
Module 3: 
 

Scaling of MOS Circuits 
 

1.What is Scaling?  
Proportional adjustment of the dimensions of an electronic device while 

maintaining the electrical properties of the device, results in a device either larger or 

smaller than the un-scaled device. Then Which way do we scale the devices for VLSI? 

BIG and SLOW … or SMALL and FAST? What do we gain? 
 
2.Why Scaling?... 
 

Scale the devices and wires down, Make the chips ‘fatter’ – functionality, intelligence, 

memory – and – faster, Make more chips per wafer – increased yield, Make the end user 

Happy by giving more for less and therefore, make MORE MONEY!! 
 
3.FoM for Scaling 
Impact of scaling is characterized in terms of several indicators: 

o Minimum feature size  
 

o Number of gates on one chip  
 

o Power dissipation  
 

o Maximum operational frequency  
 

o Die size  
 

o Production cost  

 
Many of the FoMs can be improved by shrinking the dimensions of transistors and 
interconnections. Shrinking the separation between features – transistors and wires 
Adjusting doping levels and supply voltages. 

 

3.1 Technology Scaling 
 
Goals of scaling the dimensions by 30%: 
 
Reduce gate delay by 30% (increase operating frequency by 43%) 
 
Double transistor density 
 
Reduce energy per transition by 65% (50% power savings @ 43% increase in frequency) 
 
Die size used to increase by 14% per generation 
 
Technology generation spans 2-3 years 
 
 
  



Figure1 to Figure 5 illustrates the technology scaling in terms of minimum feature size, 

transistor count, prapogation delay, power dissipation and density and technology 

generations. 
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Figure-1:Technology Scaling (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-2:Technology Scaling (2) 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Propagation Delay 
Figure-3:Technology Scaling (3) 
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Figure-4:Technology Scaling  
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Technology Generations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-5:Technology generation 
 
 
 
 

4. International Technology Roadmap for Semiconductors (ITRS) 

Table 1 lists the parameters for various technologies as per ITRS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: ITRS 
 
 
 



 
5.Scaling Models 

Full Scaling (Constant Electrical Field) 
 
Ideal model – dimensions and voltage scale together by the same scale factor 
 

Fixed Voltage Scaling 
 
Most common model until recently – only the dimensions scale, voltages remain constant 
 

General Scaling 
 
Most realistic for today’s situation – voltages and dimensions scale with different factors 
 
6.Scaling Factors for Device Parameters 

 

Device scaling modeled in terms of generic scaling factors: 1/α and 1/β 

• 1/β: scaling factor for supply voltage VDD and gate oxide thickness D  
 

• 1/α: linear dimensions both horizontal and vertical dimensions  

 
Why is the scaling factor for gate oxide thickness different from other linear horizontal 
and vertical dimensions? Consider the cross section of the device as in Figure 6,various 
parameters derived are as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-6:Technology generation 
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 Gate area Ag 
 

Ag   L *W 

 
Where L: Channel length and W: Channel width and both are scaled by 1/α Thus Ag is scaled up by 

1/α
2
 

 

 Gate capacitance per unit area Co or Cox 
 

Cox = εox/D 

Where εox  is permittivity of gate oxide(thin-ox)= εinsεo and D is the gate oxide thickness 
scaled by 1/β   1   

 

Thus Cox is scaled up by 
  

β 
 

    

 1   

   
 

  
 

 
 

 
 

     

   

β 
  

 

     
 

•    Gate capacitance Cg    Cg   Co * L *W 
 

Thus Cg is scaled up by  β* 1/ α
2
 =β/ α

2
 

 

 
 

• Parasitic  capacitance Cx  
 

Cx  is proportional  to Ax/d 
where d is the depletion width around source or drain and scaled by 1/ α 

 

Ax is the area of the depletion region around source or drain, scaled by (1/ α
2
 ). Thus Cx is 

scaled up by {1/(1/α)}* (1/ α
2
 ) =1/ α 

 

• Carrier density in channel  Qon  
 

Qon = Co * Vgs 

where Qon is the average charge per unit area in the ‘on’ state. Co is 

scaled by β and Vgs is scaled by 1/ β 
 

Thus Qon is scaled by 1 
 

• Channel Resistance Ron  
 

R    L * 1 
 

   

on 
W 

 

Qon *     
 

 
Where  = channel carrier mobility and assumed constant 

 
 
 

 

 



Thus Ron is scaled by 1. 
 

