

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog.

Sem.: 6th (2017-18)

Course Coordinator: Prof. D. M. Kumbhar

Digital System Design Using Verilog

Module 3 Implementation Fabrics

Portions of this work are from the book, *Digital Design: An Embedded Systems Approach Using Verilog,* by Peter J. Ashenden, published by Morgan Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Integrated Circuits

- Early digital circuits
 - Relays, vacuum tubes, discrete transistors
- Integrated circuits (ICs, or "chips")
 - Manufacture of multiple transistors and connections on surface of silicon wafer
 - Invented in 1958: Jack Kilby at Texas Instruments (TI)
 - Rapid growth since then, and ongoing

IC Manufacture: Wafers

- Start with ingot of pure silicon
- Saw into wafers & polish
 - Early wafers:
 50mm

– Now 300mm

IC manufacture: Processing

- Chemical processing steps based on photolithography
 - Ion implantation
 - Etching a deposited film
 - SiO₂, polysilicon, metal

IC Manufacture: Test & Packaging

- Defects cause some ICs to fail
 - Test to identify which ICs don't work
 - Discard them when wafer is broken into chips
 - Their cost is amortized over working chips
 - Yield depends (in part) on IC area
 - Constrain area to reduce final IC cost
- Working chips are packaged and tested further

Exponential Trends

- Circuit size and complexity depends on minimum feature size
 - Which depends on manufacturing process
 - Mask resolution, wavelength of light
- Process nodes (ITRS Roadmap)
 - 350nm (1995), 250nm (1998),
 180nm (2000), 130nm (2002),
 90nm (2004), 65nm (2007), 45nm (2010),
 32nm (2013), 22nm (2016), 16nm (2019)

- Smaller feature size \Rightarrow denser, faster

SSI and MSI

- In 1964, TI introduced 5400/7400 family of TTL ICs
 - Other manufacturers followed, making 7400 family a de facto standard
 - Small-scale integrated (SSI)
 - 7400: 4 × NAND gate 7427: 4 × NOR gate

. . .

- 7474: 2 × D flip-flop
- Medium-scale integrated (MSI)
 - 7490: 4-bit counter 7494: 4-bit shift reg

Other Logic Families

- Variations on electrical characteristics
 - 74L...: low power
 - -74S...: Schottky diodes \Rightarrow fast switching
 - 74LS... : compromise between speed and power
 - 74ALS... : advances low-power Schottky
 - 74F... : fast
- CMOS families
 - 4000 family: very low power, 3-15V
 - 74HC..., 74AHC... : TTL compatible

Large Scale Integration

- 1970s: LSI (thousands of transistors)
 - Small microprocessors became feasible
 - Custom LSI chips for high-volume applications
- SSI/MSI mainly used for glue logic
- Later additions to 74xx... families oriented toward glue-logic and interfacing
 - E.g., multibit tristate drivers, registers
 - Other functions supplanted by PLDs

MSI Example: Counter/Display

74LS390: dual decade counter

74LS47: 7-segment decoder

Q0

Q1 Q2

CP1

11

MSI Example: Counter/Display

12

VLSI and ASICs

- 1980s: Very Large Scale Integration – Then ULSI, then what?
 - VLSI now just means IC design
- Application-specific ICs (ASICs)
 - Enabled by CAD tools, foundry services
 - Often designed for a range of related products in a market segment
 - Application-specific standard products (ASSPs)
 - E.g., cell phone ICs

ASIC Economics

- ASIC has lower unit cost than an FPGA
 - But more design/verification effort
 - Higher non-recurring engineering (NRE) cost
 - Amortized over production run
 - ASICs make sense for high volumes
 - Performance of ASIC & FPGA
- Full custom
 - Design each transistor and wire
 - High NRE, but best performance & least area
 - Design expertise team
- Standard cell
 - Use basic components from a foundry's library
 - Previous designs / ASIC Venders design

Programmable Logic Devices (PLDs)

- PLDs can be programmed after manufacture to vary their function
 - C.f. fixed-function SSI/MSI ICs and ASICs
- Higher unit cost than ASIC
 - But lower NRE
 - Ideal for low to medium product volumes

Programmable Array Logic (PALs)

- Introduced by Monolithic Memories Inc in 1970s
 - First widely-used PLDs
 - Programmed by blowing fusible links in the circuit
 - Use a special programming instrument
- PAL16L8
 - 16 inputs, 8 active-low outputs
 - 10-I/P, 2-O/P, 6-both I/O
- PAL16R8
 - 16 inputs, 8 registered outputs

PAL16L8

PAL16R8 Output Circuit

 Feedback path is useful for implementing FSMs

Designing with PALs

- Useful even for simple circuits

 Single package solution lowers cost
- Describe function using Boolean equations
 - In HDL, or simple language
 - Synthesize to fuse map file used by programming instrument
 - If design doesn't fit
 - Partition into multiple PALs or use a more complex PLD

Generic Array Logic (GALs)

- PAL varies- o/p inverting or not, registers
 ?, o/p feedback to i/p ?
- Programmable Output Logic Macrocells (OLMCs)
 - OLMC replace OR gate, registers, tristate drivers
 - Use EEPROM technology
 - E.g. GAL22V10 prog mux, OLMC-reset

