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Unit-02

Classical Encryption Techniques

Cryptography and Network 
Security



Symmetric Encryption

• or conventional / private-key / single-key

• sender and recipient share a common key

• all classical encryption algorithms are 
private-key

• was only type prior to invention of public-
key in 1970’s

• and by far most widely used



Some Basic Terminology

• plaintext - original message 
• ciphertext - coded message 
• cipher - algorithm for transforming plaintext to ciphertext 
• key - info used in cipher known only to sender/receiver 
• encipher (encrypt) - converting plaintext to ciphertext 
• decipher (decrypt) - recovering ciphertext from plaintext
• cryptography - study of encryption principles/methods
• cryptanalysis (codebreaking) - study of principles/ 

methods of deciphering ciphertext without knowing key
• cryptology - field of both cryptography and cryptanalysis



Symmetric Cipher Model



Requirements

• two requirements for secure use of 
symmetric encryption:
– a strong encryption algorithm

– a secret key known only to sender / receiver

• mathematically have:
Y = EK(X)

X = DK(Y)

• assume encryption algorithm is known

• implies a secure channel to distribute key



Cryptography

• characterize cryptographic system by:

– type of encryption operations used

• substitution / transposition / product

– number of keys used

• single-key or private / two-key or public

– way in which plaintext is processed

• block / stream



Cryptanalysis

• objective to recover key not just message

• general approaches:

– cryptanalytic attack

– brute-force attack



Cryptanalytic Attacks
• ciphertext only

– only knows algorithm & ciphertext

• known plaintext
– know/suspect plaintext & ciphertext

• chosen plaintext
– select plaintext and obtain ciphertext

• chosen ciphertext
– select ciphertext and obtain plaintext

• chosen text
– select plaintext or ciphertext to en/decrypt



More Definitions

• unconditional security

– no matter how much computer power or time is 
available, the cipher cannot be broken since the 
ciphertext provides insufficient information to 
uniquely determine the corresponding plaintext 

• computational security

– given limited computing resources (eg time 
needed for calculations is greater than age of 
universe), the cipher cannot be broken 



Brute Force Search

• always possible to simply try every key 

• most basic attack, proportional to key size 

• assume either know / recognise plaintext

Key Size 

(bits)

Number of 

Alternative Keys

Time required at 1 

decryption/µs

Time required at 

106 decryptions/µs

32 232 = 4.3 109 231 µs = 35.8 

minutes

2.15 milliseconds

56 256 = 7.2 1016 255 µs = 1142 years 10.01 hours

128 2128 = 3.4 1038 2127 µs = 5.4 1024

years

5.4 1018 years

168 2168 = 3.7 1050 2167 µs = 5.9 1036

years

5.9 1030 years

26 

characters 

(permutation

)

26! = 4 1026 2 1026 µs = 

6.4 1012 years

6.4 106 years



Classical Substitution Ciphers

• where letters of plaintext are replaced by 
other letters or by numbers or symbols

• or if plaintext is viewed as a sequence of 
bits, then substitution involves replacing 
plaintext bit patterns with ciphertext bit 
patterns



Caesar Cipher

• earliest known substitution cipher

• by Julius Caesar 

• first attested use in military affairs

• replaces each letter by 3rd letter on

• example:
meet me after the toga party

PHHW PH DIWHU WKH WRJD SDUWB



Caesar Cipher

• can define transformation as:
a b c d e f g h i j k l m n o p q r s t u v w x y z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

• mathematically give each letter a number
a b c d e f g h i j  k  l  m  n  o  p  q  r  s  t  u  v  w  x  y  z

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

• then have Caesar cipher as:

c = E(p) = (p + k) mod (26)

p = D(c) = (c – k) mod (26)



Cryptanalysis of Caesar Cipher 

• only have 26 possible ciphers 

– A maps to A,B,..Z 

• could simply try each in turn 

• a brute force search

• given ciphertext, just try all shifts of letters

• do need to recognize when have plaintext

• eg. break ciphertext "GCUA VQ DTGCM"



Monoalphabetic Cipher

• rather than just shifting the alphabet 

• could shuffle (jumble) the letters arbitrarily 

• each plaintext letter maps to a different random 
ciphertext letter 

• hence key is 26 letters long 

Plain:  abcdefghijklmnopqrstuvwxyz

Cipher: DKVQFIBJWPESCXHTMYAUOLRGZN

Plaintext:  ifwewishtoreplaceletters

Ciphertext: WIRFRWAJUHYFTSDVFSFUUFYA 



Monoalphabetic Cipher Security

• now have a total of 26! = 4 x 1026 keys 

• with so many keys, might think is secure 

• but would be !!!WRONG!!!