• Gate delay Td  
 

Td  is proportional to Ron*Cg 
 

Td is scaled by 1 

* β   

β 
 

   

 α 
2
 α 

2
 

 

 

 Maximum operating frequency fo  

fo   

W
 * 

C
o

V
DD 

L Cg 

 

fo  is inversely proportional to delay Td  and is scaled by 
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• Saturation current Idss   

I dss   
C

o
 


 * 
W

 * Vgs  − Vt 2
 

2 L 
 

Both Vgs and Vt are scaled by (1/ β). Therefore, Idss is scaled by 
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• Current density J  

 
J   

I
 dss 

 

Current density, where A is cross sectional area of the 
 

A 
Channel in the “on” state which is scaled by (1/ α

2
).  

So, J is scaled by 
 

1 

 α 
2
 


1 β 
α 2 

• Switching energy per gate Eg
β
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So Eg is scaled by 
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• Power dissipation per gate Pg  
 

Pg   Pgs   Pgd 
 

Pg comprises of two components: static component Pgs and dynamic component Pgd: 
 

Where, the static power component is given by:  V 
2
 

 P
gs  

 DD 
 

 R
 on  

   
 

And the dynamic component by:   
P

gd  


 
E

g  
f

o    
 

Since VDD scales by (1/β) and Ron scales by 1, Pgs scales by (1/β
2
). 

 

Since Eg scales by (1/α
2
 β) and fo by (α2 /β), Pgd also scales by (1/β

2
). Therefore, Pg 

 

scales by (1/β
2
). 

 
 

• Power dissipation per unit area Pa   
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6.1 Scaling Factors …Summary 



Various device parameters for different scaling models are listed in Table 2 below. 

 

Table 2: Device parameters for scaling models 
NOTE: for Constant E: β=α; for Constant V: β=1  

   General Constant E Constant V  
 

 
Parameters Description 

(Combined V    
 

 
and 

   
 

      
 

   Dimension)    
 

 VDD Supply voltage 1/β 1/α 1  
 

 L Channel length 1/α 1/α 1/α  
 

 W Channel width 1/α 1/α 1/α  
 

 D Gate oxide thickness 1/β 1/α 1  
 

 Ag Gate area 1/α
2
 1/α

2
 1/α

2
  

 

  Gate capacitance per β α 1  
 

 Co  (or Cox) unit area     
 

 Cg Gate capacitance β/α
2 1/α 1/α

2
  

 

 Cx Parsitic capacitance 1/α 1/α 1/α  
 

 Qon Carrier density 1 1 1  
 

 Ron Channel resistance 1 1 1 
 
 

 

Idss Saturation current 1/β 1/α 1 
 

  
  



 

   General Constant E Constant V 
 

 
Parameters Description 

(Combined V    
 

 
and 

   
 

      
 

   Dimension)    
 

 
Ac 

Conductor cross 1/α
2
 1/α

2
 1/α

2
 

 

 section area      
 

 J Current density α
2

 / β α  α2 
 

 Vg Logic 1 level 1 / β 1 / α 1 
 

 Eg Switching energy 1 / α
2

 β 1 / α
3
 1/α

2
 

 

 
Pg 

Power dissipation per 1 / β
2
 1/α

2
 1 

 

 gate      
 

 N Gates per unit area α
2 α

2 α
2 

 

  Power dissipation per α
2

 / β
2
 1  α

2
 

 

 Pa unit area      
 

 Td Gate delay β / α
2
 1 / α 1/α

2
 

 

  Max. operating α
2

 / β α  α2 
 

 fo frequency      
 

 PT Power speed product 1 / α
2

 β 1 / α
3
 1/α

2
 

 

 
 Subsystem Design Processes Illustration 

 
 

Objectives: At the end of this unit we will be able to understand 
 

• Design consideration, problem and solution  
• Design processes 

• Basic digital processor structure  
• Datapath 
• Bus Architecture 

• Design 4 – bit shifter  
• Design of ALU subsystem 
• 4 – bit Adder 

 
General Considerations 

 

Lower unit cost 

Higher reliability 
 

Lower power dissipation, lower weight and lower 

volume Better performance 
 

Enhanced repeatability 
 

Possibility of reduced design/development periods 
 

 
 
 
 
 
 



Some Problems 
 

1. How to design complex systems in a reasonable time & with reasonable effort. 
 

2. The nature of architectures best suited to take full advantage of VLSI and the 
technology 

 
3. The testability of large/complex systems once implemented on silicon 

 

Some Solution 
 

Problem 1 & 3 are greatly reduced if two aspects of standard practices are 
accepted. 

