

Department of Electronics & Communication Engg.

Course : Network Security

Sem.: 8th (2017-18 EVEN)

Course Coordinator: Prof. Nyamatulla M Patel

CRYPTOGRAPHY AND NETWORK SECURITY

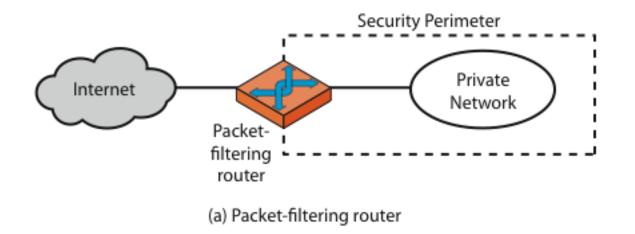
Unit-08 Firewalls

Firewalls Introduction

- everyone want to be on the Internet
- and to interconnect networks
- has persistent security concerns
 - can't easily secure a system
- typically use a Firewall
- to provide **perimeter defence**
- as part of comprehensive security strategy

What is a Firewall?

- a choke point of control and monitoring
- interconnects networks with differing trust
- imposes restrictions on network services
 only authorized traffic is allowed
- auditing and controlling access
 - can implement alarms for abnormal behavior
- provide NAT & usage monitoring
- implement VPNs using IPSec


Firewall Limitations

- cannot protect from attacks bypassing it
 - E.g., sneaker net, utility modems, trusted organisations, trusted services (eg SSL/SSH)
- cannot protect against internal threats
 eg disgruntled or colluding employees
- cannot protect against transfer of all virus infected programs or files
 - because of huge range of O/S & file types

Firewalls – Packet Filters

- simplest, fastest firewall component
- foundation of any firewall system
- examine each IP packet (no context) and permit or deny according to rules
- hence restrict access to services (ports)
- possible default policies
 - that not expressly permitted is prohibited
 - that not expressly prohibited is permitted

Firewalls – Packet Filters

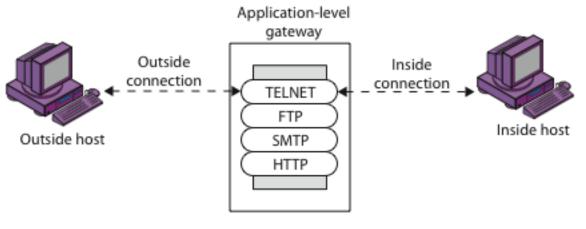
Firewalls – Packet Filters

Table 20.1 Packet-Filtering Examples

	action	ourhost	port	theirhost	port		comment
Α	block	*	*	SPIGOT	*	we don't trust these people	
	allow	OUR-GW	25	*	*	connection	to our SMTP port
В	action	ourhost	port	theirhost	port	comment	
	block	*	*	*	*	default	
с	action	ourhost	port	theirhost	port	comment	
	allow	*	*	*	25	connection to their SMTP port	
D	action	src	port	dest	port	flags	comment
	allow	{our hosts}	*	*	25		our packets to their SMTP port
	allow	*	25	*	*	ACK	their replies
E	action	src	port	dest	port	flags	comment
	allow	{our hosts}	*	*	*		our outgoing calls
	allow	*	*	*	*	ACK	replies to our calls
	allow	*	*	*	>1024		traffic to nonservers

Attacks on Packet Filters

- IP address spoofing
 - fake source address
 - authenticate
- source routing attacks
 - attacker sets a route other than default
 - block source routed packets
- tiny fragment attacks
 - split header info over several tiny packets
 - either discard or reassemble before check

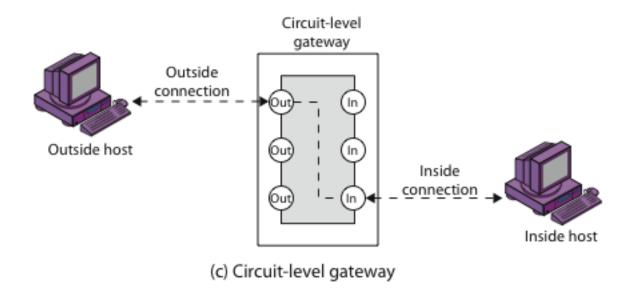

Firewalls – Stateful Packet Filters

- traditional packet filters do not examine higher layer context
 - i.e., matching return packets with outgoing flow
- stateful packet filters address this need
- they examine each IP packet in context
 - keep track of client-server sessions
 - check each packet validly belongs to one
- they are better able to detect bogus packets out of context

Firewalls - Application Level Gateway (or Proxy)

- have application specific gateway / proxy
- has full access to protocol
 - user requests service from proxy
 - proxy validates request as legal
 - then actions request and returns result to user
 - can log / audit traffic at application level
- need separate proxies for each service
 - some services naturally support proxying
 - others are more problematic

