

 

Danger of emergency 
ascent? 

 ,2 3 2

,2 ,2

1
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Scuba Diving and Hydrostatic Pressure 

1 1 2 2

1 2

2 1

3.95
4

1

PV PV

V P atm

V P atm



  

100 ft 

1 

2 

Boyle’s law 

If you hold your breath on ascent, your lung 
volume would increase by a factor of 4, which  
would result in embolism and/or death. 
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Pascal’s Law 

Pressure applied to a 
confined fluid increases 
the pressure throughout 
by the same amount.  

In picture, pistons are at 
same height: 

 

 

 

Ratio A2/A1 is called ideal 

mechanical advantage 

1 2 2 2

1 2

1 2 1 1

F F F A
P P

A A F A
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The Manometer 

An elevation change of 
Dz in a fluid at rest 
corresponds to DP/g. 

A device based on this is 
called a manometer. 

A manometer consists of 
a U-tube containing one 
or more fluids such as 
mercury, water, alcohol, 
or oil. 
Heavy fluids such as 
mercury are used if large 
pressure differences are 
anticipated. 

1 2

2 atm

P P

P P gh
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Mutlifluid Manometer 

For multi-fluid systems  
Pressure change across a fluid 
column of height h is DP = gh. 

Pressure increases downward, and 
decreases upward. 

Two points at the same elevation in a 
continuous fluid are at the same 
pressure. 

Pressure can be determined by 
adding and subtracting gh terms. 

2 1 1 2 2 3 3 1
P gh gh gh P     
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Measuring Pressure Drops 

Manometers are well--
suited to measure 
pressure drops across 
valves, pipes, heat 
exchangers, etc.  

Relation for pressure 
drop P1-P2 is obtained by 
starting at point 1 and 
adding or subtracting gh 
terms until we reach point 
2.   

If fluid in pipe is a gas, 
2>>1 and P1-P2= gh  
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The Barometer 

Atmospheric pressure is 
measured by a device called a 
barometer; thus, atmospheric 
pressure is often referred to as 
the barometric pressure. 

PC can be taken to be zero 
since there is only Hg vapor 
above point C, and it is very 
low relative to Patm.  

Change in atmospheric 
pressure due to elevation has 
many effects: Cooking, nose 
bleeds, engine performance, 
aircraft performance. 

C atm

atm

P gh P

P gh
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Fluid Statics 

Fluid Statics deals with problems associated 
with fluids at rest.  
In fluid statics, there is no relative motion 
between adjacent fluid layers.  
Therefore, there is no shear stress in the fluid 
trying to deform it.  
The only stress in fluid statics is normal stress 

Normal stress is due to pressure 
Variation of pressure is due only to the weight of the 
fluid → fluid statics is only relevant in presence of 
gravity fields. 

Applications:  Floating or submerged bodies, 
water dams and gates, liquid storage tanks, etc. 
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Hoover Dam 



Chapter 3:  Pressure and Fluid Statics ME33 :  Fluid Flow                    18 

Hoover Dam 
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Hoover Dam 

Example of elevation 
head z converted to 
velocity head V2/2g.  
We'll discuss this in 
more detail in Chapter 
5 (Bernoulli equation). 
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Hydrostatic Forces on Plane Surfaces 

On a plane surface, the 
hydrostatic forces form a 
system of parallel forces 

For many applications, 
magnitude and location of 
application, which is 
called center of 
pressure, must be 
determined. 

Atmospheric pressure 
Patm can be neglected 
when it acts on both sides 
of the surface. 
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Resultant Force 

The magnitude of FR acting on a plane surface of a 
completely submerged plate in a homogenous fluid 
is equal to the product of the pressure PC at the 
centroid of the surface and the area A of the 
surface 
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Center of Pressure 

Line of action of resultant force 
FR=PCA does not pass through 
the centroid of the surface.  In 
general, it lies underneath 
where the pressure is higher. 

Vertical location of Center of 
Pressure is determined by 
equation the moment of the 
resultant force to the moment 
of the distributed pressure 
force.   

 

 

$Ixx,C is tabulated for simple 
geometries.  

 

,xx C

p C

c

I
y y

y A
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Hydrostatic Forces on Curved Surfaces 

FR on a curved surface is more involved since it 
requires integration of the pressure forces that 
change direction along the surface. 

Easiest approach:  determine horizontal and 
vertical components FH and FV separately. 
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Hydrostatic Forces on Curved Surfaces 

Horizontal force component on curved surface:  
FH=Fx.  Line of action on vertical plane gives y 
coordinate of center of pressure on curved 
surface. 
Vertical force component on curved surface:  
FV=Fy+W, where W is the weight of the liquid in 
the enclosed block W=gV.  x coordinate of the 
center of pressure is a combination of line of 
action on horizontal plane (centroid of area) and 
line of action through volume (centroid of 
volume). 
Magnitude of force FR=(FH

2+FV
2)1/2 

Angle of force is a = tan-1(FV/FH) 
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Buoyancy and Stability 

Buoyancy is due to the fluid displaced by a 
body.  FB=fgV. 

Archimedes principal : The buoyant 
force acting on a body immersed in a fluid 
is equal to the weight of the fluid displaced 
by the body, and it acts upward through 
the centroid of the displaced volume. 
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Buoyancy and Stability 

Buoyancy force FB is 
equal only to the displaced 
volume fgVdisplaced. 

Three scenarios possible 
1. body<fluid:  Floating body 

2. body=fluid: Neutrally buoyant 

3. body>fluid: Sinking body 
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Example:  Galilean Thermometer 

Galileo's thermometer is made of a sealed 
glass cylinder containing a clear liquid.  

Suspended in the liquid are a number of 
weights, which are sealed glass containers 
with colored liquid for an attractive effect.  

As the liquid changes temperature it changes 
density and the suspended weights rise and 
fall to stay at the position where their density is 
equal to that of the surrounding liquid.  

If the weights differ by a very small amount and 
ordered such that the least dense is at the top 
and most dense at the bottom they can form a 
temperature scale. 
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Example:  Floating Drydock 

Auxiliary Floating Dry Dock Resolute 
(AFDM-10) partially submerged 

Submarine undergoing repair work on 
board the AFDM-10 

Using buoyancy, a submarine with a displacement of 6,000 tons can be lifted! 
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Example:  Submarine Buoyancy and Ballast 

Submarines use both static and dynamic depth 
control.  Static control uses ballast tanks 
between the pressure hull and the outer hull.  
Dynamic control uses the bow and stern planes 
to generate trim forces. 
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Example:  Submarine Buoyancy and Ballast 

Normal surface trim SSN 711 nose down after accident 
which damaged fore ballast tanks 
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Example:  Submarine Buoyancy and Ballast 

Damage to SSN 711 
(USS San Francisco) 
after running aground on 
8 January 2005. 
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Example:  Submarine Buoyancy and Ballast 

Ballast Control Panel:  Important station for controlling depth of submarine 
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Stability of Immersed Bodies 

Rotational stability of immersed bodies depends upon 
relative location of center of gravity G and center of 

buoyancy B. 
G below B: stable 

G above B: unstable  

G coincides with B: neutrally stable. 
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Stability of Floating Bodies 

If body is bottom heavy 
(G lower than B), it is 
always stable.  

Floating bodies can be 
stable when G is higher 
than B due to shift in 
location of center 
buoyancy and creation of 
restoring moment. 

Measure of stability is the 
metacentric height GM.  If 
GM>1, ship is stable. 
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There are special cases where a body of fluid can undergo rigid-
body motion:  linear acceleration, and rotation of a cylindrical 
container. 

 

 

 

 

 

In these cases, no shear is developed.  

Newton's 2nd law of motion can be used to derive an equation of 
motion for a fluid that acts as a rigid body  

 

 

In Cartesian coordinates: 

Rigid-Body Motion 

P gk a    

 , ,
x y x

P P P
a a g a

x y z
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Linear Acceleration 

Container is moving on a straight path 

 

 

 

Total differential of P 

 

 

Pressure difference between 2 points 

 

 

Find the rise by selecting 2 points on 
free surface P2 = P1 
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Rotation in a Cylindrical Container 

Container is rotating about the z-axis 

 

 

Total differential of P 

 

 

On an isobar, dP = 0 

 

 

Equation of the free surface 
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Examples of Archimedes Principle 
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The Golden Crown of Hiero II, King of 
Syracuse 

Archimedes, 287-212 B.C. 

Hiero, 306-215 B.C. 

Hiero learned of a rumor where 
the goldsmith replaced some of 
the gold in his crown with silver.  
Hiero asked Archimedes to 
determine whether the crown was 
pure gold. 