 
1. a) Top-down design approach with adequate CAD tools to do the job 

 
b) Partitioning the system sensibly 

 
c) Aiming for simple interconnections 

 
d) High regularity within subsystem 

 
e) Generate and then verify each section of the design 

 
2. Devote significant portion of total chip area to test and diagnostic facility 

 
3. Select architectures that allow design objectives and high regularity in realization 

 
Illustration of design processes 

 
1. Structured design begins with the concept of hierarchy 

 
 
 



 
2. It is possible to divide any complex function into less complex subfunctions that 

is up to leaf cells 
 

3. Process is known as top-down design 
 

4. As a systems complexity increases, its organization changes as different factors 
become relevant to its creation 

 
5. Coupling can be used as a measure of how much submodels interact 

 
6. It is crucial that components interacting with high frequency be physically 

proximate, since one may pay severe penalties for long, high-bandwidth 
interconnects 

 
7. Concurrency should be exploited – it is desirable that all gates on the chip do 

useful work most of the time 
 

8. Because technology changes so fast, the adaptation to a new process must occur 
in a short time. 

 

Hence representing a design several approaches are possible. They are: 
 

 Conventional circuit symbols


 Logic symbols


 Stick diagram


 Any mixture of logic symbols and stick diagram that is convenient at a stage


 Mask layouts


 Architectural block diagrams and floor plans
 

General arrangements of a 4 – bit arithmetic processor 
 

The basic architecture of digital processor structure is as shown below in figure 
6.1. Here the design of datapath is only considered.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.1: Basic digital processor structure 

 

Datapath is as shown below in figure 6.2. It is seen that the structure comprises of 
a unit which processes data applied at one port and presents its output at a second port. 

 

 

  



 
Alternatively, the two data ports may be combined as a single bidirectional port if storage 
facilities exist in the datapath. Control over the functions to be performed is effected by 
control signals as shown.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.2: Communication strategy for the datapath 
 

Datapath can be decomposed into blocks showing the main subunits as in figure 
3. In doing so it is useful to anticipate a possible floor plan to show the planned relative 
decomposition of the subunits on the chip and hence on the mask layouts.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.3: Subunits and basic interconnection for datapath 
 

Nature of the bus architecture linking the subunits is discussed below. Some of 
the possibilities are: 

 

One bus architecture:  
 
 
 
 
 

 

Figure 6.4: One bus architecture 

Sequence: 

1. 1
st

 operand from registers to ALU. Operand is stored there. 

2. 2
nd

 operand from register to ALU and added. 
3. Result is passed through shifter and stored in the register 

 
 
 
 
 
 
 

 



Two bus architecture:  
 
 
 
 
 
 
 
 
 

 

Figure 6.5: Two bus architecture 

Sequence: 
 

1. Two operands (A & B) are sent from register(s) to ALU & are operated upon, 
result S in ALU. 

2. Result is passed through the shifter & stored in registers. 

 

Three bus architecture:  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.6: Three bus architecture 
 

Sequence: 
 

Two operands (A & B) are sent from registers, operated upon, and shifted result 
(S) returned to another register, all in same clock period. 

 

In pursuing this design exercise, it was decided to implement the structure with a 
2 – bus architecture. A tentative floor plan of the proposed design which includes some 
form of interface to the parent system data bus is shown in figure 6.7.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.7: Tentative floor plan for 4 – bit datapath 
 
 
 
 

 



 
The proposed processor will be seen to comprise a register array in which 4-bit 

numbers can be stored, either from an I/O port or from the output of the ALU via a 
shifter. Numbers from the register array can be fed in pairs to the ALU to be added (or 
subtracted) and the result can be shifted or not. The data connections between the I/O 
port, ALU, and shifter must be in the form of 4-bit buses. Also, each of the blocks must 
be suitably connected to control lines so that its function may be defined for any of a 
range of possible operations. 

