

Department of Electronics & Communication Engg.

Course : DAA-15EC751

Sem.: 7th (2018-19 ODD)

Course Coordinator: Prof. Nyamatulla M Patel

DSP Algorithms & Architecture

MODULE-2 Architectures for Programmable Digital Signal Processing Devices

Basic Architectural Features

A programmable DSP device should provide instructions similar to a conventional microprocessor. The instruction set of a typical DSP device should include the following,

- a. Arithmetic operations such as ADD, SUBTRACT, MULTIPLY etc
- b. Logical operations such as AND, OR, NOT, XOR etc
- c. Multiply and Accumulate (MAC) operation
- d. Signal scaling operation
- In addition to the above provisions, the architecture should also include,
- a. On chip registers to store immediate results
- b. On chip memories to store signal samples (RAM)
- c. On chip memories to store filter coefficients (ROM)

Braun Multiplier for a 4X4 Multiplication

Fig 2.1 Braun Multiplier for a 4X4 Multiplication

A Multiplier with Input and Output Latches

Fig 2.2: A Multiplier with Input and Output Latches

A Barrel Shifter

Fig 2.3 A Barrel Shifter

Implementation of a 4 bit Shift Right Barrel Shifter

INPUT				SHIFT (SWITCH)) OUTP	UT (13	02	E. E.)
A3	A 2.	An	Ao	0	(50)	A3	A 2.	A1	Ao
A3	A2	A	AD	1	(5,)	A3	A ₃	A2_	A
A3	A2	A	Au	2	(Sz)	A3	A3	A3	A2
A3	A2_	$-A_2$	Ao	3	(53)	As	A3	A3	Az

Fig 2.4 Implementation of a 4 bit Shift Right Barrel Shifter

A MAC Unit

Fig 2.5 A MAC Unit

Saturation Logic

Fig 2.7: Schematic Diagram of the Saturation Logic

Arithmetic Logic Unit of a DSP

Fig 2.8 Arithmetic Logic Unit of a DSP

Harvard Architecture with Dual Data Memory

Fig 2.11 Harvard Architecture with Dual Data Memory

Address generation unit

Fig 2.13 Address generation unit

Program Sequencer

Fig 2.14 Program Sequencer