• problem is language characteristics



Language Redundancy and 
Cryptanalysis

• human languages are redundant

• eg "th lrd s m shphrd shll nt wnt" 

• letters are not equally commonly used 

• in English E is by far the most common letter 

– followed by T,R,N,I,O,A,S 

• other letters like Z,J,K,Q,X are fairly rare 

• have tables of single, double & triple letter 
frequencies for various languages



English Letter Frequencies



Use in Cryptanalysis
• key concept - monoalphabetic substitution ciphers 

do not change relative letter frequencies 

• discovered by Arabian scientists in 9th century

• calculate letter frequencies for ciphertext

• compare counts/plots against known values 

• if caesar cipher look for common peaks/troughs 

– peaks at: A-E-I triple, NO pair, RST triple

– troughs at: JK, X-Z

• for monoalphabetic must identify each letter

– tables of common double/triple letters help



Polyalphabetic Ciphers

• polyalphabetic substitution ciphers

• improve security using multiple cipher alphabets 

• make cryptanalysis harder with more alphabets to 
guess and flatter frequency distribution 

• use a key to select which alphabet is used for each 
letter of the message 

• use each alphabet in turn 

• repeat from start after end of key is reached 



Vigenère Cipher

• simplest polyalphabetic substitution cipher

• effectively multiple caesar ciphers 

• key is multiple letters long K = k1 k2 ... kd

• ith letter specifies ith alphabet to use 

• use each alphabet in turn 

• repeat from start after d letters in message

• decryption simply works in reverse 



Example of Vigenère Cipher

• write the plaintext out 

• write the keyword repeated above it

• use each key letter as a caesar cipher key 

• encrypt the corresponding plaintext letter

• eg using keyword deceptive

key:       deceptivedeceptivedeceptive

plaintext: wearediscoveredsaveyourself

ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ



Security of Vigenère Ciphers

• have multiple ciphertext letters for each 
plaintext letter

• hence letter frequencies are obscured

• but not totally lost

• start with letter frequencies

– see if look monoalphabetic or not

• if not, then need to determine number of 
alphabets, since then can attach each



One-Time Pad

• if a truly random key as long as the message is 
used, the cipher will be secure 

• called a One-Time pad

• is unbreakable since ciphertext bears no statistical 
relationship to the plaintext

• since for any plaintext & any ciphertext there 
exists a key mapping one to other

• can only use the key once though

• problems in generation & safe distribution of key



Transposition Ciphers

• now consider classical transposition or 
permutation ciphers 

• these hide the message by rearranging the 
letter order 

• without altering the actual letters used

• can recognise these since have the same 
frequency distribution as the original text 



Rail Fence cipher

• write message letters out diagonally over a 
number of rows 

• then read off cipher row by row

• eg. write message out as:
m e m a t r h t g p r y

e t e f e t e o a a t

• giving ciphertext
MEMATRHTGPRYETEFETEOAAT



Row Transposition Ciphers

• a more complex transposition
• write letters of message out in rows over a 

specified number of columns
• then reorder the columns according to some 

key before reading off the rows
Key:       3 4 2 1 5 6 7
Plaintext: a t t a c k p

o s t p o n e
d u n t i l t
w o a m x y z

Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ



Product Ciphers

• ciphers using substitutions or transpositions are 
not secure because of language characteristics

• hence consider using several ciphers in succession 
to make harder, but: 
– two substitutions make a more complex substitution 