Archimedes had to develop a 
nondestructive testing method 
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The Golden Crown of Hiero II, King of 
Syracuse 

The weight of the crown and 
nugget are the same in air:  Wc = 
cVc = Wn = nVn. 

If the crown is pure gold, c=n 
which means that the volumes 
must be the same, Vc=Vn. 
In water, the buoyancy force is 
B=H2OV. 

If the scale becomes unbalanced, 
this implies that the Vc ≠ Vn, 
which in turn means that the c ≠ 
n 
Goldsmith was shown to be a 
fraud! 
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Hydrostatic Bodyfat Testing 

What is the best way to 
measure body fat?   

Hydrostatic Bodyfat Testing 
using Archimedes Principle! 

Process 
Measure body weight 
W=bodyV 

Get in tank, expel all air, and 
measure apparent weight Wa 

Buoyancy force B = W-Wa = 
H2OV.  This permits 
computation of body volume. 

Body density can be 
computed body=W/V. 

Body fat can be computed 
from formulas. 



Chapter 3:  Pressure and Fluid Statics ME33 :  Fluid Flow                    42 

Hydrostatic Bodyfat Testing in Air? 

Same methodology as 
Hydrostatic testing in water.  

What are the ramifications of 
using air? 

Density of air is 1/1000th of 
water. 

Temperature dependence of 
air. 

Measurement of small volumes. 

Used by NCAA Wrestling (there 
is a BodPod on PSU campus). 
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 Fluid Mechanics 

• Fluids essential to life 
• Human body 65% water 

• Earth’s surface is 2/3 water 
• Atmosphere extends 17km above the earth’s surface 

• History shaped by fluid mechanics 
• Geomorphology 

• Human migration and civilization 

• Modern scientific and mathematical theories and methods 

• Warfare 

• Affects every part of our lives 
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History 

Faces of Fluid Mechanics 

Archimedes 
(C. 287-212 BC) 

Newton 
(1642-1727) 

Leibniz 
(1646-1716) 

Euler 
(1707-1783) 

Navier 
(1785-1836) 

Stokes 
(1819-1903) 

Reynolds 
(1842-1912) 

Prandtl 
(1875-1953) 

Bernoulli 
(1667-1748) 

Taylor 
(1886-1975) 

http://www-gap.dcs.st-and.ac.uk/~history/PictDisplay/Taylor_Geoffrey.html
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Significance 

• Fluids omnipresent 

• Weather & climate 

• Vehicles: automobiles, trains, ships, and 
planes, etc. 

• Environment 

• Physiology and medicine 

• Sports & recreation 

• Many other examples! 
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Weather & Climate 

Tornadoes 

Hurricanes Global Climate 

Thunderstorm 
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Vehicles 

Aircraft 

Submarines High-speed rail 

Surface ships 
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Environment 

Air pollution River hydraulics 
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Physiology and Medicine 

Blood pump Ventricular assist device 
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Sports & Recreation 

Water sports 

Auto racing 

Offshore racing Cycling 

Surfing 
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Fluids Engineering  

22
PBUD 

2 2

s SM SN
U U U 

Reality 

Fluids Engineering System Components Idealized 

EFD,  Mathematical Physics Problem Formulation 

AFD, CFD,  mU
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Analytical Fluid Dynamics 

• The theory of mathematical physics 
problem formulation 

• Control volume & differential analysis 

• Exact solutions only exist for simple 
geometry and conditions 

• Approximate solutions for practical 
applications 
• Linear 

• Empirical relations using EFD data 
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Analytical Fluid Dynamics 

• Lecture Part of Fluid Class 

• Definition and fluids properties 

• Fluid statics 

• Fluids in motion 

• Continuity, momentum, and energy principles 

• Dimensional analysis and similitude 

• Surface resistance 

• Flow in conduits  

• Drag and lift 
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Analytical Fluid Dynamics 

Schematic 

• Example: laminar pipe flow 

Exact solution : 
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x
  


Friction factor: 

8
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Assumptions: Fully developed, Low  
Approach: Simplify momentum equation,  
integrate, apply boundary conditions to 
determine integration constants and use 
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Analytical Fluid Dynamics 
• Example: turbulent flow in smooth pipe(             ) 
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Three layer concept (using dimensional analysis) 
 
   
1. Laminar sub-layer (viscous shear dominates) 

 
 

2. Overlap layer (viscous and turbulent shear important) 
 

 
 

3.    Outer layer (turbulent shear dominates) 
 

Assume log-law is valid across entire pipe: 

Integration for average velocity and using EFD data to adjust constants: 

 1 21
2log Re .8f

f
 

(k=0.41, B=5.5) 
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Analytical Fluid Dynamics 
• Example: turbulent flow in rough pipe 

 u u y k
 

1
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y
u

k
  

1
2log

3.7

k D

f
  1

ln 8.5 Re
y

u f
k

   

Three regimes of flow depending on  k+  
1. K+<5, hydraulically smooth (no effect of roughness) 
2. 5 < K+< 70, transitional roughness (Re dependent) 
3. K+> 70, fully rough (independent Re) 
 

Both laminar sublayer and overlap layer 

are affected by roughness 
Inner layer: 

 
Outer layer: unaffected 

 
Overlap layer: 
 

Friction factor: 

For 3, using EFD data to adjust constants: 

constant 
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Analytical Fluid Dynamics 
• Example: Moody diagram for turbulent pipe flow 

1 1 2
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k D

ff

 
   

 

Composite Log-Law for smooth and rough pipes is given by the Moody diagram: 
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Experimental Fluid Dynamics (EFD) 

 
Definition: 
     Use of experimental methodology and procedures for solving fluids 

engineering systems, including full and model scales, large and table 
top facilities, measurement systems (instrumentation, data acquisition 
and data reduction), uncertainty analysis, and dimensional analysis and 
similarity. 

 
EFD philosophy: 

• Decisions on conducting experiments are governed by the ability of the 
expected test outcome, to achieve the test objectives within allowable 
uncertainties.  

• Integration of UA into all test phases should be a key part of entire 
experimental program  

• test design  

• determination of error sources  

• estimation of uncertainty  

• documentation of the results 
 
         

   



Compiled by Prof. S.N.Topannavar, 

Mech. Engg. Dept. HIT Nidasoshi 

Purpose 

 

• Science & Technology: understand and investigate a 
phenomenon/process, substantiate and validate a theory 
(hypothesis) 

• Research & Development: document a process/system, 
provide benchmark data (standard procedures, 
validations), calibrate instruments, equipment, and 
facilities 

• Industry: design optimization and analysis, provide data 
for direct use, product liability, and acceptance 

• Teaching: instruction/demonstration 
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Applications of EFD 

    Application in research & development 

 

Tropic Wind Tunnel has the ability to create  

temperatures ranging from 0 to 165 degrees 

Fahrenheit and simulate rain 

 

Application in science & technology 

 

Picture of Karman vortex shedding 

http://www.damtp.cam.ac.uk/user/turbmix/Biagio/images/vortex-small.gif
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Applications of EFD (cont’d) 

        Example of industrial application 

 

NASA's cryogenic wind tunnel simulates flight  

conditions for scale models--a critical tool in 

 designing airplanes. 

  Application in teaching 

 

Fluid dynamics laboratory 
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Full and model scale 

• Scales: model, and full-scale 

• Selection of the model scale: governed by dimensional analysis and similarity 
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Measurement systems 

• Instrumentation 
• Load cell to measure forces and moments 

• Pressure transducers 

• Pitot tubes 

• Hotwire anemometry 

• PIV, LDV 

• Data acquisition 
• Serial port devices 

• Desktop PC’s 
• Plug-in data acquisition boards 

• Data Acquisition software - Labview 

• Data analysis and data reduction 
• Data reduction equations 

• Spectral analysis 
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Instrumentation 

Load cell 

Pitot tube 

Hotwire  3D - PIV 
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Data acquisition system 

Hardware  

Software - Labview 
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Data reduction methods 
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Example of data reduction equations 

• Data reduction equations 

• Spectral analysis 
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Spectral analysis 
FFT: Converts a function from amplitude as function  

          of time to amplitude as function of frequency 

Aim: To analyze the natural 

unsteadiness of the separated flow, 

around a surface piercing 

strut, using FFT. 

Fast Fourier Transform 

Surface piercing strut Power spectral density 

of wave elevation 

Free-surface wave 

elevation contours  

FFT of wave elevation 

Time history of wave 

elevation  
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Uncertainty analysis 

 

r = r (X , X ,......, X )
 1 2 J
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Rigorous methodology for uncertainty assessment 
using statistical and engineering concepts 
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Dimensional analysis 

• Definition : Dimensional analysis is a process of formulating fluid mechanics problems in  

                          in terms of non-dimensional variables and parameters. 