 

During the design process, and in particular when defining the interconnection 
strategy and designing the stick diagrams, care must be taken in allocating the layers to 
the various data or control paths. Points to be noted: 

 

Metal can cross poly or diffusion 
 

Poly crossing diffusion form a transistor 
 

Whenever lines touch on the same level an interconnection is formed 

Simple contacts can be used to join diffusion or poly to metal. 
 

Buried contacts or a butting contacts can be used to join diffusion and poly 

Some processes use 2
nd

 metal 
 

1
st

 and 2
nd

 metal layers may be joined using a via 
 

Each layer has particular electrical properties which must be taken into account 

For CMOS layouts, p-and n-diffusion wires must not directly join each other 

Nor may they cross either a p-well or an n-well boundary 

 

Design of a 4-bit shifter 
 

Any general purpose n-bit shifter should be able to shift incoming data by up to n 
– 1 place in a right-shift or left-shift direction. Further specifying that all shifts should be 
on an end-around basis, so that any bit shifted out at one end of a data word will be 
shifted in at the other end of the word, then the problem of right shift or left shift is 
greatly eased. It can be analyzed that for a 4-bit word, that a 1-bit shift right is equivalent 
to a 3-bit shift left and a 2-bit shift right is equivalent to a 2-bit left etc. Hence, the design 
of either shift right or left can be done. Here the design is of shift right by 0, 1, 2, or 3 
places. The shifter must have:  

• input from a four line parallel data bus 
• four output lines for the shifted data  
• means of transferring input data to output lines with any shift from 0 to 3 bits 

 

Consider a direct MOS switch implementation of a 4 X 4 crossbar switches shown in 
figure 6.8. The arrangement is general and may be expanded to accommodate n-bit 
inputs/outputs. In this arrangement any input can be connected to any or all the outputs. 

Furthermore, 16 control signals (sw00 – sw15), one for each transistor switch, must be 
provided to drive the crossbar switch, and such complexity is highly undesirable. 

 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.8: 4 X 4 crossbar switch 
 

An adaptation of this arrangement recognizes the fact that we couple the switch 
gates together in groups of four and also form four separate groups corresponding to 
shifts of zero, one, two and three bits. The resulting arrangement is known as a barrel 
shifter and a 4 X 4 barrel shifter circuit diagram is as shown in the figure 6.9.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.9: 4 X 4 barrel shifter 
 

The interbus switches have their gate inputs connected in a staircase fashion in 
groups of four and there are now four shift control inputs which must be mutually 
exclusive in the active state. CMOS transmission gates may be used in place of the 
simple pass transistor switches if appropriate. Barrel shifter connects the input lines 
representing a word to a group of output lines with the required shift determined by its 
control inputs (sh0, sh1, sh2, sh3). Control inputs also determine the direction of the shift. 
If input word has n – bits and shifts from 0 to n-1 bit positions are to be implemented. 

 

To summaries the design steps  
 

Set out the specifications  
Partition the architecture into subsystems  
Set a tentative floor plan  
Determine the interconnects  
Choose layers for the bus & control lines  
Conceive a regular architecture  
Develop stick diagram  

 
 

 



Produce mask layouts for standard cell  
Cascade & replicate standard cells as required to complete the design  

 

Design of an ALU subsystem 
 

Having designed the shifter, we shall design another subsystem of the 4-bit data 
path. An appropriate choice is ALU as shown in the figure 6.10 below.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.10: 4-bit data path for processor 

 

The heart of the ALU is a 4-bit adder circuit. A 4-bit adder must take sum of two 
4-bit numbers, and there is an assumption that all 4-bit quantities are presented in parallel 
form and that the shifter circuit is designed to accept and shift a 4-bit parallel sum from 
the ALU. The sum is to be stored in parallel at the output of the adder from where it is 
fed through the shifter and back to the register array. Therefore, a single 4-bit data bus is 
needed from the adder to the shifter and another 4-bit bus is required from the shifted 
output back to the register array. Hence, for an adder two 4-bit parallel numbers are fed 
on two 4-bit buses. The clock signal is also required to the adder, during which the inputs 
are given and sum is generated. The shifter is unclocked but must be connected to four 
shift control lines. 