– two transpositions make more complex transposition 

– but a substitution followed by a transposition makes a 
new much harder cipher 

• this is bridge from classical to modern ciphers



Rotor Machines

• before modern ciphers, rotor machines were most 
common complex ciphers in use

• widely used in WW2
– German Enigma, Allied Hagelin, Japanese Purple

• implemented a very complex, varying substitution 
cipher

• used a series of cylinders, each giving one 
substitution, which rotated and changed after each 
letter was encrypted

• with 3 cylinders have 263=17576 alphabets



Hagelin Rotor Machine



Summary

• have considered:

– classical cipher techniques and terminology

– monoalphabetic substitution ciphers

– cryptanalysis using letter frequencies

– polyalphabetic ciphers

– transposition ciphers

– product ciphers and rotor machines



Cryptography and Network 
Security

Unit-02 (Continued…)

Block Ciphers and the Data Encryption 
Standard 



Block Ciphers and the Data 
Encryption Standard

All the afternoon Mungo had been working on Stern's 
code, principally with the aid of the latest messages 
which he had copied down at the Nevin Square 
drop. Stern was very confident. He must be well 
aware London Central knew about that drop. It was 
obvious that they didn't care how often Mungo read 
their messages, so confident were they in the 
impenetrability of the code.
—Talking to Strange Men, Ruth Rendell



Modern Block Ciphers

• will now look at modern block ciphers

• one of the most widely used types of 
cryptographic algorithms 

• provide secrecy and/or authentication 
services

• in particular will introduce DES (Data 
Encryption Standard)



Block vs Stream Ciphers

• block ciphers process messages in into 
blocks, each of which is then en/decrypted 

• like a substitution on very big characters

– 64-bits or more 

• stream ciphers process messages a bit or 
byte at a time when en/decrypting

• many current ciphers are block ciphers

• hence are focus of course



Block Cipher Principles

• most symmetric block ciphers are based on a 
Feistel Cipher Structure

• needed since must be able to decrypt ciphertext 
to recover messages efficiently

• block ciphers look like an extremely large 
substitution 

• would need table of 264 entries for a 64-bit block 

• instead create from smaller building blocks 

• using idea of a product cipher 



Claude Shannon and Substitution-
Permutation Ciphers

• in 1949 Claude Shannon introduced idea of 
substitution-permutation (S-P) networks

– modern substitution-transposition product cipher 

• these form the basis of modern block ciphers 

• S-P networks are based on the two primitive 
cryptographic operations we have seen before: 

– substitution (S-box)

– permutation (P-box)

• provide confusion and diffusion of message 



Confusion and Diffusion

• cipher needs to completely obscure 
statistical properties of original message

• a one-time pad does this

• more practically Shannon suggested 
combining elements to obtain:

• diffusion – dissipates statistical structure of 
plaintext over bulk of ciphertext

• confusion – makes relationship between 
ciphertext and key as complex as possible



Feistel Cipher Structure

• Horst Feistel devised the feistel cipher
– based on concept of invertible product cipher

• partitions input block into two halves
– process through multiple rounds which

– perform a substitution on left data half

– based on round function of right half & subkey

– then have permutation swapping halves

• implements Shannon’s substitution-
permutation network concept



Feistel Cipher Structure



Feistel Cipher Design Principles

• block size
– increasing size improves security, but slows cipher 

• key size
– increasing size improves security, makes exhaustive key searching 

harder, but may slow cipher 

• number of rounds
– increasing number improves security, but slows cipher 

• subkey generation
– greater complexity can make analysis harder, but slows cipher 

• round function
– greater complexity can make analysis harder, but slows cipher 

• fast software en/decryption & ease of analysis
– are more recent concerns for practical use and testing



Feistel Cipher Decryption



Data Encryption Standard (DES)

• most widely used block cipher in world 

• adopted in 1977 by NBS (now NIST)

– as FIPS PUB 46

• encrypts 64-bit data using 56-bit key

• has widespread use

• has been considerable controversy over its 
security



DES History

• IBM developed Lucifer cipher
– by team led by Feistel

– used 64-bit data blocks with 128-bit key

• then redeveloped as a commercial cipher 
with input from NSA and others

• in 1973 NBS issued request for proposals 
for a national cipher standard

• IBM submitted their revised Lucifer which 
was eventually accepted as the DES



DES Design Controversy

• although DES standard is public

• was considerable controversy over design 

– in choice of 56-bit key (vs Lucifer 128-bit)