• Why is it used :  

• Reduction in variables ( If F(A1, A2, … , An) = 0, then f(P1, P2, … Pr < n) = 0,  

    where, F = functional form, Ai = dimensional variables,  Pj = non-dimensional 

    parameters, m = number of important dimensions, n = number of dimensional variables, r 

    = n – m ). Thereby the number of experiments required to determine f vs. F is reduced. 

• Helps in understanding physics 

• Useful in data analysis and modeling 

• Enables scaling of different physical dimensions and fluid properties 

 Example 

Vortex shedding behind cylinder 

Drag = f(V, L, r, m, c, t, e, T, etc.) 

From dimensional analysis, 

Examples of dimensionless quantities : Reynolds number, Froude 

Number, Strouhal number, Euler number, etc. 
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Similarity and model testing 

• Definition : Flow conditions for a model test are completely similar if all relevant 

dimensionless parameters have the same corresponding values for model and prototype. 

• Pi model = Pi prototype i = 1 

• Enables extrapolation from model to full scale 

• However, complete similarity usually not possible. Therefore, often it is necessary to 

   use   Re, or   Fr, or Ma scaling, i.e., select most important Pand accommodate others 

   as best possible. 

• Types of similarity:  

• Geometric Similarity : all body dimensions in all three coordinates have the same 

    linear-scale ratios. 

• Kinematic Similarity : homologous (same relative position) particles lie at homologous 

   points at homologous times. 

• Dynamic Similarity : in addition to the requirements for kinematic similarity the model 

   and prototype forces must be in a constant ratio. 
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EFD process 

• “EFD process” is the steps to set up an experiment and 

   take data 

         Test  

Set-up 

 

Facility & 

conditions 

 

Install model 

Prepare  

measurement 

systems 

Data 

Acquisition 

Data 

Reduction  

Uncertainty 

Analysis  

Data 

Analysis  

Initialize data 

acquisition 

software 

 

Run tests & 

acquire data 

 

Store data 

 

Statistical 

analysis 

 

Estimate bias 

limits 

Compare results 

with benchmark 

data, CFD, and 

/or AFD 

 

Evaluate fluid 

physics 

 

Calibration  

Prepare 

experimental 

procedures 

 

Data reduction 

equations 

 

Estimate 

precision limits 

 

Estimate total 

uncertainty 

 

Prepare report 
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EFD – “hands on” experience 

Lab1: Measurement of density and 

kinematic viscosity of a fluid 
Lab2: Measurement of  

flow rate, friction factor and 

velocity profiles in smooth and 

rough pipes. 

Lab3: Measurement of surface pressure  

Distribution, lift and drag coefficient for an airfoil  

To
Scanivalve

Chord-wise
Pressure

Taps

Tygon
Tubing

Load Cell

Load CellL

D
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Computational Fluid Dynamics 
• CFD is use of computational methods for 

solving fluid engineering systems, including 
modeling (mathematical & Physics) and 
numerical methods (solvers, finite differences, 
and grid generations, etc.). 

• Rapid growth in CFD technology since advent 
of computer 

 
 

 

 ENIAC 1, 1946 IBM WorkStation 
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Purpose 
• The objective of CFD is to model the continuous fluids 

with Partial Differential Equations (PDEs) and 
discretize PDEs into an algebra problem, solve it, 
validate it and achieve simulation based design 
instead of “build & test”  
 

• Simulation of physical fluid phenomena that are 
difficult to be measured by experiments: scale 
simulations (full-scale ships, airplanes), hazards 
(explosions,radiations,pollution), physics (weather 
prediction, planetary boundary layer, stellar 
evolution). 
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Modeling 

• Mathematical physics problem formulation of fluid 
engineering system 

• Governing equations: Navier-Stokes equations (momentum), 
continuity equation, pressure Poisson equation, energy 
equation, ideal gas law, combustions (chemical reaction 
equation), multi-phase flows(e.g. Rayleigh equation), and 
turbulent models (RANS, LES, DES). 

• Coordinates: Cartesian, cylindrical and spherical coordinates 
result in different form of governing equations 

• Initial conditions(initial guess of the solution) and Boundary 
Conditions (no-slip wall, free-surface, zero-gradient, 
symmetry, velocity/pressure inlet/outlet) 

• Flow conditions: Geometry approximation, domain, Reynolds 
Number, and Mach Number, etc. 
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Modeling (examples) 

Free surface animation for ship in 
regular waves  

Developing flame surface (Bell et al., 2001)  

Evolution of a 2D mixing layer laden with particles of Stokes 

Number 0.3 with respect to the vortex time scale (C.Narayanan) 
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Modeling (examples, cont’d) 

3D vortex shedding behind a circular cylinder 
(Re=100,DNS,J.Dijkstra) 

 

 DES, 
Re=105, Iso-

surface of Q 

criterion (0.4) 

for turbulent 

flow around 

NACA12 with 

angle of attack 

60 degrees 

LES of a turbulent jet. Back wall shows a slice of the dissipation rate and the 

bottom wall shows a carpet plot of the mixture fraction in a slice through the jet 

centerline, Re=21,000 (D. Glaze). 
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Numerical methods 
• Finite difference methods: 

using numerical scheme to 
approximate the exact derivatives 
in the PDEs 

 

 
 

 
• Finite volume methods 
• Grid generation: conformal 

mapping, algebraic methods and 
differential equation methods 

• Grid types: structured, 
unstructured 

• Solvers: direct methods (Cramer’s 
rule, Gauss elimination, LU 
decomposition) and iterative 
methods (Jacobi, Gauss-Seidel, 
SOR)  

Slice of 3D mesh of a fighter aircraft 

o x 

y 

i i+1 i-1 

j+1 

j 

j-1 

imax 

jmax 
x

y

2

1 1

2 2

2i i iP P PP

x x

  


 
2

1 1

2 2

2j j jP P PP

y y

  


 



Compiled by Prof. S.N.Topannavar, 

Mech. Engg. Dept. HIT Nidasoshi 

CFD process 

Viscous Model 

Boundary 

Conditions 

Initial 

Conditions 

Convergent 

Limit 

Contours 

Precisions 

(single/ 

double) 

Numerical 

Scheme 

Vectors 

Streamlines Verification 

Geometry 

 

Select 

Geometry 

 

Geometry 

Parameters 

Physics Mesh Solve  Post-

Processing 

Compressible 

ON/OFF 

Flow 

properties 

Unstructured 

(automatic/ 

manual) 

Steady/ 

Unsteady 

Forces Report 
(lift/drag, shear 

stress, etc) 

XY Plot 

 

Domain Shape 

and Size 

Heat Transfer 

ON/OFF 

Structured 

(automatic/ 

manual) 

Iterations/ 

Steps 

Validation 

Reports  
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Commercial software 
• CFD software 
     1. FLUENT:  http://www.fluent.com 

       2. FLOWLAB:  http://www.flowlab.fluent.com 
       3. CFDRC:    http://www.cfdrc.com 
       4. STAR-CD: http://www.cd-adapco.com 
       5. CFX/AEA:  http://www.software.aeat.com/cfx 

• Grid Generation software 
     1. Gridgen: http://www.pointwise.com 

       2. GridPro: http://www.gridpro.com 

• Visualization software 
     1. Tecplot:    http://www.amtec.com 

       2. Fieldview: http://www.ilight.com 

http://www.fluent.com/
http://www.flowlab.fluent.com/
http://www.cfdrc.com/
http://www.cd-adapco.com/
http://www.cd-adapco.com/
http://www.cd-adapco.com/
http://www.software.aeat.com/cfx
http://www.pointwise.com/
http://www.gridpro.com/
http://www.amtec.com/
http://www.ilight.com/
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“Hands-on” experience using CFD 
Educational Interface (pipe template) 
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“Hands-on” experience using CFD 
Educational Interface (airfoil template) 
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 57:020 Fluid Mechanics  

• Lectures cover basic concepts in fluid statics, 
kinematics, and dynamics, control-volume, and 
differential-equation analysis methods. Homework 
assignments, tests, and complementary EFD/CFD 
labs 

• This class provides an introduction to all three tools: 
AFD through lecture and CFD and EFD through labs 

• ISTUE Teaching Modules 
(http://www.iihr.uiowa.edu/~istue) (next two slides) 

 

http://www.iihr.uiowa.edu/~istue
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TM Descriptions 

http://css.engineering.uiowa.edu/~fluids 

Table 1: ISTUE Teaching Modules for Introductory Level Fluid Mechanics at Iowa  

Teaching Modules TM for Fluid 

Property 

TM for Pipe Flow TM for Airfoil Flow 

Overall Purpose Hands-on student 

experience with table-top 

facility and simple MS for 

fluid property 

measurement, including 

comparison manufacturer 

values and rigorous 

implementation standard 

EFD UA 

Hands-on student experience 

with complementary EFD, CFD, 

and UA for Introductory Pipe 

Flow, including friction factor 

and mean velocity measurements 

and comparisons benchmark 

data, laminar and turbulent flow 

CFD simulations, modeling and 

verification studies, and 

validation using AFD and EFD. 