 

Design of a 4-bit adder: 
The truth table of binary adder is as shown in table 6.1 

   

Inputs 
  

Outputs 
  

       
          

          

 Ak  Bk Ck-1 Sk  Ck   
          

         

 0  0 0 0  0   
          

         

 0  1 0 1  0   
         

         

 1  0 0 1  0   
          

         

 1  1 0 0  1   
          

         

 0  0 1 1  0   
          

         

 0  1 1 0  1   
          

         

 1  0 1 0  1   
          

         

 1  1 1 1  1   
          

   



As seen from the table any column k there will be three inputs namely Ak , Bk as 

present input number and Ck-1 as the previous carry. It can also be seen that there are two 

outputs sum Sk and carry Ck. 
From the table one form of the equation is:  

Sum Sk = HkCk-l’ + Hk’Ck-1 

New carryCk = AkBk + Hkck-1 
Where  

Half sum Hk = Ak’Bk + Ak Bk’ 
 

Adder element requirements 
Table 6.1 reveals that the adder requirement may be stated as: 

If Ak = Bk then Sk = Ck-1 

Else Sk =  Ck-l’   

And for the carry Ck   

If Ak = Bk then Ck = Ak = Bk 
Else Ck =  Ck-l   

Thus the standard adder element for 1-bit is as shown in the figure 6.11.  
 
 
 
 
 
 
 
 
 

 

Figure 6.11: Adder element 

 

Implementing ALU functions with an adder: 

 

An ALU must be able to add and subtract two binary numbers, perform logical 
operations such as And, Or and Equality (Ex-or) functions. Subtraction can be performed 
by taking 2’s complement of the negative number and perform the further addition. It is 
desirable to keep the architecture as simple as possible, and also see that the adder 
performs the logical operations also. Hence let us examine the possibility. 

 

The adder equations are: 

Sum Sk = HkCk-l’ + Hk’Ck-1 

New carry Ck = AkBk + Hk Ck-1 
Where  

Half sum Hk = Ak’Bk + Ak Bk’  
Let us consider the sum output, if the previous carry is at logical 0, then 

Sk = Hk. 1 + Hk’. 0  
Sk = Hk = Ak’Bk + Ak Bk’ – An Ex-or 

operation Now, if Ck-1 is logically 1, then 

Sk = Hk. 0 + Hk’. 1 
 
 
 

 



Sk = Hk’ – An Ex-Nor operation 
 

Next, consider the carry output of each element, first Ck-1 is held at logical 0, 

then Ck = AkBk + Hk . 0 

Ck = AkBk -  An And operation 

Now if Ck-1 is at logical 1, then 

Ck = AkBk + Hk . 1 

On solving Ck = Ak + Bk  - An Or operation 
 

The adder element implementing both the arithmetic and logical functions can be 
implemented as shown in the figure 6.12.  

 
 
 
 
 
 
 
 
 

 

Figure 6.12: 1-bit adder element 
The above can be cascaded to form 4-bit ALU. 

 

A further consideration of adders 
 

Generation: 

 

This principle of generation allows the system to take advantage of the 

occurrences “ak=bk”. In both cases (ak=1 or ak=0) the carry bit will be known. 

Propagation: 
 

If we are able to localize a chain of bits ak ak+1...ak+p and bk bk+1...bk+p for 

which ak not equal to bk for k in [k,k+p], then the output carry bit of this chain will be 
equal to the input carry bit of the chain. 

 
These remarks constitute the principle of generation and propagation used to 

speed the addition of two numbers. 

 

All adders which use this principle calculate in a first stage. 
 

pk = ak XOR bk 

gk = ak bk 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
Manchester carry – chain 

 

This implementation can be very performant (20 transistors) depending on the 
way the XOR function is built. The carry propagation of the carry is controlled by the 
output of the XOR gate. The generation of the carry is directly made by the function at 
the bottom. When both input signals are 1, then the inverse output carry is 0.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.12: An adder with propagation signal controlling the pass-gate 

 

In the schematic of Figure 6.12, the carry passes through a complete transmission 
gate. If the carry path is precharged to VDD, the transmission gate is then reduced to a 
simple NMOS transistor. In the same way the PMOS transistors of the carry generation is 
removed. One gets a Manchester cell. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 
Figure-6.13: The Manchester cell 