– and because design criteria were classified 

• subsequent events and public analysis show 
in fact design was appropriate

• DES has become widely used, esp in 
financial applications



DES Encryption



Initial Permutation IP

• first step of the data computation 

• IP reorders the input data bits 

• even bits to LH half, odd bits to RH half 

• quite regular in structure (easy in h/w)

• see text Table 3.2

• example:
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)



DES Round Structure

• uses two 32-bit L & R halves

• as for any Feistel cipher can describe as:
Li = Ri–1

Ri = Li–1 xor F(Ri–1, Ki)

• takes 32-bit R half and 48-bit subkey and:
– expands R to 48-bits using perm E

– adds to subkey

– passes through 8 S-boxes to get 32-bit result

– finally permutes this using 32-bit perm P



DES Round Structure



Substitution Boxes S

• have eight S-boxes which map 6 to 4 bits 

• each S-box is actually 4 little 4 bit boxes 
– outer bits 1 & 6 (row bits) select one rows 

– inner bits 2-5 (col bits) are substituted 

– result is 8 lots of 4 bits, or 32 bits

• row selection depends on both data & key
– feature known as autoclaving (autokeying)

• example:
S(18 09 12 3d 11 17 38 39) = 5fd25e03



DES Key Schedule

• forms subkeys used in each round

• consists of:

– initial permutation of the key (PC1) which 
selects 56-bits in two 28-bit halves 

– 16 stages consisting of: 

• selecting 24-bits from each half 

• permuting them by PC2 for use in function f, 

• rotating each half separately either 1 or 2 places 
depending on the key rotation schedule K



DES Decryption

• decrypt must unwind steps of data computation 

• with Feistel design, do encryption steps again 

• using subkeys in reverse order (SK16 … SK1)

• note that IP undoes final FP step of encryption 

• 1st round with SK16 undoes 16th encrypt round

• ….

• 16th round with SK1 undoes 1st encrypt round 

• then final FP undoes initial encryption IP 

• thus recovering original data value 



Avalanche Effect 

• key desirable property of encryption alg

• where a change of one input or key bit 
results in changing approx half output bits

• making attempts to “home-in” by guessing 
keys impossible

• DES exhibits strong avalanche



Strength of DES – Key Size

• 56-bit keys have 256 = 7.2 x 1016 values

• brute force search looks hard

• recent advances have shown is possible

– in 1997 on Internet in a few months 

– in 1998 on dedicated h/w (EFF) in a few days 

– in 1999 above combined in 22hrs!

• still must be able to recognize plaintext

• now considering alternatives to DES



Strength of DES – Timing Attacks

• attacks actual implementation of cipher

• use knowledge of consequences of 
implementation to derive knowledge of 
some/all subkey bits

• specifically use fact that calculations can 
take varying times depending on the value 
of the inputs to it

• particularly problematic on smartcards 



Strength of DES – Analytic Attacks

• now have several analytic attacks on DES

• these utilise some deep structure of the cipher 
– by gathering information about encryptions 

– can eventually recover some/all of the sub-key bits 

– if necessary then exhaustively search for the rest 

• generally these are statistical attacks

• include
– differential cryptanalysis 

– linear cryptanalysis 

– related key attacks 



Differential Cryptanalysis

• one of the most significant recent (public) 
advances in cryptanalysis 

• known by NSA in 70's cf DES design

• Murphy, Biham & Shamir published 1990

• powerful method to analyse block ciphers 

• used to analyse most current block ciphers 
with varying degrees of success

• DES reasonably resistant to it, cf Lucifer



Differential Cryptanalysis

• a statistical attack against Feistel ciphers 

• uses cipher structure not previously used 

• design of S-P networks has output of 
function f influenced by both input & key

• hence cannot trace values back through 
cipher without knowing values of the key 

