
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

DSDV

VI Sem

2017-18

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog. Sem.: 6th (2017-18)

Course Coordinator:

Prof. D. M. Kumbhar

Digital System Design

Using Verilog

Module 1

Introduction and Methodology

Portions of this work are from the book, Digital Design: An Embedded

Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan

Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Digital Design

Digital: circuits that use two voltage levels to represent

information

Logic: use truth values and logic to analyze circuits

Design: meeting functional requirements while satisfying

constraints

History : Mechanical – electromechanical – analog

Use

Disadvantages : accuracy, speed, maintenance.

Early circuits - digital circuits.

Constraints: performance, size, power, cost, etc.

Design using Abstraction

• Circuits contain millions of transistors

– How can we manage this complexity?

• Abstraction

– Focus on aspects relevant aspects,
ignoring other aspects

– Don’t break assumptions that allow aspect
to be ignored!

• Examples:

– Transistors are on or off

– Voltages are low or high

Digital Systems

• Electronic circuits that use discrete

representations of information

– Discrete in space and time

Embedded Systems

• Most real-world digital systems include

embedded computers

– Processor cores, memory, I/O

• Different functional requirements can be

implemented

– by the embedded software

– by special-purpose attached circuits

• Trade-off among cost, performance,

power, etc.

Binary Representation

• Basic representation for simplest

form of information, with only two

states

– a switch: open or closed

– a light: on or off

– a microphone: active or muted

– a logical proposition: false or true

– a binary (base 2) digit, or bit: 0 or 1

Binary Representation: Example

switch_pressed

+V

• Signal represents the state of the switch

– high-voltage => pressed,

low-voltage => not pressed

• Equally, it represents state of the lamp

– lamp_lit = switch_pressed

Basic Gate Components

• Primitive components for logic design

AND gate OR gate

inverter multiplexer

0

1

Combinational Circuits

• Circuit whose output values depend

purely on current input values

>30°C

low level

buzzer

>25°C

>30°C

low level

>25°C

0

1

vat 0

vat 1 select vat 1

select vat 0

+V

Sequential Circuits

• Circuit whose output values depend on

current and previous input values

– Include some form of storage of values

• Nearly all digital systems are sequential

– Mixture of gates and storage components

– Combinational parts transform inputs and

stored values

Flipflops and Clocks

• Edge-triggered D-flipflop

– stores one bit of information at a time

D Q

clk

 Timing diagram

 Graph of signal values versus time

Real-World Circuits

• Assumptions behind digital abstraction

– ideal circuits, only two voltages,

instantaneous transitions, no delay

• Greatly simplify functional design

• Constraints arise from real components

and real-world physics

• Meeting constraints ensures circuits are

―ideal enough‖ to support abstractions

Integrated Circuits (ICs)

• Circuits formed on surface of silicon wafer

– Minimum feature size reduced in each

technology generation

– Currently 90nm, 65nm

– Moore’s Law: increasing transistor count

– CMOS: complementary MOSFET circuits

outputinput

+V

Logic Levels

• Actual voltages for ―low‖ and ―high‖

– Example: 1.4V threshold for inputs

Logic Levels

• TTL logic levels with noise margins

VOL: output low voltage VIL: input low voltage

VOH: output high voltage VIH: input high voltage

Static Load and Fanout

Digital Design — Chapter 1 — Introduction and Methodology 17

Static Load and Fanout

• Current flowing into or out of an output

 High: SW1 closed, SW0 open

 Voltage drop across R1

 Too much current: VO < VOH

 Low: SW0 closed, SW1 open

 Voltage drop across R0

 Too much current: VO > VOL

 Fanout: number of inputs

connected to an output

 determines static load

Static Load and Fanout

18

Static Load and Fanout

• Current flowing into or out of an output

 High: SW1 closed, SW0 open

 Voltage drop across R1

 Too much current: VO < VOH

 Low: SW0 closed, SW1 open

 Voltage drop across R0

 Too much current: VO > VOL

 Fanout: number of inputs

connected to an output

 determines static load

19

Capacitive Load and Prop Delay

• Inputs and wires act as capacitors

 tr: rise time

 tf: fall time

 tpd: propagation delay
 delay from input transition

to output transition

 tpd= max(tpd01, tpd10)

20

Other Constraints

• Wire delay: delay for transition to

traverse interconnecting wire

• Flipflop timing

– delay from clk edge to Q output

– D stable before and after clk edge

• Power

– current through resistance => heat

– must be dissipated, or circuit cooks!