 

The Manchester cell is very fast, but a large set of such cascaded cells would be 
slow. This is due to the distributed RC effect and the body effect making the propagation 
time grow with the square of the number of cells. Practically, an inverter is added every 
four cells, like in Figure 6.14.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.14: The Manchester carry cell 

 

Adder Enhancement techniques 

 

The operands of addition are the addend and the augend. The addend is added to 
the augend to form the sum. In most computers, the augmented operand (the augend) is 
replaced by the sum, whereas the addend is unchanged. High speed adders are not only 
for addition but also for subtraction, multiplication and division. The speed of a digital 
processor depends heavily on the speed of adders. The adders add vectors of bits and the 
principal problem is to speed- up the carry signal. A traditional and non optimized four 
bit adder can be made by the use of the generic one-bit adder cell connected one to the 
other. It is the ripple carry adder. In this case, the sum resulting at each stage need to wait 
for the incoming carry signal to perform the sum operation. The carry propagation can be 
speed-up in two ways. The first –and most obvious– way is to use a faster logic circuit 
technology. The second way is to generate carries by means of forecasting logic that does 
not rely on the carry signal being rippled from stage to stage of the adder. 

 
 
 
 
 



 

 

The Carry-Skip Adder 

 

Depending on the position at which a carry signal has been generated, the 
propagation time can be variable. In the best case, when there is no carry generation, the 
addition time will only take into account the time to propagate the carry signal. Figure 
6.15 is an example illustrating a carry signal generated twice, with the input carry being 
equal to 0. In this case three simultaneous carry propagations occur. The longest is the 
second, which takes 7 cell delays (it starts at the 4th position and ends at the 11th 
position). So the addition time of these two numbers with this 16-bits Ripple Carry Adder 
is 7.k + k’, where k is the delay cell and k’ is the time needed to compute the 11th sum bit 
using the 11th carry-in. 

 

With a Ripple Carry Adder, if the input bits Ai and Bi are different for all position 
i, then the carry signal is propagated at all positions (thus never generated), and the 
addition is completed when the carry signal has propagated through the whole adder. In 
this case, the Ripple Carry Adder is as slow as it is large. Actually, Ripple Carry Adders 
are fast only for some configurations of the input words, where carry signals are 
generated at some positions. 

 

Carry Skip Adders take advantage both of the generation or the propagation of the 
carry signal. They are divided into blocks, where a special circuit detects quickly if all the 
bits to be added are different (Pi = 1 in all the block). The signal produced by this circuit 
will be called block propagation signal. If the carry is propagated at all positions in the 
block, then the carry signal entering into the block can directly bypass it and so be 
transmitted through a multiplexer to the next block. As soon as the carry signal is 
transmitted to a block, it starts to propagate through the block, as if it had been generated 
at the beginning of the block. Figure 6.16 shows the structure of a 24-bits Carry Skip 
Adder, divided into 4 blocks.  

 
 
 
 
 
 

 

Figure 6.15: Example of Carry skip adder 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



 
Figure-6.16: Block diagram of a carry skip adder 

 
 

 

Optimization of the carry skip adder 

 

It becomes now obvious that there exist a trade-off between the speed and the size 
of the blocks. In this part we analyze the division of the adder into blocks of equal size. 
Let us denote k1 the time needed by the carry signal to propagate through an adder cell, 
and k2 the time it needs to skip over one block. Suppose the N-bit Carry Skip Adder is 
divided into M blocks, and each block contains P adder cells. The actual addition time of 
a Ripple Carry Adder depends on the configuration of the input words. The completion 
time may be small but it also may reach the worst case, when all adder cells propagate the 
carry signal. In the same way, we must evaluate the worst carry propagation time for the 
Carry Skip Adder. The worst case of carry propagation is depicted in Figure 6.17.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.17: Worst case carry propagation for Carry Skip adder 

 

The configuration of the input words is such that a carry signal is generated at the 
beginning of the first block. Then this carry signal is propagated by all the succeeding 
adder cells but the last which generates another carry signal. In the first and the last block 
the block propagation signal is equal to 0, so the entering carry signal is not transmitted 
to the next block. Consequently, in the first block, the last adder cells must wait for the 
carry signal, which comes from the first cell of the first block. When going out of the first 

 
 