• Differential Cryptanalysis compares two 
related pairs of encryptions



Differential Cryptanalysis Compares 
Pairs of Encryptions 

• with a known difference in the input 

• searching for a known difference in output

• when same subkeys are used



Differential Cryptanalysis

• have some input difference giving some 
output difference with probability p

• if find instances of some higher probability 
input / output difference pairs occurring

• can infer subkey that was used in round

• then must iterate process over many rounds 
(with decreasing probabilities)



Differential Cryptanalysis



Differential Cryptanalysis

• perform attack by repeatedly encrypting plaintext pairs 
with known input XOR until obtain desired output XOR 

• when found
– if intermediate rounds match required XOR have a right pair

– if not then have a wrong pair, relative ratio is S/N for attack 

• can then deduce keys values for the rounds
– right pairs suggest same key bits

– wrong pairs give random values 

• for large numbers of rounds, probability is so low that 
more pairs are required than exist with 64-bit inputs 

• Biham and Shamir have shown how a 13-round iterated 
characteristic can break the full 16-round DES 



Linear Cryptanalysis

• another recent development 

• also a statistical method 

• must be iterated over rounds, with 
decreasing probabilities

• developed by Matsui et al in early 90's

• based on finding linear approximations

• can attack DES with 247 known plaintexts, 
still in practise infeasible



Linear Cryptanalysis

• find linear approximations with prob p != ½
P[i1,i2,...,ia](+)C[j1,j2,...,jb] = K[k1,k2,...,kc]

where ia,jb,kc are bit locations in P,C,K

• gives linear equation for key bits

• get one key bit using max likelihood alg

• using a large number of trial encryptions 

• effectiveness given by: |p–½|



Block Cipher Design Principles

• basic principles still like Feistel in 1970’s

• number of rounds

– more is better, exhaustive search best attack

• function f:

– provides “confusion”, is nonlinear, avalanche

• key schedule

– complex subkey creation, key avalanche



Modes of Operation

• block ciphers encrypt fixed size blocks

• eg. DES encrypts 64-bit blocks, with 56-bit key 

• need way to use in practise, given usually have 
arbitrary amount of information to encrypt 

• four were defined for DES in ANSI standard ANSI 
X3.106-1983 Modes of Use

• subsequently now have 5 for DES and AES

• have block and stream modes



Electronic Codebook Book (ECB)

• message is broken into independent blocks 
which are encrypted 

• each block is a value which is substituted, 
like a codebook, hence name 

• each block is encoded independently of the 
other blocks 

Ci = DESK1 (Pi)

• uses: secure transmission of single values



Electronic Codebook Book (ECB)



Advantages and Limitations of ECB

• repetitions in message may show in 
ciphertext 
– if aligned with message block 

– particularly with data such graphics 

– or with messages that change very little, which 
become a code-book analysis problem 

• weakness due to encrypted message blocks 
being independent 

• main use is sending a few blocks of data 



Cipher Block Chaining (CBC) 

• message is broken into blocks 

• but these are linked together in the 
encryption operation 

• each previous cipher blocks is chained with 
current plaintext block, hence name 

• use Initial Vector (IV) to start process 
Ci = DESK1(Pi XOR Ci-1)

C-1 = IV 

• uses: bulk data encryption, authentication



Cipher Block Chaining (CBC)



Advantages and Limitations of CBC

• each ciphertext block depends on all message blocks 

• thus a change in the message affects all ciphertext blocks 
after the change as well as the original block 

• need Initial Value (IV) known to sender & receiver 
– however if IV is sent in the clear, an attacker can change bits of the 

first block, and change IV to compensate 

– hence either IV must be a fixed value (as in EFTPOS) or it must be 
sent encrypted in ECB mode before rest of message 

• at end of message, handle possible last short block 
– by padding either with known non-data value (eg nulls)

– or  pad last block with count of pad size 
• eg. [ b1 b2 b3 0 0 0 0 5] <- 3 data bytes, then 5 bytes pad+count 



Cipher Feedback (CFB)

• message is treated as a stream of bits 

• added to the output of the block cipher 

• result is feed back for next stage (hence name) 

• standard allows any number of bit (1,8 or 64 or 
whatever) to be feed back 
– denoted CFB-1, CFB-8, CFB-64 etc 