Hands-on student experience with 

complementary EFD, CFD, and UA 

for Introductory Airfoil Flow, 

including lift and drag, surface 

pressure, and mean and turbulent 

wake velocity profile measurements 

and comparisons benchmark data, 

inviscid and turbulent flow 

simulations, modeling and verification 

studies, and validation using AFD and 

EFD. 

Educational Materials FM and EFD lecture; lab 

report instructions; pre lab 

questions, and EFD 

exercise notes. 

FM, EFD and CFD lectures; lab 

report instructions; pre lab 

questions, and EFD and CFD 

exercise notes. 

FM, EFD and CFD lectures; lab 

report instructions; pre lab questions, 

and EFD and CFD exercise notes. 

ISTUE ASEE papers Paper 1   Paper2 

FM Lecture Introduction to Fluid Mechanics 

Lab Report Instructions EFD lab report Instructions     CFD lab report Instructions 

Continued in next slide… 

http://css.engineering.uiowa.edu/~fluids
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TM Descriptions, cont’d 
Teaching Modules TM for Fluid 

Property 

TM for Pipe Flow TM for Airfoil Flow 

          CFD CFD Lecture Introduction to CFD 

Exercise Notes None CFD Prelab1 

PreLab1 Questions 

CFD Lab 1  

Lab Concepts 

 

EFD Data 

CFD Prelab2 

PreLab 2 Questions 

CFD Lab2 

Lab Concepts 

 

EFD Data 

EFD EFD 

Lecture 

EFD and UA 

Exercise Notes PreLab1 Questions 

Lab1 Lecture 

Lab 1 exercise notes 

Lab 1 data 

reduction sheet 

Lab concepts 

PreLab2 Questions 

Lab2 Lecture 

Lab 2 exercise notes 

Lab2 Data reduction 

sheet (smooth & rough) 

Lab concepts 

PreLab3 Questions 

Lab3 Lecture 

Lab 3 exercise notes 

Data Reduction Sheet 

Lab concepts 

UA(EFD) Lecture EFD UA Report 

Exercise Notes Instructions UA 

UA(CFD) Lecture 

                     
Exercise Notes None 
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Navier-Stokes Equation 

 Newtonian Fluid 

 Constant Density, Viscosity 

 Cartesian, Cylindrical, spherical coordinates 
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Cartesian Coordinates gVP
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Cylindrical Coordinates gVP
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DV   2
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Centrifugal force 

Coriolis force 
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Spherical Coordinates gVP
Dt

DV   2
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Spherical Coordinates gVP
Dt

DV   2
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BSL has g here instead of g 
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Spherical Coordinates (3W) gVP
Dt

DV   2
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Continuity   0. 
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Newton’s law of viscosity 
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Newton’s law of viscosity 
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N-S Equation: Examples 

•ODE vs PDE 

•Spherical and cylindrical coordinates 

•Eqn for pipe flow (Hagen Poiseulle) 

•Flow between rotating cylinders (not solved in class) 

•Thin film flow with temp variation (not solved in class, steps were 

discussed briefly. BSL ‘worked out’ example) 
•Radial flow between circular plates (BSL 3B.10) 
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Example problems 

1. Pressure driven steady state flow of fluid 

 between two infinite parallel plates 
 inside a circular tube 

2. Steady state Couvette flow of a fluid 

 between two infinite parallel plates with top plate moving 

at a known velocity 

 between two circular plates of finite radius, with the top 

plate rotating at a known angular velocity 

 between two circular cylinders with outer cylinder 

rotating at a known angular velocity (end effects are negligible) 

 between a cone and plate (stationary plate and cone is 

rotating at a known angular velocity). Angle of cone is very small 

(almost a parallel plate with almost zero gap) 

3. Coutte Poisseuille flow 

 between two parallel plates 
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N-S Equation: Examples 

•PDE 

• Please refer to the book “Applied Mathematical Methods for Chemical 
Engineers” by  Norman W Loney (CRC press), pages 330 to 342 for 
“worked out” examples for Momentum Transfer problems involving PDE. 
• Either multi dimensional or time dependent  (however multidimensional 

and time dependent cases are not discussed in detail) 

• Steady state in Rectangular channel: pressure driven , coutte flow 

• Plan suddenly moving with constant velocity (or stress) from time t=0 

(Stokes problem) 

• Sudden pressure gradient in a cylindrical tube (unsteady flow , 

converging to Hagen-Poisseuille’s flow (Bessel functions) 
• Flow between two (non rotating) cylinders, caused by boundary 

movement (coutte flow). Unsteady vs steady (not discussed in class or 

covered in tutorial) 
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Guidelines for solving PDE in Momentum 
Transfer 

 Method: 
 If the problem involves finite scales, “separation of variable” method should 

be tried 

 If the problem involves infinite (or semi-infinite) distances, “combination of 
variables” method should be tried 
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Guidelines for solving PDE in Momentum 
Transfer 

 Solution forms, for finite scales: 
 Applying the separation of variables directly may not always give proper 

results 

 If the equation is non-homogenous 

 For time dependent problems, first try to get steady state solution (and try 

that as the ‘particular solution’ for the equation). Unsteady state solution 
may be the ‘general solution’ for the corresponding homogenous equation 

 For multi dimensional problems, first try to get solution for ‘one 
dimensional’ problem and try that as particular solution. The ‘correction 
term’ may be the ‘general solution’ for corresponding homogenous 
equation. 

 Even if the equation is homogenous, you can try the above methods of 

obtaining ‘steady state’ or ‘one dimensional’ solution. The ‘complete 
solution’ will be the sum of ‘steady state + transient’ solution OR ‘one 
dimensional solution + correction for presence of plates’ (for example). 

 Always make sure that the ‘correction term’ goes to zero in the appropriate 
limit (eg time --> infinity, or the ‘width of the channel --> infinity) Compiled by Prof. S.N.Topannavar, Mech. Engg. Dept. HIT Nidasoshi 
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Guidelines for solving PDE in Momentum 
Transfer 

 Other relevant Information: 
 Problems in Cartesian coordinates tend to give Cosine/ Sine series solution. 

In cylindrical coordinates, Bessel functions. In spherical coordinates, 

Legendre functions 

 When you attempt a ‘complete solution’ as ‘steady state+ transient’ (OR 
‘one dimensional + correction’), make sure that you also translate the 
boundary conditions correctly 

 While solving for the ‘transient’ or ‘correction’ terms, you may encounter a 
situation where you have to choose an arbitrary constant (either positive or 

negative or zero). Usually the constant will not be zero. Choose the 

constant as positive or negative, depending on the boundary conditions 

(otherwise, you will proceed only to realize that it will not work). 
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Stoke’s first problem (Please refer to 
BSL for solution) 
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N-S Equation: Example: Steady 
state flow in Rectangular channel 

• Steady state in Rectangular channel: pressure driven flow, 

incompressible fluid 

h2

h

hbb2

h2• Vy = Vz =0 

•Vx is function of y and z 

• gravity has no component in x direction 
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• Method employed: Find a particular solution satisfying above 

equation; then find a general solution satisfying following differential 

eqn 
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N-S Equation: Example; 
Rectangular channel 

• Hint: To obtain a physically meaningful format, we can take 

particular solution to resemble one dimensional flow (when b goes to 

infinity) 
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• Note: Check that the above solution is a valid particular solution 

• Before trying to get general solution, write down the boundary 

conditions for the over all solution Vx 

  0,  zhyVx

  0,  bzyVx

0
00
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N-S Equation: Examples; 
rectangular channel 

• Translate that to get the boundary conditions for Vx-general 

  0,  zhyV generalx

  particularxgeneralx VbzyV  ,

0

00
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• We know 

•Hence, from equation 5, 

• Use separation of variables method 
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N-S Equation: Examples; 
rectangular channel 

• Since LHS is only a function of y and RHS is fn of z, both must be 

equal to a constant 

•We say 

• Note: Why do we say  , why not ? What will 

happen if you try that? Or if we say           ? 

implies 0 fggf
g
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• In any case, the chosen constant leads to 
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N-S Equation: Examples; 
rectangular channel 

Hence, substituting      in     

     zz

generalx eeyCCzgyfV
 

  )cos(31

Using superposition principle 
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Again, from  6 

implies 

implies 
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N-S Equation: Examples; 
rectangular channel 

• Using Fourier cosine expansion for an even function 

we can find Kn 
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•Equating the co-efficients, we get 
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IIT-Madras, Momentum Transfer: July 2005-Dec 2005 

N-S Equation: Examples; 
rectangular channel 
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“Complete” solution for the original problem is given by 

• Note: When “b” goes  to infinity, the ‘correction’ part goes to zero 
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IIT-Madras, Momentum Transfer: July 2005-Dec 2005 

N-S Equation: Other examples 

• To determine the velocity profile in a rectangular channel, where the 

top plate is moving at a constant velocity of V-zero, under steady state 

conditions 

• Try out a solution of the form “V-parallel-plate + V-correction” 

• Use separation of variable techniques, to determine V-correction 

• What happens if you try separation of variable in the first place? 