 



block, the carry signal is distributed to the 2
nd

, 3
rd

 and last block, where it propagates. In 

these blocks, the carry signals propagate almost simultaneously (we must account for the 
multiplexer delays). Any other situation leads to a better case. Suppose for instance that 

the 2
nd

 block does not propagate the carry signal (its block propagation signal is equal to 

zero), then it means that a carry signal is generated inside. This carry signal starts to 
propagate as soon as the input bits are settled. In other words, at the beginning of the 
addition, there exist two sources for the carry signals. The paths of these carry signals are 
shorter than the carry path of the worst case. Let us formalize that the total adder is made 
of N adder cells. It contains M blocks of P adder cells. The total of adder cells is then 

 

N=M.P 

 

The time T needed by the carry signal to propagate through P adder cells is 
 

T=k1.P 

 

The time T' needed by the carry signal to skip through M adder blocks is 
 

T'=k2.M 

 

The problem to solve is to minimize the worst case delay which is:  
 
 
 
 
 
 
 
 

 

The Carry-Select Adder 

 

This type of adder is not as fast as the Carry Look Ahead (CLA) presented in a 
next section. However, despite its bigger amount of hardware needed, it has an interesting 
design concept. The Carry Select principle requires two identical parallel adders that are 
partitioned into four-bit groups. Each group consists of the same design as that shown on 
Figure 6.18. The group generates a group carry. In the carry select adder, two sums are 
generated simultaneously. One sum assumes that the carry in is equal to one as the other 
assumes that the carry in is equal to zero. So that the predicted group carry is used to 
select one of the two sums. 

 

It can be seen that the group carries logic increases rapidly when more high- order 
groups are added to the total adder length. This complexity can be decreased, with a 
subsequent increase in the delay, by partitioning a long adder into sections, with four 
groups per section, similar to the CLA adder. 

 
 
 
 
 
 

 



 

 

Figure-6.18: The Carry Select adder 

Optimization of the carry select adder 
 

• Computational time  

T = K1n 
 

• Dividing the adder into blocks with 2 parallel paths  

T = K1n/2 + K2 
 

• For a n-bit adder of M-blocks and each block contains P adder cells in series T = 
PK1 + (M – 1) K2 ; n = M.P minimum value for T is when M=√(K1n / K1 ) 

 

The Carry Look-Ahead Adder 

 

The limitation in the sequential method of forming carries, especially in the 

Ripple Carry adder arises from specifying ci as a specific function of ci-1. It is possible to 
express a carry as a function of all the preceding low order carry by using the recursivity 
of the carry function. With the following expression a considerable increase in speed can 
be realized.  

 
 

 

Usually the size and complexity for a big adder using this equation is not 
affordable. That is why the equation is used in a modular way by making groups of carry 
(usually four bits). Such a unit generates then a group carry which give the right predicted 
information to the next block giving time to the sum units to perform their calculation.  

 
 
 
 
 
 
 
 
 

 

Figure-6.19: The Carry Generation unit performing the Carry group computation 
 
 
 
 

 



 
Such unit can be implemented in various ways, according to the allowed level of 
abstraction. In a CMOS process, 17 transistors are able to guarantee the static function 
(Figure 6.20). However this design requires a careful sizing of the transistors put in 
series. 

 

The same design is available with less transistors in a dynamic logic design. The 
sizing is still an important issue, but the number of transistors is reduced (Figure 6.21).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.20: Static implementation of the 4-bit carry lookahead chain  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.21: Dynamic implementation of the 4-bit carry lookahead 

chain Figure 6.22 shows the implementation of 16-bit CLA adder. 

 
 
 
 
 
 
 
 
 
 
 

 



 
Figure-6.22: Implementation of a 16-bit CLA adder 

 

Multipliers 
 

Introduction 

 

Multiplication can be considered as a series of repeated additions. The number to 
be added is the multiplicand, the number of times that it is added is the multiplier, and the 
result is the product. Each step of the addition generates a partial product. In most 
computers, the operands usually contain the same number of bits. When the operands are 
interpreted as integers, the product is generally twice the length of the operands in order 
to preserve the information content. This repeated addition method that is suggested by 
the arithmetic definition is slow that it is almost always replaced by an algorithm that 
makes use of positional number representation. 

