

Department of Electronics & Communication Engg.

Course : VLSI DESIGN-15EC63.

Sem.: 6th

Course Coordinator: Prof. S. S. Kamate

Module - 3 Scaling and Subsystem design process

Module 3

- Scaling of MOS Circuits: Scaling Models & Scaling Factors for Device Parameters
- Subsystem Design Processes: Some General considerations, An illustration of Design Processes,
- Illustration of the Design Processes- Regularity, Design of an ALU Subsystem, The Manchester Carrychain and Adder Enhancement Techniques
- (5.1, 5.2, 7.1, 7.2, 8.2, 8.3, 8.4.1, 8.4.2 of TEXT 1).

Scaling of MOS Circuits:

Scaling Models & Scaling Factors for Device Parameters:

Moore's Law : Gordon Moore of Intel in 1960s has predicted regarding the rapid growth in the number of transistors.

The prediction says that number of transistors on the chip would double after every two years or 18 months

Moore's law

Comparison of Technologies

Channel Length variation

1.8.3 Comparison between CMOS, Bipolar and GaAs Technology

Sr. No.	Parameter	CMOS Technology	Bipolar Technology	GaAs Technology
1.	Static power dissipation	Low	High	Medium
2.	Input impedance	High	Low	High
3.	Noise margin	High	Medium	Low
4.	Voltage swing	High	Low	Low
5.	Operating speed	Medium	High	Very high
6.	Package density	High	Low	High
7.	Output drive current	Low	High	Low
8.	Directional capability	Bidirectional	Unidirectional	Bidirectional
9.	Suitability for switching	Ideal device	Not ideal device	Reasonable device
10.	Mask levels	12 to 16	12 to 20	6 to 10

Scaling

- The process of reducing the horizontal and vertical dimension of the transistor is called Scaling.
- The device is scaled by a factor S, This S is quantity grates than 1.
- There are two types of Scaling techniques
 - 1. Constant Field Scaling
 - 2. Constant Voltage scaling

Two scaling factors $1/\alpha$ and $1/\beta$ are used.

1/β is the scaling factor for supply voltage and gate oxide thickness

- 1/α scaling factor for linear dimensions both horizontal and vertical dimensions.
- For Constant Field Scaling $\beta = \alpha$
- Constant Voltage scaling $\beta = 1$
- 1. Gate area Ag = LW
- 2. Gate Capacitance per unit Area Co or Cox Co = εox /D
 3. Gate Capacitance Cg Cg = CoWL
 4. Parasitic Capacitance Ax/d
 d width of depletion region Ax is the area of the depletion region 1/ α²

Cross-sectional view of MOSFET

Contd...

5. Carrier density in channel Qon Qon = Co Vgs6. Channel Resistance Ron Ron = L/W7. Gate Delay Td Td = Ron Cg8. Max. operationg Frequency Fo = W/L uCoVDD/Cg9. Saturation Current $Idss = Cou/2W/L(Vgs - Vt)^2$ 10. Current density J J = Idss /A11. Switching Energy per gate $Eg = \frac{1}{2} cg V dd^2$

Contd...

12.Power Dissipation per gate Pg Pg = Pgs +Pgd Pgs = Vdd²/Ron Pgd = Egfo

13.Power dissipation per unit Area Pa = Pg/Ag

14. Power Speed Product P_T PT = PgTd

Parameters .	TABLE 5.1 Scaling effects				
Free States to a	Combined F and D	Constant E	Cont		
Z Channel Image					
ar Channel actes	1 in	1.00			
D Casta aniste de la	Ditta:				
Ag Gate area	L/B	100			
Calor Cal Came C and	Light	1.12			
Cy Catty comparison	8	r.d.	2/62		
C, Parante	Birt	-92	12		
Que Camier de	1/0	17.64	T.M.T.		
Rea Channel Generity		1. Frag	12		
The Resistance		1	1.02		
A. SHORENEOS CURPERI	1.00	1			
I Conductor X-section area	H/P	Line	- 11		
Current dennity	D'EX-	A Long	1		
" Logic 1 level	arbgs	1.05.	Lor		
2 Switching and	1/8	a	and .		
e Proves &	Der? W	1/00			
former duppi per gate	time p	1/67			
txates per unit area	up-	17403	1/12		
Power disput for unit	ar ¹	ing.			
Gate delay	a1/87	a.	112		
Ster	Bird.	A. Carton and P.			
operating frequency	prec.	- Line	ar		
Power speed and	a a		3/100		