– Static & dynamic power consumption

21

Area and Packaging

• Circuits implemented on silicon chips

– Larger circuit area => greater cost

• Chips in packages with connecting

wires

– More wires => greater cost

– Package dissipates heat

• Packages interconnected on

a printed circuit board (PCB)

– Size, shape, cooling, etc,

constrained by final product

22

Models

• Model: represents interested aspects omits other
(abstraction of an object) Ex. House, train, plane.

• Electronic model: Prototype circuit

Abstract expression in some modeling language

• Abstract representations of aspects of a
system being designed
– Allow us to analyze the system before building it

• Example: Ohm’s Law
– V = I × R

– Represents electrical aspects of a resistor

– Expressed as a mathematical equation

– Ignores thermal, mechanical, materials aspects

23

Models

• Model: represents interested aspects omits other
(abstraction of an object) Ex. House, train, plane.

• Electronic model: Prototype circuit

Abstract expression in some modeling language

• Abstract representations of aspects of a
system being designed
– Allow us to analyze the system before building it

• Example: Ohm’s Law
– V = I × R

– Represents electrical aspects of a resistor

– Expressed as a mathematical equation

– Ignores thermal, mechanical, materials aspects

24

Module Ports

• Describe input and outputs of a circuit

>30°C

low level

buzzer

>25°C

>30°C

low level

>25°C

0

1

above_25_0

below_25_0

temp_bad_0

below_25_1

above_30_0

inv_0

or_0a

or_1a

or_0b

select_mux

or_1b
inv_1

wake_up_0

wake_up_1

low_level_0

above_25_1

above_30_1

low_level_1

select_vat_1

buzzer

temp_bad_1

+V

25

Structural Module Definition

module vat_buzzer_struct
(output buzzer,

input above_25_0, above_30_0, low_level_0,
input above_25_1, above_30_1, low_level_1,
input select_vat_1);

wire below_25_0, temp_bad_0, wake_up_0;
wire below_25_1, temp_bad_1, wake_up_1;

// components for vat 0
not inv_0 (below_25_0, above_25_0);
or or_0a (temp_bad_0, above_30_0, below_25_0);
or or_0b (wake_up_0, temp_bad_0, low_level_0);

// components for vat 1
not inv_1 (below_25_1, above_25_1);
or or_1a (temp_bad_1, above_30_1, below_25_1);
or or_1b (wake_up_1, temp_bad_1, low_level_1);

mux2 select_mux (buzzer, select_vat_1, wake_up_0, wake_up_1);

endmodule

26

Behavioral Module Definition

module vat_buzzer_struct
(output buzzer,

input above_25_0, above_30_0, low_level_0,
input above_25_1, above_30_1, low_level_1,
input select_vat_1);

assign buzzer =
select_vat_1 ? low_level_1 | (above_30_1 | ~above_25_1)

: low_level_0 | (above_30_0 | ~above_25_0);

endmodule

27

Design Methodology
• Design: complex, large no of undertakings & requirements.

Systematic approach of working out how to construct circuits that
meets given requirements.

• Simple systems can be design by one person using
ad hoc methods

• Real-world systems are design by teams
– Require a systematic design methodology

– Design methodology: systematic process of design,
verification and preparation for manufacture a product.

• Specifies
– Tasks to be undertaken

– Information needed and produced

– Relationships between tasks

• dependencies, sequences

– EDA tools used

Design Methodology

• A mature design methodology:
schedule & budget, no of errors detected and

missed, data from previous projects to

improve new one

• Advantages:

– Design process more reliable and
predictable

– Reducing risk and cost

– Reducing scale

28

29

A Simple Design Methodology

Requirements

and

Constraints

Design

Functional

Verification

OK?

N

Synthesize

Post-synthesis

Verification

OK?

N

Y

Physical

Implementation

Physical

Verification

OK?

N

Y

Manufacture

Test

Y

30

Hierarchical Design

• Circuits are too complex for us to design all
the detail at once

• Design subsystems for simple functions

• Compose subsystems to form the system
– Treating sub circuits as ―black box‖ components

– Ex. Display

– Reuse-present, previous or third party project

– Save – design effort & cost.

– Verify independently, then verify the composition

• Top-down/bottom-up design

31

Hierarchical Design

Design

Functional

Verification

OK?