• To determine the unsteady state solution for a flow in a cylindrical 

pipe, caused by sudden application of pressure 

• Try a solution of the form ‘Steady state + Transient’, just like the 
one we saw for flow between parallel plates 

• You will get Bessel Equations. Just like we represented 

functions in rectangular coordinates by sine and cosine functions, 

we can represent functions in cylindrical co ordinates by Bessel 

functions, because they are orthogonal. 
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Flow of Fluids in Pipes 

”The life is too short to drink bad wine.” 
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Friction Losses 

Flow through Conduits  

Incompressible Flow 
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Goals 

• Calculate frictional losses for laminar and 

turbulent flow through circular and non-circular 

pipes 

• Define the friction factor in terms of flow 

properties 

• Calculate the friction factor for laminar and 

turbulent flow 

• Define and calculate the Reynolds number for 

different flow situations 

• Derive the Hagen-Poiseuille equation 
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Introduction 

• Average velocity in a pipe 

– Recall - because of the no-slip 

condition, the velocity at the walls 

of a pipe or duct flow is zero 

– We are often interested only in 

Vavg, which we usually call just V 

(drop the subscript for 

convenience) 

– Keep in mind that the no-slip 

condition causes shear stress and 

friction along the pipe walls 

 Friction force of wall on fluid 
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Introduction 

• For pipes of constant 

diameter and 

incompressible flow 

– Vavg stays the same down 

the pipe, even if the 

velocity profile changes 

• Why? Conservation of 

Mass 
Vavg Vavg 

same 
same 

same 
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Introduction 

• For pipes with variable diameter, m is still the same 

due to conservation of mass, but V1 ≠ V2 

D2 

V2 

2 

1 

V1 

D1 

m m 
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LAMINAR AND TURBULENT 

FLOWS 
• Laminar flow: characterized by 

smooth streamlines and highly 

ordered motion. 

• Turbulent flow: characterized by 

velocity fluctuations and highly 

disordered motion. 

• The transition from laminar to 

turbulent flow does not occur 

suddenly; rather, it occurs over some 

region in which the flow fluctuates 

between laminar and turbulent flows 

before it becomes fully turbulent. 

 
Compiled by Prof. S.N.Topannavar, 

Mech. Engg. Dept. HIT Nidasoshi 



Reynolds Number 

• The transition from laminar to turbulent flow depends on 

the geometry, surface roughness, flow velocity, surface 

temperature, and type of fluid, among other things. 

• British engineer Osborne Reynolds (1842–1912) 

discovered that the flow regime depends mainly on the 

ratio of inertial forces to viscous forces in the fluid. 

• The ratio is called the Reynolds number and is expressed 

for internal flow in a circular pipe as 
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Reynolds Number 

• At large Reynolds numbers, the inertial forces are large 

relative to the viscous forces  Turbulent Flow 

• At small or moderate Reynolds numbers, the viscous 

forces are large enough to suppress these fluctuations  

Laminar Flow 

• The Reynolds number at which the flow becomes turbulent 

is called the critical Reynolds number, Recr. 

• The value of the critical Reynolds number is different for 

different geometries and flow conditions. For example, 

Recr = 2300 for internal flow in a circular pipe. 
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Reynolds Number 

• For flow through noncircular 
pipes, the Reynolds number is 
based on the hydraulic 
diameter Dh defined as 

 

 

Ac = cross-section area 

P = wetted perimeter 

• The transition from laminar to 
turbulent flow also depends on 
the degree of disturbance of the 
flow by surface roughness, pipe 
vibrations, and fluctuations in 
the flow. 

Compiled by Prof. S.N.Topannavar, 

Mech. Engg. Dept. HIT Nidasoshi 



Reynolds Number 

• Under most practical 

conditions, the flow in a 

circular pipe is 

 

 

 

• In transitional flow, the 

flow switches between 

laminar and turbulent 

randomly. 
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LAMINAR FLOW IN PIPES 

• In this section we consider the 
steady laminar flow of an 
incompressible fluid with 
constant properties in the fully 
developed region of a straight 
circular pipe. 

• In fully developed laminar flow, 
each fluid particle moves at a 
constant axial velocity along a 
streamline and no motion in the 
radial direction such that no 
acceleration (since flow is 
steady and fully-developed). 
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LAMINAR FLOW IN PIPES 

• Now consider a ring-shaped differential 

volume element of radius r, thickness 

dr, and length dx oriented coaxially 

with the pipe. A force balance on the 

volume element in the flow direction 

gives 

 

 

• Dividing by 2pdrdx and rearranging, 
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LAMINAR FLOW IN PIPES 

• Taking the limit as dr, dx → 0 gives 

 

 

• Substituting t = -m(du/dr) gives the desired equation, 

 

 

• The left side of the equation is a function of r, and the 
right side is a function of x. The equality must hold for 
any value of r and x; therefore, f (r) = g(x) = constant. 
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LAMINAR FLOW IN PIPES 

• Thus we conclude that dP/dx = 

constant and we can verify that 

 

 

• Here tw is constant since the 

viscosity and the velocity profile 

are constants in the fully developed 

region. Then we solve the u(r) eq. 

by rearranging and integrating it 

twice to give 

 

 

r2 
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LAMINAR FLOW IN PIPES 
• Since u/r = 0 at r = 0 (because of symmetry about the centerline) 

and u = 0 at r = R, then we can get u(r) 

 

 

• Therefore, the velocity profile in fully developed laminar flow in a 

pipe is parabolic. Since u is positive for any r, and thus the dP/dx 

must be negative (i.e., pressure must decrease in the flow direction 

because of viscous effects). 

• The average velocity is determined from 
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LAMINAR FLOW IN PIPES 

• The velocity profile is rewritten as 

 

 

• Thus we can get 

 

 

• Therefore, the average velocity in fully developed laminar pipe 

flow is one half of the maximum velocity. 
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Pressure Drop and Head Loss 
• The pressure drop ∆P of pipe flow is related to the power 

requirements of the fan or pump to maintain flow. Since 

dP/dx = constant, and integrating from x = x1 where the 

pressure is P1 to x = x1 + L where the pressure is P2 gives 

 

 

• The pressure drop for laminar flow can be expressed as 

 

 

 

• ∆P due to viscous effects represents an irreversible 

pressure loss, and it is called pressure loss ∆PL to 

emphasize that it is a loss. 
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Pressure Drop and Head Loss 

• In the analysis of piping systems, pressure 

losses are commonly expressed in terms of 

the equivalent fluid column height, called 

the head loss hL. 

 

(Frictional losses due to viscosity) 
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Friction Losses 

    

 

 

 

 

2

v
Sρ

F
f
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where Fk is the characteristic force, S is the friction surface 

area. This equation is general and it can be used for all flow 

processes. 

The resulting pressure (energy and head) losses are 

usually computed through the use of modified Fanning’s 
friction factors: 
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Used for a pipe: 

where Fk is the press force, 
S is the area of curved 
surface. Rearranged, we get 

a form of pressure loss: 

 

2
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Determination of Friction Factor with Dimensional 

Analysis 

The Funning’s friction factor is a function 
of Reynolds number, f = f(Re):  μ

vDρ
ν

vD
Re 

Many important chemical engineering problems cannot be solved 

completely by theoretical methods. For example, the pressure loss from 

friction losses in a long, round, straight, smooth pipe depends on all these 

variables: the length and diameter of pipe, the flow rate of the liquid, and the 

density and viscosity of the liquid.  