• is most efficient to use all 64 bits (CFB-64)
Ci = Pi XOR DESK1(Ci-1)

C-1 = IV 

• uses: stream data encryption, authentication



Cipher Feedback (CFB)



Advantages and Limitations of CFB

• appropriate when data arrives in bits/bytes 

• most common stream mode 

• limitation is need to stall while do block 
encryption after every n-bits 

• note that the block cipher is used in 
encryption mode at both ends 

• errors propogate for several blocks after the 
error 



Output Feedback (OFB)

• message is treated as a stream of bits 

• output of cipher is added to message 

• output is then feed back (hence name) 

• feedback is independent of message 

• can be computed in advance

Ci = Pi XOR Oi

Oi = DESK1(Oi-1)

O-1 = IV

• uses: stream encryption over noisy channels



Output Feedback (OFB)



Advantages and Limitations of OFB

• used when error feedback a problem or where need to  
encryptions before message is available 

• superficially similar to CFB 

• but feedback is from the output of cipher and is 
independent of message 

• a variation of a Vernam cipher 
– hence must never reuse the same sequence (key+IV) 

• sender and receiver must remain in sync, and some 
recovery method is needed to ensure this occurs 

• originally specified with m-bit feedback in the standards 

• subsequent research has shown that only OFB-64 should 
ever be used



Counter (CTR)

• a “new” mode, though proposed early on

• similar to OFB but encrypts counter value 
rather than any feedback value

• must have a different key & counter value 
for every plaintext block (never reused)

Ci = Pi XOR Oi

Oi = DESK1(i)

• uses: high-speed network encryptions



Counter (CTR)



Advantages and Limitations of CTR

• efficiency

– can do parallel encryptions

– in advance of need

– good for bursty high speed links

• random access to encrypted data blocks

• provable security (good as other modes)

• but must ensure never reuse key/counter 
values, otherwise could break (cf OFB)



Summary

• have considered:

• block cipher design principles

• DES

– details

– strength

• Differential & Linear Cryptanalysis

• Modes of Operation 

– ECB, CBC, CFB, OFB, CTR





Cryptography and Network 
Security
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Advanced Encryption Standard 



Advanced Encryption Standard

"It seems very simple."

"It is very simple. But if you don't know what 
the key is it's virtually indecipherable."

—Talking to Strange Men, Ruth Rendell



Origins

 clear a replacement for DES was needed
 have theoretical attacks that can break it

 have demonstrated exhaustive key search attacks

 can use Triple-DES – but slow, has small blocks

 US NIST issued call for ciphers in 1997

 15 candidates accepted in Jun 98 

 5 were shortlisted in Aug-99 

 Rijndael was selected as the AES in Oct-2000

 issued as FIPS PUB 197 standard in Nov-2001 



AES Requirements

 private key symmetric block cipher 

 128-bit data, 128/192/256-bit keys 

 stronger & faster than Triple-DES 

 active life of 20-30 years (+ archival use) 

 provide full specification & design details 

 both C & Java implementations

 NIST have released all submissions & 
unclassified analyses



AES Evaluation Criteria

 initial criteria:
 security – effort for practical cryptanalysis

 cost – in terms of computational efficiency

 algorithm & implementation characteristics

 final criteria
 general security

 ease of software & hardware implementation

 implementation attacks

 flexibility (in en/decrypt, keying, other factors)



AES Shortlist

 after testing and evaluation, shortlist in Aug-99: 
 MARS (IBM) - complex, fast, high security margin 

