

Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 **Digital Image Processing**

Time: 3 hrs.

1

Max. Marks: 80

Note: Answer FIVE full questions, choosing ONE full question from each module.

Module-1

- What is digital image? Explain the fundamental steps of digital image processing. (08 Marks) a.
- Explain the concept of sampling and quantization of an image. b. (06 Marks) (02 Marks)
- Mention any four fields that use digital image processing. c.

OR

- Explain with neat diagram, how image is acquired using senstor strips? 2 a. (08 Marks)
 - Define 4-, 8- and m-adjacency. Compute the lengths of the shortest 4-, 8- and m-path b. between p and q in the image segment shown in Fig. Q2 (b) by considering $V = \{2, 3, 4\}$

(06 Marks)

	3	4	1	2	0	
	0	1	0	4	2	(q)
	2	2	3	1	4	
(p)	3	0	4	2	1	
\mathbf{x}	1	2	0	3	4	
		Fig.	Qź	2 (b)	0	

A common measure of transmission for digital data is the baud rate defined as the number of C. bits transmitted per second. Generally, transmission is accomplished in packets consisting of a start bit, a byte (8 bits) of information and a stop bit. Using these facts find how many minutes would it take to transmit a 2048 × 2048 image with 256 intensity levels using a 33.6 K baud modem? (02 Marks)

Module-2

For a given 4×4 image having gray scales between [0, 9] perform histogram equalization 3 a. and draw the histogram of image before and after equalization. 4×4 image is shown in Fig. Q3 (a). (08 Marks)

		· · · · · ·		
2	3	3	2]	
4	2	4	3	
3	2	3	5	
2	4	2	4	
Fi	ig. (23 ((a)	

Explain smoothing of images in frequency domain using ideal, Butterworth and Gaussian b. Low pass filter. (08 Marks)

OR

- Define 2D DFT- with respect to 2D DFT of an image and state the following properties: 4 a. (i) Translation (ii) Rotation (iii) Periodicity (iv) Convolution theorem.
 - b. With necessary graphs, explain the log and power law transformation used for spatial image enhancement. (05 Marks)
 - Explain image sharpening in spatial domain using second order Laplacian derivative. C.

1 of 2

(06 Marks)

(05 Marks)

15EC72

(02 Marks)

(10 Marks)

(06 Marks)

Module-3

- **5** a. With necessary equations and graph, explain any four noise probability density functions.
 - b. Explain minimum mean square error filtering method of restoring images. (08 Marks) (08 Marks)

OR

- 6 a. Explain how image degradation is estimated using,
 (i) Observation (ii) Mathematical modeling. (08 Marks)
 - b. Explain the order statistics filters used for restoring images in the presence of noise. (08 Marks)

Module-4

- 7 a. Write the equations for converting colors from HSI to RGB. (06 Marks)
 b. Write H matrix for Haar transform for N = 4 and explain how it is constructed. (04 Marks)
 c. Explain the following morphological algorithms:
 - (i) Thinning (ii) Thickening. (06 Marks)

OR

- 8 a. What is Pseudo color image processing? Explain intensity slicing as applied to pseudo color image processing. (07 Marks)
 - b. Explain Erosion and Dilation operations used for morphological processing. (07 Marks)
 - c. Define wavelet function.

Module-5

9 a. Explain Marr-Hildreth edge detector.

4

b. Write short note on Boundary segments.

OR

10a. Explain the following boundary descriptors: (i) Shape numbers(ii) Fourier descriptors.
(08 Marks)b. Explain Global Thresholding using Otsu's method.(08 Marks)
(08 Marks)