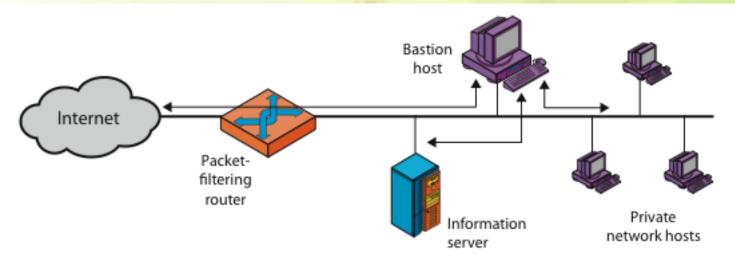
Firewalls - Application Level Gateway (or Proxy)



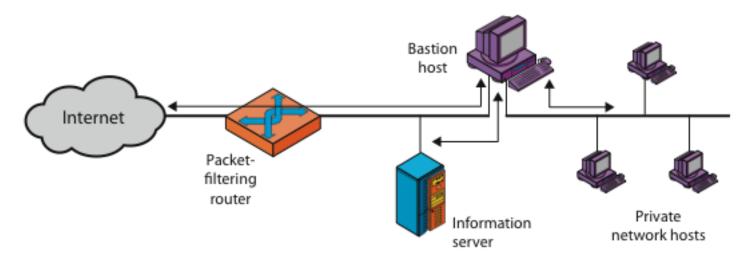
(b) Application-level gateway

Firewalls - Circuit Level Gateway

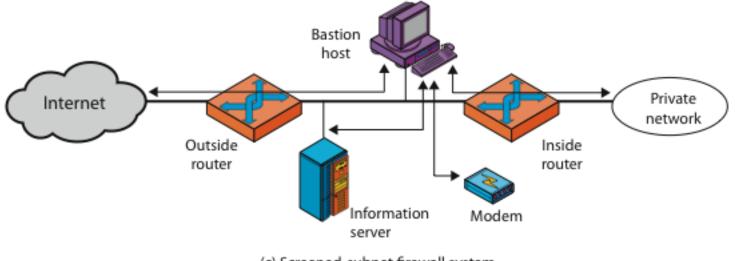
- relays two TCP connections
- imposes security by limiting what such connections are allowed
- once created usually relays traffic without examining contents
- typically used when trust internal users by allowing general outbound connections


Firewalls - Circuit Level Gateway

Bastion Host


- highly secure host system
- runs circuit / application level gateways
- or provides externally accessible services
- potentially exposed to "hostile" elements
- hence is secured to withstand this
 - hardened O/S, essential services, extra auth
 - proxies small, secure, independent, nonprivileged

Firewall Configurations


(a) Screened host firewall system (single-homed bastion host)

Firewall Configurations

(b) Screened host firewall system (dual-homed bastion host)

Firewall Configurations

(c) Screened-subnet firewall system

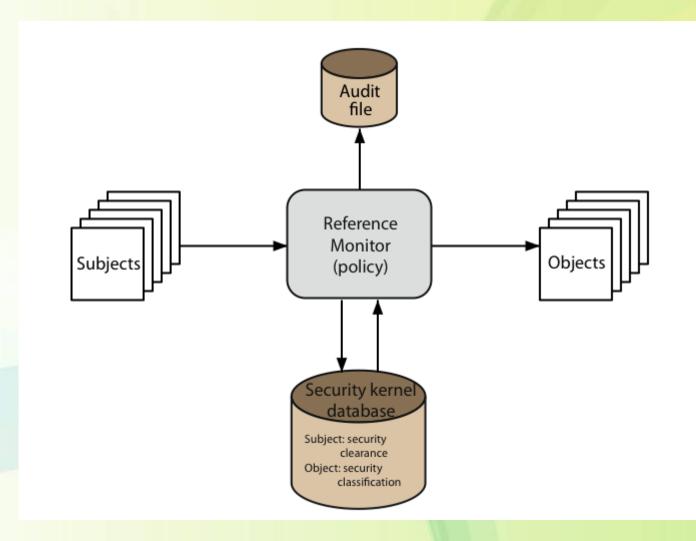
Access Control

- determines what resources users can access
- general model is that of access matrix with
 - subject active entity (user, process)
 - object passive entity (file or resource)
 - access right way object can be accessed
- can decompose by
 - columns as access control lists
 - rows as capability tickets

Access Control Matrix

	Program1	 SegmentA	SegmentB
Process1	Read Execute	Read Write	
Process2			Read

(a) Access matrix


Trusted Computer Systems

- information security is increasingly important
- have varying degrees of sensitivity of information
 military info classifications: confidential, secret, etc
- subjects (people or programs) have varying rights of access to objects (information)
- known as multilevel security
 - subjects have maximum & current security level
 - objects have a fixed security level classification
- want to consider ways of increasing confidence in systems to enforce these rights

Bell LaPadula (BLP) Model

- has two key policies:
- no read up (simple security property)
 - a subject can only read an object if the current security level of the subject dominates (>=) the classification of the object
- no write down (*-property)
 - a subject can only append/write to an object if the current security level of the subject is dominated by (<=) the classification of the object

Reference Monitor

Summary

- have considered:
 - firewalls
 - types of firewalls
 - configurations
 - access control
 - trusted systems