N

Y

Unit

Design

Unit

Verification

OK?
N

Y

Architecture

Design

Integration

Verification

OK?
N

Y

32

Synthesis

• We usually design using register-transfer-

level (RTL) Verilog

– Higher level of abstraction than gates

• Synthesis tool translates to a circuit of gates

that performs the same function

• Specify to the tool

– the target implementation fabric

– Library – properties, timing, area, power

– constraints on timing, area, etc.

• Post-synthesis verification

– synthesized circuit meets constraints

33

Physical Implementation

• Implementation fabrics

– Application-specific ICs (ASICs)

– Field-programmable gate arrays (FPGAs)

• Floor-planning: arranging the subsystems

• Placement: arranging the gates within

subsystems

• Routing: joining the gates with wires

• Physical verification

– physical circuit still meets constraints

– use better estimates of delays

34

Embedded system Design

Codesign Methodology

OK?
N

Partitioning

Hardware

Design and

Verification

Software

Requirements

and Constraints

Software

Design and

Verification

OK?
N

Manufacture

and Test

Requirements

and

Constraints

Hardware

Requirements

and Constraints

35

Combinational Circuits

• Circuits whose outputs depend only on

current input values

– no storage of past input values

– no state

• Can be analyzed using laws of logic

– Boolean algebra, similar to propositional

calculus

36

Combinational Components

• We can build complex combination

components from gates

– Decoders, encoders

– Multiplexers

– …

• Use them as subcomponents of larger

systems

– Abstraction and reuse

37

Decoders

• A decoder derives control signals

from a binary coded signal

– One per code word

– Control signal is 1 when input has the

corresponding code word; 0 otherwise

• For an n-bit code input

– Decoder has 2n outputs

• Example: (a3, a2, a1, a1)

– Output for (1, 0, 1, 1): 012311 aaaay

a0

a1

a2

y0

y1

y2

y3

y4

… …

y15

a3

38

Decoder Example

Color Codeword (c2, c1, c0)

black 0, 0, 1

cyan 0, 1, 0

magenta 0, 1, 1

yellow 1, 0, 0

red 1, 0, 1

blue 1, 1, 0

39

Decoder Example

module ink_jet_decoder
(output black, cyan, magenta, yellow,

light_cyan, light_magenta,
input color2, color1, color0);

assign black = ~color2 & ~color1 & color0;
assign cyan = ~color2 & color1 & ~color0;
assign magenta = ~color2 & color1 & color0;
assign yellow = color2 & ~color1 & ~color0;
assign light_cyan = color2 & ~color1 & color0;
assign light_magenta = color2 & color1 & ~color0;

endmodule

40

Encoders

• An encoder encodes which

of several inputs is 1

– Assuming (for now) at most

one input is 1 at a time

• What if no input is 1?

– Separate output to indicate

this condition

a0

a1

a2

y0

y1

y2

y3

… …

valid

a3

a4

a15

41

Encoder Example

• Burglar alarm: encode

which zone is active

Zone Codeword

Zone 1 0, 0, 0

Zone 2 0, 0, 1

Zone 3 0, 1, 0

Zone 4 0, 1, 1

Zone 5 1, 0, 0

Zone 6 1, 0, 1

Zone 7 1, 1, 0

Zone 8 1, 1, 1

42

Encoder Example

module alarm_eqn (output [2:0] intruder_zone,
output valid,
input [1:8] zone);

assign intruder_zone[2] = zone[5] | zone[6] |
zone[7] | zone[8];

assign intruder_zone[1] = zone[3] | zone[4] |
zone[7] | zone[8];

assign intruder_zone[0] = zone[2] | zone[4] |
zone[6] | zone[8];

assign valid = zone[1] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];

endmodule

43

Priority Encoders

• If more than one input can be 1

– Encode input that is 1 with highest priority

zone intruder_zone valid

(1) (2) (3) (4) (5) (6) (7) (8) (2) (1) (0)

1 – – – – – – – 0 0 0 1

0 1 – – – – – – 0 0 1 1

0 0 1 – – – – – 0 1 0 1

0 0 0 1 – – – – 0 1 1 1

0 0 0 0 1 – – – 1 0 0 1

0 0 0 0 0 1 – – 1 0 1 1

0 0 0 0 0 0 1 – 1 1 0 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 – – – 0