 

It is possible to decompose multipliers in two parts. The first part is dedicated to 
the generation of partial products, and the second one collects and adds them. As for 
adders, it is possible to enhance the intrinsic performances of multipliers. Acting in the 
generation part, the Booth (or modified Booth) algorithm is often used because it reduces 
the number of partial products. The collection of the partial products can then be made 
using a regular array, a Wallace tree or a binary tree 

 

Serial-Parallel Multiplier 

 

This multiplier is the simplest one, the multiplication is considered as a 
succession of additions. 

if A = (an an-1……a0) and B = (bn bn-1……b0) 
 

The product A.B is expressed as : 

A.B = A.2
n
.bn + A.2

n-1
.bn-1 +…+ A.20.b

0 

 

The structure of Figure 6.23 is suited only for positive operands. If the operands are 
negative and coded in 2’s complement: 

 

1. The most significant bit of B has a negative weight, so a subtraction has to be 
performed at the last step. 

 
 
 
 

 



2. Operand A.2
k
 must be written on 2N bits, so the most significant bit of A must be 

duplicated. It may be easier to shift the content of the accumulator to the right 
instead of shifting A to the left.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.23: Serial-Parallel multiplier 
Braun Parallel Multiplier 

 

The simplest parallel multiplier is the Braun array. All the partial products A.bk 
are computed in parallel, and then collected through a cascade of Carry Save Adders. At 
the bottom of the array, the output of the array is noted in Carry Save, so an additional 
adder converts it (by the mean of carry propagation) into the classical notation (Figure 
6.24). The completion time is limited by the depth of the carry save array, and by the 
carry propagation in the adder. Note that this multiplier is only suited for positive 
operands. Negative operands may be multiplied using a Baugh-Wooley multiplier.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.24: A 4-bit Braun Array 
 
 
 
 





 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.26: Booth encoder cell 
 

To summarize the operation:   

Grouping multiplier bits into pairs  
• Orthogonal idea to the Booth recoding  
• Reduces the num of partial products to half  
• If Booth recoding not used have to be able to multiply by 3 (hard: 

shift+add) 
 

Applying the grouping  
Modified Booth Recoding (Encoding)  

• We already got rid 

no multiplication by 3 

 

idea 

 

of 

 

to 

 

sequences 

 

Booth 

 

of 1’s 

 
• Just negate, shift once or twice 

 

Wallace Trees 
 

For this purpose, Wallace trees were introduced. The addition time grows like the 
logarithm of the bit number. The simplest Wallace tree is the adder cell. More generally, 
an n-inputs Wallace tree is an n-input operator and log2(n) outputs, such that the value of 
the output word is equal to the number of “1” in the input word. The input bits and the 
least significant bit of the output have the same weight (Figure 6.27). An important 
property of Wallace trees is that they may be constructed using adder cells. Furthermore, 
the number of adder cells needed grows like the logarithm log2(n) of the number n of 
input bits. Consequently, Wallace trees are useful whenever a large number of operands 
are to add, like in multipliers. In a Braun or Baugh-Wooley multiplier with a Ripple 
Carry Adder, the completion time of the multiplication is proportional to twice the 
number n of bits. If the collection of the partial products is made through Wallace trees, 
the time for getting the result in a carry save notation should be proportional to log2(n).  

 
 
 
 
 
 
 
 
 

 

Figure-6.27: Wallace cells made of adders 
 

 

  



 
Figure 6.28 represents a 7-inputs adder: for each weight, Wallace trees are used until 
there remain only two bits of each weight, as to add them using a classical 2-inputs adder. 
When taking into account the regularity of the interconnections, Wallace trees are the 
most irregular.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-6.28: A 7-inputs Wallace tree 
 

To summarize the operation: 
 

The Wallace tree has three steps: 
 

Multiply (that is - AND) each bit of one of the arguments, by each bit of the other, 
yielding n

2
 results.  

Reduce the number of partial products to two by layers of full and half adders. 
Group the wires in two numbers, and add them with a conventional adder. 

 

The second phase works as follows. 
 

Take any three wires with the same weights and input them into a full adder. 
The result will be an output wire of the same weight and an output wire with a  
higher weight for each three input wires. 

 
If there are two wires of the same weight left, input them into a half 
adder. If there is just one wire left, connect it to the next layer. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

   