Complex PLDs (CPLDs)

- Cramming multiple PALs into an IC
 - Programmable interconnection network, PAL
 - PAL AND array, macrocells (M/C), I/O block
 - M/C- OR gates, mux, F/F (choice combinational/registered connection)
 - Use flash RAM technology to store configuration

FPGAs

- Larger CPLDs- replica of PAL, but limitations mapping of resources, insufficient use of resources on chip
- Field Programmable Gate Arrays
 - Smaller logic blocks, embedded SRAM, interconnection N/W
 - Thousands or millions of equivalent gates
 - LB logic block- simple combinational & sequential logic functions

Programmable interconnect

Logic Block Example

Xilinx FPGA Logic Blocks

 Lookup Tables (LUTs) plus flip-flops
 E.g., Spartan-II

 Too complex to program LBs manually

> Let synthesis tools map HDL code to LBs and program the interconnect

Logic Block Example

Xilinx FPGA Logic Blocks

 Lookup Tables (LUTs) plus flip-flops
 E.g., Spartan-II

 Too complex to program LBs manually

> Let synthesis tools map HDL code to LBs and program the interconnect

Platform FPGAs

- Include embedded cores for special applications
 - Processor cores
 - Signal processing arithmetic cores arithmetic circuits
 - Network interface cores Tx, Rx
- Embedded software can run from SRAM in the FPGA
 - Single-chip solution, reduces cost
 - Avoids high NRE of ASIC

Structured ASICs

- Midway PLDs & standard cell ASICs
- Array of very simple logic elements
 - Not programmable, no programmable interconnect
- FPGA Customized by loading a configuration program
- Structured ASIC Customized by designing top metal interconnection layer(s)
 - Lower NRE than full ASIC design
 - Performance close to full ASIC
- May become popular for mid-volume applications

IC Packages

- Different IC Packages- different physical, electrical and thermal properties
- ICs are encapsulated in protective packages
 - Gold wires
 - External pins for connected to circuit board
 - Bond-wires or flip-chip connections

Printed Circuit Boards (PCBs)

- Layers of conducting wires (copper) between insulating material (fiberglass)
 - Manufactured using photolithography and etching
- Wires interconnect ICs and other components
 - External connections to other system components
 - Via connection

Through-Hole PCBs

- IC package pins pass through drilled holes
 - Soldered to PCB wires that join the hole
 - Two rows 0.1 inch spacing
 - DIP 48 nos, PGA pin grid array 400 nos

Surface Mount PCB

- IC package pins soldered to wires on PCB surface
 - Packages and PCB features are generally smaller than through-hole
 - QFP quad flat pack 0.65mm 400
 - BGA ball grid array 0.4mm 1800

Multichip Modules (MCMs)

- Several ICs on a ceramic carrier
 - Can also include thin-film passives and discrete components
 - External connections for PCB mounting

Ideal for high-density applications
E.g., cell phones

Signal Integrity

- Signals propagate over bond wires, package pins, PCB traces
 - Various effects cause distortion and noise
 - Signal integrity: minimizing these effects
- Propagation delay in PCB trace $-\approx \frac{1}{2}c \Rightarrow \approx 150$ mm/ns
- If two traces differ in length
 - Skew at arrival point can be significant
 - Careful PCB design needed

Ground Bounce

- Transient current flows when an output switches logic level
 - Parasitic inductance causes
 voltage shift on power supply
 & ground signals
 - Spikes on other drivers
 - Threshold shift on receivers

Minimizing Bounce

- Bypass capacitors between ground and +V – 0.01µF – 0.1µF, close to package pins
- Separate PCB planes for ground and +V
- Limit output slew rate
 - Trade off against propagation delay

Transmission Line Effects

- Occur when rise time is comparable to path delay
 - Reflections interfere with transitions, resulting in under/overshoot and ringing
 - Can cause false/multiple switching
 - Use PCB layout techniques to minimize effects
 - Appropriate layout termination of PCB Traces
 - Controlled characteristics overshoot
 impedance
 - Micro strip tr. Line
 - Modern design tools

Electromagnetic Interference

- Transitions cause electromagnetic fields
 - Energy radiated from PCB traces
 - Induces noise in other systems
 - Subject to regulation
- Crosstalk
 - Radiation to other traces in the system
 - Particularly adjacent parallel traces
- PCB layout and slew-rate limiting can minimize both
- Tracs close to ground and power supply trace minimise EMI and crosstalk

Differential Signaling

- Reduces susceptibility to noise
- Transmit a signal (S_P) and negation (S_N)
 - At receiver, sense difference between them
 - $-S_P S_N$
- Noise induced on both S_P and S_N - $(S_P + V_{Noise}) - (S_N + V_{Noise}) = S_P - S_N$
- Cross talk effect cancelled out
- Advantages
 - Common mode noise, reduced o/p voltage swing, reduced EMI, reduced ground bounce, reduced cross talk

Summary

- Exponential improvements in IC manufacturing
- SSI and MSI TTL logic families
- ASICs: full-custom and standard cell
- PALs, CPLDs, FPGAs, platform FPGAs
- IC packages for PCB assembly
 - Through-hole and surface mount
- Signal integrity