44

Priority Encoder Example

module alarm_priority_1 (output [2:0] intruder_zone,
output valid,
input [1:8] zone);

assign intruder_zone = zone[1] ? 3'b000 :
zone[2] ? 3'b001 :
zone[3] ? 3'b010 :
zone[4] ? 3'b011 :
zone[5] ? 3'b100 :
zone[6] ? 3'b101 :
zone[7] ? 3'b110 :
zone[8] ? 3'b111 :
3'b000;

assign valid = zone[1] | zone[2] | zone[3] | zone[4] |
zone[5] | zone[6] | zone[7] | zone[8];

endmodule

45

BCD Code

• Binary coded decimal

– 4-bit code for decimal digits

0: 0000 1: 0001 2: 0010 3: 0011 4: 0100

5: 0101 6: 0110 7: 0111 8: 1000 9: 1001

46

Seven-Segment Decoder

• Decodes BCD to drive a 7-segment

LED or LCD display digit

– Segments: (g, f, e, d, c, b, a)

a

b

cde

f g 0111111 0000110 1011011 1001111 1100110

1101101 1111101 0000111 1111111 1101111

Digital Design — Chapter 2 — Combinational Basics 47

Seven-Segment Decoder

module seven_seg_decoder (output [7:1] seg,
input [3:0] bcd, input blank);

reg [7:1] seg_tmp;

always @*
case (bcd)
4'b0000: seg_tmp = 7'b0111111; // 0
4'b0001: seg_tmp = 7'b0000110; // 1
4'b0010: seg_tmp = 7'b1011011; // 2
4'b0011: seg_tmp = 7'b1001111; // 3
4'b0100: seg_tmp = 7'b1100110; // 4
4'b0101: seg_tmp = 7'b1101101; // 5
4'b0110: seg_tmp = 7'b1111101; // 6
4'b0111: seg_tmp = 7'b0000111; // 7
4'b1000: seg_tmp = 7'b1111111; // 8
4'b1001: seg_tmp = 7'b1101111; // 9
default: seg_tmp = 7'b1000000; // "-" for invalid code

endcase

assign seg = blank ? 7'b0000000 : seg_tmp;

endmodule

48

Multiplexers

• Chooses between data inputs based on

the select input

2-to-1 mux

sel z

0 a0

1 a1

4-to-1 mux

sel z

00 a0

01 a1

10 a2

11 a3

two select

bits

 N-to-1 multiplexer

needs log2 N

select bits

0

1

0

1

2

3

2

49

Multiplexer Example

module multiplexer_4_to_1 (output reg z,
input [3:0] a,
input sel);

always @*
case (sel)
2'b00: z = a[0];
2'b01: z = a[1];
2'b10: z = a[2];
2'b11: z = a[3];

endcase

endmodule

50

Multi-bit Multiplexers

• To select between N

m-bit codeword inputs

– Connect m N-input

multiplexers in parallel

– 3-bit 2 codewords requires

3, 2 input multiplexers

• Abstraction

– Treat this as a component

0

1

0

1

0

1

0

1

a0(0)

a1(0)
z(0)

a0 3

3

3

a1
z

a0(1)

a1(1)
z(1)

a0(2)

a1(2)

sel

sel

z(2)

51

Multi-bit Mux Example

module multiplexer_3bit_2_to_1 (output [2:0] z,
input [2:0] a0, a1,
input sel);

assign z = sel ? a1 : a0;

endmodule

52

Active-Low Logic

• We’ve been using active-high logic

– 0 (low voltage): falsehood of a condition

– 1 (high voltage): truth of a condition

• Active-low logic logic

– 0 (low voltage): truth of a condition

– 1 (high voltage): falsehood of a condition

– reverses the representation, not negative voltage!

• In circuit schematics, label active-low signals with

overbar notation

– eg, lamp_lit: low when lit, high when not lit

53

Active-Low Example

• Night-light circuit, lamp connected to

power supply

Match bubbles with

active-low signals

to preserve logic

sense

Overbar indicates

active-low

lamp_enabled

dark

lamp_lit

sensor

+V +V

54

Implied Negation

• Negation implied by connecting

– An active-low signal to an active-high input/output

– An active-high signal to an active-low input/output

Negation implied

lamp_enabled

light

lamp_lit

sensor

+V

55

Active-Low Signals and Gates

 DeMorgan’s laws suggest alternate views

for gates

 They’re the same electrical circuit!