If any one of these variables is changed, the pressure drop also changes. 

The empirical method of obtaining an equation relating these factors to 

pressure drop requires that the effect of each separate variable be 

determine in turn by systematically varying that variable while keeping all 

others constant.  

It is possible to group many factors into a smaller number of dimensionless 

groups of variables. The groups themselves rather than separate factors 

appear in the final equation. These method is called dimensional analysis, 

which is an algebric treatment of the symbols for units considered 
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Determination of Pressure 

Difference by Dimensional Analysis 
 

Many important chemical engineering problems cannot be solved 
completely by theoretical methods. For example, the pressure loss from 
friction losses (or the pressure difference                 between two ends of a 

pipe) in a long, round, straight, smooth pipe a fluid is flowing depends on 
all these variables: pipe diameter d, pipe length  , fluid velocity v, fluid 

density   ,  and fluid viscosity    .  

p1 p2 

ρ μ

21 ppΔp 

l

l
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The relationship may be written as: 

The form of the function is unknown, but since any function can be 

expanded as a power series, the function can be regarded as the sum of 

a number of terms each consisting of products of powers of the variables. 

The simplest form of relations will be where the function consists simply of 

a single term, when: 

The requirement of dimensional consistency is that the combined term on 

the right-hand side will have the same dimensions as that the on the left, 

i.e. it must have the dimensions of pressure. 

Each of the variables in equation (2) can be expressed in terms of mass, 

length, and time. Thus, dimensionally: 

   1μρ,v,,D,fΔp l

 2μρvDconstΔp edcba
l

1

3

121

TMLμL

MLρLD

LTvTMLΔp











l

i.e.: 
e11d3c1ba21 )T(ML)(ML)(LTLLTML  
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The conditions of dimensional consistency must be met for the 

fundamentals of M, L, and T and the indices of each of these variables can 

be equated. Thus: 

In 

ec2T

e3dcba1L

ed1M






Thus three equations and five unknowns result and the equations may be 

solved in terms of any two unknowns. Solving in terms of b and e: 

 
T)inequationthe(frome2c

Minequationthefrome1d




   

eba

eba0

ee13e2ba1






Substituting in the L equation: 
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Thus, substituting into equation (2): 

     ρvρμDvDconst

μρρvvDDconst

μρvDconstΔp
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l

b=1, and k and e have to determinate by experiments.  

For laminar flow k=64 and e=1 

For turbulent flow k=0,0791 and e=0,25. 

2

vρ
D
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kΔp
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 μρ,v,D,f
L

Δp


If a theoretical equation for this problem exist, it can be written in the 

general form.  List of relevant parameters:  

If Eq.1. is a valid relationship, all terms in the function f must have the 

same dimensions as those of the left-hand side of the equation          .  

Let the phrase the dimensions of be shown by the use of brackets. 

Then any term in the function must conform to the dimensional formula 

Δp/L
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M:  1 = c+d 
 L: -2 = a+b -3c - d 

   T:    -2 = -b - d 

dd1d2d1 ηρvDconst
L

Δp 

D

ρv

η
Dvρ

const.
L

Δp 2d











2

ρv

D

1

η
Dvρ

A
L

Δp 2d













dRe

A
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2

ρv

D

L
fΔp

2



M: c=1-d 

T: b=2-d 

L: a=-2-b+3c+d=-2-2+d+3-3d+d 

 a=-1-d 
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 Fluid Flow in Pipes 

2

v
Sρ

F
f

2

k

The resulting pressure (energy and head) 
loss  

is usually computed through the use of the modified Fanning 
friction factor: 
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where Fk is the press force, S is the area of curved surface. Rearranged, we 
get a form of pressure loss: 

  

The Funning’s friction factor is a function of Reynolds number, f = f(Re):  

μ
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L 

Goals: determination of friction losses of fluids in pipes or ducts, and of 
pumping power requirement. 

Used for a pipe: 
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 Fluid Flow in Pipes 

2

v
Sρ

F
f

2

k

The resulting pressure (energy and head) 
loss  

is usually computed through the use of the modified Fanning 
friction factor: 
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where Fk is the press force, S is the area of curved surface. Rearranged, we 
get a form of pressure loss: 

  

The Funning’s friction factor is a function of Reynolds number, f = f(Re):  
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Goals: determination of friction losses of fluids in pipes or ducts, and of 
pumping power requirement. 

Used for a pipe: 
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Calculation of Pumping Power Requirement 

The friction factors were determined with dimensional analysis for a smooth 
pipe : 

The pressure loss is directly calculated from Hagen-Poiseuille’s equation for 
laminar flow: 

2
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When the fluid flows in a duct which is not circle in cross-section then we 
have to use the hydraulic diameter, Dh: 

perimeter)(wetted

area)section(cross
4

P

A
4D c

h




The pumping power requirement (pump power equation): 

. 

Where P is the power (Watt), V is the quantity of flow (m3/s), Leq is the 

equivalent pipe length of fittings, η is the efficiency of the pump. 
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6.2. Motion of Particles in  Fluids. 
Flow Around Objects  

There are many processes that involve the motion of 

particles in fluids, or flow around objects: 

• Sedimentation 

• Liquid Mixing  

• Food Industry 

• Oil Reservoirs 

Flow around objects 
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Sedimentation 

2

v
Sρ

F
f

2

k

2

ρv
SfF f

2

pdd 

The goal is the determination of drag force for the flow around an immersed 

object , and the determination of terminal velocity for sedimentation. 

In gravitational field an object reaches terminal velocity when the downward 

force of gravity (Archimedesian weight) equals the upward force of drag.  

Called the modified friction factor: 

where Fk =Fd is the drag force, S=Sp is the projected area of the particle, and 

f=fd is the drag coefficient.  

The drag force is 

Archimedesian weight in gravitational field is  

 gρρVgVρgVρFFF fpfpbgnet 

Principle of sedimentation 

v
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Terminal Velocity 

At the terminal velocity: netd FF   
2
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The drag coefficient is a function of the Re-number: 
μ
ρDv
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For laminar flow drag coefficient can be calculated directly from Stokes’ law: 
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6.3. Mixing of Liquids 
In the mixers, the fluids to be mixed are placed in containers or reactors 
and the stirrer is rotated. 

Most of the information that is available concerns the power requirements 
for the most commonly used liquid mixer – some form of paddle or 
propeller stirrer. The mixing of the liquid can be described with the 
problem of flow around immersed objects.  

The goal is the determination of the power consumption of 
agitators. 

Call the modified friction factor: 

2

v
Sρ

F
f

2

k

2

ρv
SfF f

2

pdd 

The force changes continuously along the propeller; 
therefore the differential equation of force has been written : 

dSpdS
2

vρfdF
2

stirstir 

Stirrer 
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Power Consumption of Stirrer 
Power consumption of stirrer (the power multiplied by velocity of the 
propeller) is 

dS
2

vρfvdFdP
3

stir

Integrate all of the projected surface area of 
the stirrer: 
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The circumferential velocity of the propeller or paddle in distance x from the 
axis:   xnπ2xv  wdxdS

 
wdxx
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nπ2ρfdS
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3

stir

3

stir 

Where n is the rotational frequency of the propeller, revolutions per 

second. 

Stirrer 
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Power Consumption of Stirrer 

d

w
a Let „a” be the geometrical simplex which is  
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The Power number (relating drag forces to inertial forces), Po=f*= f*(Restir) 
have to determine the function of Reynolds number with experiments.  
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Stirrer power equation:  

 Wdn(Po)ρ
η
1

P 53
η is the efficiency 

adw 

The results have been correlated in equations of form: 
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7. Flow of Fluids in Complex Systems 

 Fixed and Fluidized Beds  

7.1Fluid flow through packed bed or porous media 

 Goal: determination of pressure drop (friction 
losses) through packed bed or columns.  

7.2. Fluidization. 

 The goal is the determination of the minimum 
fluidization velocity. 

7.3. Filtration 

 The goal is the determination of differential 
equation of filtration. 
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7.1. Flow through Porous Media 

or Packed Bed 

In many engineering systems, beds or packed columns, 

fluidization, filtration, are used in various processes. 

A typical packed bed is a cylindrical column that is filled with 

suitable spheres or other non-spherical packing material. 

Fluid flows between the particles in small diameter tortuous, 

winding channels. 

pf ε)(AL)ρ(1ε(AL)ρmass

(AL)ε)(1ε(AL)volume

ε)(1εfraction

SolidsFluid





Packed bed 
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Pressure Drop for Packed Bed 

The goal is the determination of pressure drop through packed bed or columns. 