 RC6 (USA) - v. simple, v. fast, low security margin 

 Rijndael (Belgium) - clean, fast, good security margin 

 Serpent (Euro) - slow, clean, v. high security margin 

 Twofish (USA) - complex, v. fast, high security margin 

 then subject to further analysis & comment

 saw contrast between algorithms with 
 few complex rounds verses many simple rounds 

 which refined existing ciphers verses new proposals



The AES Cipher - Rijndael 

 designed by Rijmen-Daemen in Belgium 

 has 128/192/256 bit keys, 128 bit data 

 an iterative rather than feistel cipher
 processes data as block of 4 columns of 4 bytes

 operates on entire data block in every round

 designed to be:
 resistant against known attacks

 speed and code compactness on many CPUs

 design simplicity



Rijndael

 data block of 4 columns of 4 bytes is state

 key is expanded to array of words

 has 9/11/13 rounds in which state undergoes: 

 byte substitution (1 S-box used on every byte) 

 shift rows (permute bytes between groups/columns) 

 mix columns (subs using matrix multipy of groups) 

 add round key (XOR state with key material)

 view as alternating XOR key & scramble data bytes

 initial XOR key material & incomplete last round

 with fast XOR & table lookup implementation



Rijndael



Byte Substitution

 a simple substitution of each byte

 uses one table of 16x16 bytes containing a 
permutation of all 256 8-bit values

 each byte of state is replaced by byte indexed by 
row (left 4-bits) & column (right 4-bits)
 eg. byte {95} is replaced by byte in row 9 column 5

 which has value {2A}

 S-box constructed using defined transformation of 
values in GF(28)

 designed to be resistant to all known attacks



Byte Substitution



Shift Rows

 a circular byte shift in each each
 1st row is unchanged

 2nd row does 1 byte circular shift to left

 3rd row does 2 byte circular shift to left

 4th row does 3 byte circular shift to left

 decrypt inverts using shifts to right

 since state is processed by columns, this step 
permutes bytes between the columns



Shift Rows



Mix Columns

 each column is processed separately

 each byte is replaced by a value dependent 
on all 4 bytes in the column

 effectively a matrix multiplication in GF(28) 
using prime poly m(x) =x8+x4+x3+x+1



Mix Columns



Mix Columns

 can express each col as 4 equations

 to derive each new byte in col

 decryption requires use of inverse matrix

 with larger coefficients, hence a little harder

 have an alternate characterisation 

 each column a 4-term polynomial

 with coefficients in GF(28) 

 and polynomials multiplied modulo (x4+1)



Add Round Key

 XOR state with 128-bits of the round key

 again processed by column (though 
effectively a series of byte operations)

 inverse for decryption identical

 since XOR own inverse, with reversed keys

 designed to be as simple as possible

 a form of Vernam cipher on expanded key

 requires other stages for complexity / security



Add Round Key



AES Round



AES Key Expansion

 takes 128-bit (16-byte) key and expands 
into array of 44/52/60 32-bit words

 start by copying key into first 4 words

 then loop creating words that depend on 
values in previous & 4 places back

 in 3 of 4 cases just XOR these together

 1st word in 4 has rotate + S-box + XOR round 
constant on previous, before XOR 4th back



AES Key Expansion



Key Expansion Rationale

 designed to resist known attacks

 design criteria included
 knowing part key insufficient to find many more

 invertible transformation

 fast on wide range of CPU’s

 use round constants to break symmetry

 diffuse key bits into round keys

 enough non-linearity to hinder analysis

 simplicity of description



AES Decryption

 AES decryption is not identical to 
encryption since steps done in reverse

 but can define an equivalent inverse cipher 
with steps as for encryption
 but using inverses of each step

 with a different key schedule

works since result is unchanged when
 swap byte substitution & shift rows

 swap mix columns & add (tweaked) round key



AES Decryption



Implementation Aspects

 can efficiently implement on 8-bit CPU

 byte substitution works on bytes using a table 
of 256 entries

 shift rows is simple byte shift

 add round key works on byte XOR’s

 mix columns requires matrix multiply in GF(28) 
which works on byte values, can be simplified 
to use table lookups & byte XOR’s



Implementation Aspects

 can efficiently implement on 32-bit CPU
 redefine steps to use 32-bit words

 can pre-compute 4 tables of 256-words

 then each column in each round can be 
computed using 4 table lookups + 4 XORs

 at a cost of 4Kb to store tables

 designers believe this very efficient 
implementation was a key factor in its 
selection as the AES cipher



Summary

 have considered:

 the AES selection process

 the details of Rijndael – the AES cipher

 looked at the steps in each round

 the key expansion

 implementation aspects