 Use the view that best represents the logical

function intended

 Match the bubbles, unless implied negation is

intended

56

Active-Low Logic in Verilog

• Can’t draw an overbar in Verilog

– Use _N suffix on signal or port name

• 1'b0 and 1'b1 in Verilog mean low and high

• For active-low logic

– 1'b0 means the condition is true

– 1'b1 means the condition is false

• Example

– assign lamp_lit_N = 1'b0;

– turns the lamp on

57

Combinational Verification

• Design Methodology – requirements & constraints

• Combination circuits: outputs are a function of inputs

– Functional verification: making sure it's the right function!

– Testbench model

– DUV /DUT

Design Under

Verification

(DUV)
Apply

Test Cases Checker

Verification Testbench

58

Verification Example

• Verify operation of traffic-light controller

• Property to check

– enable lights_out == lights_in

– !enable all lights are inactive

• Represent this as an assertion in the

checker

59

Testbench Module

`timescale 1ms/1ms

module light_testbench;

wire [1:3] lights_out;
reg [1:3] lights_in;
reg enable;

light_controller_and_enable duv (.lights_out(lights_out),
.lights_in(lights_in),
.enable(enable));

60

Applying Test Cases

initial begin
enable = 0; lights_in = 3'b000;

#1000 enable = 0; lights_in = 3'b001;
#1000 enable = 0; lights_in = 3'b010;
#1000 enable = 0; lights_in = 3'b100;
#1000 enable = 1; lights_in = 3'b001;
#1000 enable = 1; lights_in = 3'b010;
#1000 enable = 1; lights_in = 3'b100;
#1000 enable = 1; lights_in = 3'b000;
#1000 enable = 1; lights_in = 3'b111;
#1000 $finish;

end

61

Checking Assertions

always @(enable or lights_in) begin
#10
if (!((enable && lights_out == lights_in) ||

(!enable && lights_out == 3'b000)))
$display("Error in light controller output");

end

endmodule

62

Functional Coverage

• Did we test all possible input cases?

• For large designs, exhaustive testing is

not tractable

– N inputs: number of cases = 2N

• Functional coverage

– Proportion of test cases covered by a

testbench

– It can be hard to decide how much testing

is enough

63

Sequential Basics

• Sequential circuits

– Outputs depend on current inputs and

previous inputs

– Store state: an abstraction of the history of

inputs

• Usually governed by a periodic clock

signal

• Flip flop, registers, counters

64

Datapaths and Control

• Digital systems perform sequences of operations on
encoded data

• Datapath
– Combinational circuits for operations

– Registers for storing intermediate results

• Control section: control sequencing
– Generates control signals

• Selecting operands

• Selecting operations to perform

• Enabling registers at the right times

• Activate signal at right order & right time

– Uses status signals from datapath

• Challenging task: requirements & constraints

– Functional requirements – alternatives for implementation

– Tradeoff – area, performance.

65

Example: Complex Multiplier

• Cartesian form, fixed-point

– operands: 4 pre-, 12 post-binary-point bits

– result: 8 pre-, 24 post-binary-point bits

• Subject to tight area constraints

ir jaaa ir jbbb

)()(riiriirrir babajbabajppabp

 4 multiplies, 1 add, 1 subtract

 Perform sequentially using 1 multiplier, 1

adder/subtracter

66

Complex Multiplier Datapath

0

1

0

1

D

CE

Q

clk

D

CE

Q

clk

× ±

D

CE

Q

clk

D

CE

Q

clk

p_r

p_i

a_r

a_i

b_r

b_i

a_sel

b_sel

pp1_ce

pp2_ce

sub

p_r_ce

p_i_ce

clk

67

Complex Multiplier in Verilog

module multiplier
(output reg signed [7:-24] p_r, p_i,

input signed [3:-12] a_r, a_i, b_r, b_i,
input clk, reset, input_rdy);

reg a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce;

wire signed [3:-12] a_operand, b_operand;
wire signed [7:-24] pp, sum
reg signed [7:-24] pp1, pp2;

...