Called the modified friction factor:  
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F
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Using the modified friction factor for channels of packed bed similar to the flow 
in pipes:    
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Porosity of bed: 
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Specific area for sphere:   ε1
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.  

Interstitial velocity of fluid:  
ε

v
v 0

ε 

,  

3ffp 

Vo is the superficial velocity 
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Friction Coefficient for Packed Bed 

Definition of Reynolds number for packed bed: 

    μ
Dρv
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fp = fp (Rep), the results have been correlated in equations of form: 
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Pressure drop: 2
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The Ergun’s equation predicts the pressure drop (or flow) through porous 
media or packed columns quite well.  
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7.2. Fluidization 
When a fluid is passed upwards through a bed of particles the pressure loss 
in the fluid due to frictional resistance increases with increasing fluid flow. „A” 
point is reached when the upward drag force exerted by the fluid on the 
particles is equal to the apparent weight of particles in the bed. At this point 

the particles are lifted by the fluid, the separation of the particles increases, 
and the bed becomes fluidized.  

Δp 

The goal is the determination of the minimum fluidization velocity. 

Response to superfical velocities 
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Equation of Fluidization  
Net effect of gravity and buoyancy is: 

       ALgρρε1ALgρε1ALgρε-1F-F F fpfpbgnet 

And the pressure: 

  gρρε1L
A

FΔp fp
net 

The pressure loss as a 
consequence of friction:  
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. 

Pressure equals to the 

pressure loss: 
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Minimum Fluidization Velocity 

When the superficial velocity vo is equal to the minimum fluidization velocity 

vom we refer to the state of the bed as one of incipient fluidization:  
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Called the Ergun equation: 

The minimum fluidization velocity can be calculated by the equation: 
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7.3. Filtration 

Filtration is the separation of solids from liquids, by causing the mixture 
to flow through fine pores which are small enough to stop the solid 

particles but large enough to allow the liquid to pass.  

The particles are in the form of a fairly stable bed and the fluid has to 
pass through the tortuous channels formed by the pore spaces. In the 
tortuous channels the flow is always laminar.  

The goal is to give a function between the 
time of filtration and the volume of filtrate. 
How much time is necessary in the 
development of the given filtrate?  

Principle of filtration 

Called the pressure drop of packed 
bed:  2

03
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f
pL v

ε
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Lρ
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Called the Blake-Kozeny equation:  
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Equation of Filtration 

Combine the last two equations: 
 

002

p

3

2

LvμαμLv
dε
ε1150Δp 




Rearranged, we get the basic equation of filtration, Darcy equation: 

dt

dV

A

1

αηL
Δp

v 

where α is termed the specific resistance, V is the volume of filtrate which 
has passed in time t, A is the total cross-sectional area of the filter cake, v 

is the superficial velocity of the filtrate, L is the cake thickness, ε is the 

voidage, μ is the viscosity of the filtrate, and Δp is the applied pressure 
difference.  
From the Darcy equation: 
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The function, t = f(V), the duration that is necessary for the developing of the 
given filtrate is  
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8. SUMMARY  
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v
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Fluid Flow in Pipes (friction losses and pumping power requirement): 
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1. Flow of Fluids in Simple Systems 

Motion of Particles in Fluids (drag force and terminal velocity for sedimentation): 
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Mixing of Liquids (power consumption of agitators): 

dS
2

vρfdF
2

stirstir 
53dn(Po)ρ

η
1

P 

In simple and complex systems the resulting pressure (energy and head) 
losses are usually computed through the use of modified Fanning’s friction 
factors: 
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2. Flow of Fluids in Complex Systems 

Pressure Drop for Packed Bed: 
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Fluidization (determination of the minimum fluidization velocity): 
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Equation of Filtration (Darcy’s equation): 
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Fluid and Thermal Systems 
 

 

Pipe Flow (Major and Minor Losses) 
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Assignments 

• Reading: 

– Cengel & Turner Section 12-6 

 

• Homework: 

– 12-72, 12-79 in Cengel & Turner 
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Road Map of Lecture 11 

• Announcements 
 

• Recap from Lecture 10 
– “modified” Bernoulli’s equation 

– concept of viscosity 
 

• Major losses 
– friction factor 

– Moody diagram 

– flow chart to determine friction factor 

– non-circular ducts 
 

• Minor losses 
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Announcements 

• Lab 2 this week in Olin 110 from 7th to 9th period 
– Section 5 meets tomorrow 

– Section 6 meets on Friday 
 

• Post lab group schedule 
– 2 lab sessions over the 3 hour period 

– 1st session starts at 1:35 pm 

– 2nd session starts at 2:55 pm 
 

• Homework assigned on Monday and Tuesday will be due on 
Friday by 5 pm 
 

• Solutions to all homework sets are available at reserve library 
under Mayhew  
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Introducing the Friction Factor 

• Recall results from dimensional analysis of pipe flow 

 
• From hindsight, cast the above equation as 

 
• The friction factor (as defined) only depends 

– Reynolds number 

– relative roughness  
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How to find the friction factor? 

• Since the friction factor only depends on two independent p 
groups, it is simple to represent its variation with multiple 
contour lines on a 2D plane 
 

• Display and describe the Moody diagram 

– representation of two p groups 

– partition of different flow regimes 

– independent of surface roughness in laminar regime 

– insensitivity at high Reynolds number in turbulent regime 
 

• The whole problem of finding the pressure drop across piping 
system is reduced to finding the friction factor on the Moody 
diagram 
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Flow Chart 

Find Reynolds number 

• fluid properties (, ) 

• geometry (D) 

• flow speed (V) 

Laminar 

(Re < 2300) 

Turbulent  

(Re > 2300) 

Re

64
f

Find relative roughness 

Look up Moody diagram 


 DV

R
  

    e 
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Example on Moody Diagram 

• Example: Water flows in a commercial steel pipe 

  pipe diameter = 10 cm 

  mean speed = 10 m/s 

  pipe length = 3 m 

Find the pressure drop between the entrance and exit of the pipe. 

What will be the difference if water is replaced by oil? 
 

• What if the pipe/duct is not circular? 

– needs a representative length measure of the duct cross-section 

– notion of hydraulic diameter 
 

• example with a rectangular duct 

 
– extra factor of 4 recovers the diameter for a circular pipe 

 

perimeter

 4 c
h

A
D 
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Alternative Method 

• The Moody Diagram is a handy way to represent data on friction 
factor. 
 

• If reading off the diagram does not seem appealing, the same 
amount of data can be curve-fitted to give an explicit functional 
relationship between friction factor, Reynolds number and 
relative roughness. 
 

• The Haaland formula offers another alternative 
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Friction Factor, Viscous Stress and Head Loss  

• Central question: is there a relationship between 

– friction factor, 

– viscous stress, 

– head loss? 
 

• Consider the following pipe flow problem: 

 
– Perform a mechanical energy balance for the above system 

– Perform a momentum balance for the above system 

– What can you conclude from the above analyses? 

– If the pipe is tilted at an angle of 30 deg with the horizontal, what will 
be the difference in your analysis? 

 

1 2 
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A cylinder is falling through a fluid at Velocity V What are the Forces Acting?  

Weight  mgFW 

Buoyancy   VolFB 

V 

Would you expect the force 

Acting to be a function of  

Velocity? 

There is a pressure  

Difference between back and  

front –leads to an additional 

 force called DRAG  

Net Force:  DWB FFFF 
Drag Force—function of Velocity and “projected Area” 

PDD A
V

CF
2

2



A Common Form 

V
DC A dimensionless Coef,           free stream velocity— 

                                                         vel. relative to object 

                                                        In same direction as Drag 

 

Area projected in flow direction (a circle here) 
PA
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So Drag is a result of fluid moving over a body—Are there other  

forces that can arise in this way 

Weight  mgFW 

Buoyancy   VolFB 
Flow over a thin plate—Drag not important 

V 

Small projected area 

 But fluid will impose a shear stress 

—recall pipe friction— 

on  Surface of plate  

Resulting in a Surface Resistance Force in direction of free stream velocity 

SfS A
V

CF
2

2

 fC Dimensionless coef.  sA Surface area  

(parallel  to flow) 

SWB FFFF Net Force: 
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Also Lift: Consider rotating Cylinder in Free stream Flow V 

V 

High Vel, Low p 

Low Vel, Hight p 

Why? 