68

Complex Multiplier in Verilog

assign a_operand = ~a_sel ? a_r : a_i;
assign b_operand = ~b_sel ? b_r : b_i;

assign pp = {{4{a_operand[3]}}, a_operand, 12'b0} *
{{4{b_operand[3]}}, b_operand, 12'b0};

always @(posedge clk) // Partial product 1 register
if (pp1_ce) pp1 <= pp;

always @(posedge clk) // Partial product 2 register
if (pp2_ce) pp2 <= pp;

assign sum = ~sub ? pp1 + pp2 : pp1 - pp2;

always @(posedge clk) // Product real-part register
if (p_r_ce) p_r <= sum;

always @(posedge clk) // Product imaginary-part register
if (p_i_ce) p_i <= sum;

...

endmodule

69

Multiplier Control Sequence

• Avoid resource conflict

• First attempt

1. a_r * b_r → pp1_reg

2. a_i * b_i → pp2_reg

3. pp1 – pp2 → p_r_reg

4. a_r * b_i → pp1_reg

5. a_i * b_r → pp2_reg

6. pp1 + pp2 → p_i_reg

• Takes 6 clock cycles

70

Multiplier Control Sequence

• Merge steps where no resource conflict

• Revised attempt

1. a_r * b_r → pp1_reg

2. a_i * b_i → pp2_reg

3. pp1 – pp2 → p_r_reg

a_r * b_i → pp1_reg

4. a_i * b_r → pp2_reg

5. pp1 + pp2 → p_i_reg

• Takes 5 clock cycles

71

Multiplier Control Signals

Step a_sel b_sel pp1_ce pp2_ce sub p_r_ce p_i_ce

1 0 0 1 0 – 0 0

2 1 1 0 1 – 0 0

3 0 1 1 0 1 1 0

4 1 0 0 1 – 0 0

5 – – 0 0 0 0 1

72

Finite-State Machines

• Used the implement control sequencing

– Based on mathematical automaton theory

• A FSM is defined by

– set of inputs: Σ

– set of outputs: Γ

– set of states: S

– initial state: s0 S

– transition function: δ: S × Σ → S

– output function: ω: S × Σ → Γ or ω: S → Γ

73

FSM in Hardware

• Mealy FSM: ω: S × Σ → Γ

• Moore FSM: ω: S → Γ

Mealy FSM

only

74

FSM Example: Multiplier Control

• One state per step

• Separate idle state?

– Wait for input_rdy = 1

– Then proceed to steps 1, 2, ...

– But this wastes a cycle!

• Use step 1 as idle state

– Repeat step 1 if input_rdy ≠ 1

– Proceed to step 2 otherwise

• Output function

– Defined by table on slide 43

– Moore or Mealy?

current_
state

input_
rdy

next_
state

step1 0 step1

step1 1 step2

step2 – step3

step3 – step4

step4 – step5

step5 – step1

Transition function

75

State Encoding

• Encoded in binary

– N states: use at least log2N bits

• Encoded value used in circuits for transition

and output function

– encoding affects circuit complexity

• Optimal encoding is hard to find

– CAD tools can do this well

• One-hot works well in FPGAs

• Often use 000...0 for idle state

– reset state register to idle

76

FSMs in Verilog

• Use parameters for state values

– Synthesis tool can choose an alternative

encoding

parameter [2:0] step1 = 3'b000, step2 = 3'b001,
step3 = 3'b010, step4 = 3'b011,
step5 = 3'b100;

reg [2:0] current_state, next_state ;

...

77

Multiplier Control in Verilog

always @(posedge clk or posedge reset) // State register
if (reset) current_state <= step1;
else current_state <= next_state;

always @* // Next-state logic
case (current_state)
step1: if (!input_rdy) next_state = step1;

else next_state = step2;
step2: next_state = step3;
step3: next_state = step4;
step4: next_state = step5;
step5: next_state = step1;

endcase

78

Multiplier Control in Verilog

always @* begin // Output_logic
a_sel = 1'b0; b_sel = 1'b0; pp1_ce = 1'b0; pp2_ce = 1'b0;
sub = 1'b0; p_r_ce = 1'b0; p_i_ce = 1'b0;
case (current_state)
step1: begin

pp1_ce = 1'b1;
end

step2: begin
a_sel = 1'b1; b_sel = 1'b1; pp2_ce = 1'b1;

end
step3: begin

b_sel = 1'b1; pp1_ce = 1'b1;
sub = 1'b1; p_r_ce = 1'b1;

end
step4: begin

a_sel = 1'b1; pp2_ce = 1'b1;
end

step5: begin
p_i_ce = 1'b1;

end
endcase

end

79

State Transition Diagrams

• Bubbles to represent states

• Arcs to represent transitions

 Example

 S = {s1, s2, s3}

 Inputs (a1, a2):

Σ = {(0,0), (0,1), (1,0), (1,1)}

 δ defined by diagram

s1 s2

s3

0, 0

0, 0

0, 1

1, 0

0, 1

1, 0

1, 1

1, 1

80

State Transition Diagrams

• Annotate diagram to

define output

function

– Annotate states for

Moore-style outputs

– Annotate arcs for

Mealy-style outputs

• Example

– x1, x2: Moore-style

– y1, y2, y3: Mealy-style

s1 s2

s3

0, 0 / 0, 0, 0

1, 0 0, 0

0, 1

0, 0 / 0, 0, 0

0, 1 / 0, 1, 1

/ 0, 1, 1

1, 0 / 1, 0, 0

0, 1 / 0, 1, 1

1, 0 / 1, 0, 0

1, 1 / 1, 1, 1

1, 1 / 1, 1, 1

81

Multiplier Control Diagram

• Input: input_rdy

• Outputs

– a_sel, b_sel, pp1_ce, pp2_ce, sub, p_r_ce, p_i_ce

step1

0, 0, 1, 0, –, 0, 0
0

1 step2

1, 1, 0, 1, –, 0, 0

step4

1, 0, 0, 1, –, 0, 0

step5

–, –, 0, 0, 0, 0, 1

step3

0, 1, 1, 0, 1, 1, 0

82

Bubble Diagrams or Verilog?

• Many CAD tools provide editors for

bubble diagrams

– Automatically generate Verilog for

simulation and synthesis

• Diagrams are visually appealing

– but can become unwieldy for complex

FSMs

• Your choice...

– or your manager's!

83

Register Transfer Level

• RTL — a level of abstraction

– data stored in registers

– transferred via circuits that operate on data

control section

outputs
inputs

84

Clocked Synchronous Timing

• Registers driven by a common clock

– Combinational circuits operate during clock

cycles (between rising clock edges)

tco + tpd + tsu < tc

Q1 D2t
pdt

co
t
su

85

Control Path Timing

tco + tpd-s + tpd-o + tpd-c + tsu < tc

tco + tpd-s + tpd-ns + tsu < tc

Ignore tpd-s for a Moore FSM

t
pd-s

t
pd-c

t
pd-o

t
pd-ns

t
co

t
su

t
su

86

Timing Constraints

• Inequalities must hold for all paths

• If tco and tsu the same for all paths

– Combinational delays make the difference

• Critical path

– The combinational path between registers with the

longest delay

– Determines minimum clock period for the entire

system

• Focus on it to improve performance

– Reducing delay may make another path critical

87

Interpretation of Constraints

1. Clock period depends on delays

– System can operate at any frequency up
to a maximum

– OK for systems where high performance
is not the main requirement

2. Delays must fit within a target clock
period

– Optimize critical paths to reduce delays if
necessary

– May require revising RTL organization

88

Clock Skew

• Need to ensure clock edges arrive at all

registers at the same time

– Use CAD tools to insert clock buffers and

route clock signal paths

Q1 D2

89

Off-Chip Connections

• Delays going off-chip and inter-chip

– Input and output pad delays, wire delays

• Same timing rules apply

– Use input and output registers to avoid

adding external delay to critical path

90

Asynchronous Inputs

• External inputs can change at any time

– Might violate setup/hold time constraints

• Can induce metastable state in a flipflop

 Unbounded time to recover

 May violate setup/hold time

of subsequent flipflop
21

2

ffk

e
MTBF

f

tk

02k

0 1 0 1

91

Synchronizers

• If input changes outside setup/hold window

– Change is simply delayed by one cycle

• If input changes during setup/hold window

– First flipflop has a whole cycle to resolve

metastability

• See data sheets for metastability parameters

92

Switch Inputs and Debouncing

• Switches and push-buttons suffer from

contact bounce

– Takes up to 10ms to settle

• Need to debounce to avoid false triggering

 Requires two inputs

and two resistors

 Must use a break-

before-make double-

throw switch
Q

R

S

+V

93

Switch Inputs and Debouncing

• Alternative
– Use a single-throw switch

– Sample input at intervals longer than bounce time

– Look for two successive samples with the same
value

 Assumption

 Extra circuitry inside the chip

is cheaper than extra

components and connections

outside