Pressure Difference will lead to a Force— The Lift Force —NORMAL to free stream 

Direction—Engineers  calculate this as 

PlanLL A
V

CF
2

2

 LC Dimensionless coef.  planA plan area  

(looking down on 

                          flow) 

The Magnus Effect 
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So—there are three forces that can occur due to flow over a body 

PDD A
V

CF
2

2

 SfS A
V

CF
2

2


PlanLL A

V
CF

2

2



 In flow direction                     -------          normal to flow 

Trick is finding C 

Drag Surface Resistance Lift 

For given Bodies 

Look up in tables  

Correlated to  

Account for Drag 

and shear resistance 

see next slide and later notes 

Can be calculated for plate 

See section 2 

 

Also in tables 
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Relation between Stress Distribution and Flow Forces (See Fig 11.2) 

Free-Stream  

      Velocity V  

will give rise 

to pressure  

acting normal to 

body and shear  

acting along body 

 

Drag force in line with flow 

 

 
surfacesurface

D dAdApF  sincos

form drag                 friction drag   

PDD A
V

CF
2

2



One value for body and flow condition 

Lift force normal to flow 

 

 
surfacesurface

L dAdApF  cossin

form drag                 friction drag   

PlanLL A
V

CF
2

2
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Section 2: Boundary Layers—Calculating Surface Resistance 
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Drag on a surface – 2 types 

• Pressure stress 

 

 

 

• Shear stress / skin friction drag 

 

 

 

Chapter 9 
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Boundary layer – velocity profile 

• Far from the surface, the fluid 

velocity is unaffected.   

• In a thin region near the surface, 

the velocity is reduced 

 

• Which is the “most correct” 
velocity profile? 

…this is a good 
approximation near the 

“front” of the plate 
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Boundary layer growth 

• The free stream velocity is u0, but next to the plate, the flow is 
reduced by drag 

• Farther along the plate, the affect of the drag is felt by more of the 
stream, and because of this the boundary layer grows 

• Fluid friction on the surface is associated with velocity reduction 
throughout the boundary layer 

0y

o
dy

du




Compiled by Prof. S.N.Topannavar, Mech. 

Engg. Dept. HIT Nidasoshi 



Local stress & total force, skin friction 

  

 

• Not immediately straightforward (unlike 
approximations we made with thin films):  

• du/dy decreases with x & y 

 

• We need to find                  then   

 

• And there is more trouble… 
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Breadth  
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Boundary layer transition to turbulence 

 

At a certain distance along a plate, viscous forces become to small relative to 
inertial forces to damp fluctuations 
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Picture of boundary  layer from text 
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Boundary layer transition 
• How can we solve problems for such a complex system? 

 

 

 

 

 

 

• We can think about key parameters and possible dimensionless 
numbers 

• Important parameters: 

– Viscosity μ, density ρ 

– Distance, x 

– Velocity uO 

• Reynolds number combines these into one number 
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Re OO
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B L thickness in laminar region 
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Self-similar shape 
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Boundary layer questions 
• How can we solve problems for such a complex system? 

 

 

 

 

 

 

• We can think about key parameters and possible dimensionless 
numbers 

• What about stress? 
 

• We talk about (local) stress and (total) force on a boundary in terms 
of local cf and average CF stress coefficients: 
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Average shear-stress coefficient 

On Plate of Length L 

 

figure_09_12 

 

 

Ignore this part just for a moment 

Note New Reynolds No 
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Example 9.6 from text 
• A plate is 3 m long x 1 m wide 

• Air at 20°C and atmospheric pressure flows past this plate with a 
velocity of 30 m/s  

• A boundary layer over a smooth, flat plate is laminar at first and 
then becomes turbulent.  The turbulent forms of drag, etc., are 
reasonable above Re = 5 x 105.   

• What is the average resistance coefficient Cf for the plate?  

• Also, what will be the total shearing resistance force of one side 
of the plate? 

• What will be the resistance due to the turbulent part and the 
laminar part of the boundary layer? 
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smVAsmmkgair /30331/1051.1/2.1
252  

SfS A
V

CF
2

2



Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

Here it is ! 
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smVAsmmkgair /30331/1051.1/2.1
252  

Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

6

5
1096.5

1051.1

330





 
VL

ReL

1st calculate plat Reynolds number 

Mixed laminar-Turbulent 

00294.0
1520

)06.0(ln

523.0
2


eleL

f
RR

C
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smVAsmmkgair /30331/1051.1/2.1
252  

Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

6

5
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1051.1
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smVAsmmkgair /30331/1051.1/2.1
252  

Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

6

5
1096.5

1051.1

330
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Now Calculate Transition point mVx
Vx

t
t 252.0/000,500000,500  
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smVAsmmkgair /30331/1051.1/2.1
252  

Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

6

5
1096.5

1051.1

330
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Now Calculate Transition point mVx
Vx

t
t 252.0/000,500000,500  


So laminar layer Coefficient  is  C

f
=1.33 / Re

tr
= 0.00188
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smVAsmmkgair /30331/1051.1/2.1
252  

Find         , shearing resistance on one side of plate, and resistance due to laminar flow   fC

6

5
1096.5

1051.1

330
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Now Calculate Transition point mVx
Vx

t
t 252.0/000,500000,500  


So laminar layer Coefficient  is  C

f
=1.33 / Re

tr
= 0.00188

And laminar force is  F
lam

=C
f
r

V
2

2
A
tr

= 0.00188 ´ 1.2 ´

(30)
2

2
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Average shear-stress coefficient 
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Laminar Turbulent Induced 
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BACK TO DRAG ON SUBMERGED 

OBJECTS… 
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Drag on a surface – 2 types 
• Pressure stress / form drag 

 

 

 

• Shear stress / skin friction drag 

 

 

 

• A boundary layer forms due to skin friction 

• For shapes more complex than a plane, these result 

in total drag forces which are usually hard to solve 
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Shortcuts for total drag 

• For less precise design and/or well-known / 

well-studied (simple) objects, we rely on charts 

for an average coefficient of drag  

 

 

 

2AVCF 2

DD 

Frontal Area 

+ shear 
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Drag coefficients for  

 

2d  or infinitely long objects               for 3d bodies                    

fig
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or
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P 11.18, 9th edition 

Compute the overturning 

moment exerted by a 35 m/s 

wind on a smokestack that has a 

diameter of 2.5 m and a height 

of 75 m.  Assume that the air 

temperature is 20° C and that 

the atmospheric pressure is 99 

kPa absolute. 
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V= 35m/s 

2.5 m 

75m 

smmkg /1051.1,/17.1
253  

Object is ~an infinite cylinder 

6
1079.5Re 


Vd
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V= 35m/s 

d=2.5 m 

75m 

smmkg /1051.1,/17.1
253  

Object is ~an infinite cylinder 

6
1079.5Re 


Vd

62.0 DC
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V= 35m/s 

d=2.5 m 

75m 

smmkg /1051.1,/17.1
253  

Object is ~an infinite cylinder 

6
1079.5Re 


Vd

62.0 DC

kNAVCF DD 31.83)755.2(
2

)35(
17.162.02

2
2  

Then turning moment 

mMNF
h

M D .12.331.835.37
2
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Lift 
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Total lift 

• Similar to our calculations of total drag, we rely on 

charts for an average coefficient of lift  

 

 

 

• A is a reference area,  usually “planform area”  

2
2
AVCF LL 
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Example 11.6 Lift on a Rotating Sphere 
A ping-pong ball is moving at 10 m/s  in air and is spinning CW at 6000 rpm 
as shown.  The ball diameter = 3 cm.  Calculate the lift and drag forces and 
indicate the direction of each.  Assume standard atmospheric pressure and 
a temperature of 20 C. 

 

How does the answer change if the ball is spinning CCW? 

Rotation parameter 

V

r

6000 

0.03 

3
/2.1 mkg
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Find Lift and Drag Forces on Ping-Pong 

Rotation parameter 
V

r

6000 

0.03 

3
/2.1 mkg

Rotation rate 

sradrevradsrev /628)/(2)/(100  

Rotation  

parameter 
942.

10

015.0628





V

r

64.0,26.0  DL CC NAVCF LL

22
101.12

 

NAVCF DD

22
1071.22
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So—there are three forces that can occur due to flow over a body 

PDD A
V

CF
2

2

 SfS A
V

CF
2

2


PlanLL A

V
CF

2

2



 In flow direction                     -------          normal to flow 

Trick is finding C 

Drag Surface Resistance Lift 

For given Bodies 

Look up in tables  ch 11 

Correlated to  

Account for Drag 

and shear resistance 

see next slide and later notes 

Can be calculated for plate 

See chapter 9 

 

Also in tables ch 11 
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