
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

DSDV

VI Sem

2017-18

Department of Electronics & Communication Engg.

Course : Digital System Design using Verilog. Sem.: 6th (2017-18)

Course Coordinator:

Prof. D. M. Kumbhar

Digital System Design

Using Verilog

Module 2

Memories

Portions of this work are from the book, Digital Design: An Embedded

Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan

Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

3

General Concepts

• A memory is an array of

storage locations

– Each with a unique address

– Like a collection of

registers, but with optimized

implementation

• Address is unsigned-

binary encoded

– n address bits ⇒ 2n locations

• All locations the same size

– 2n × m bit memory

0

1

2

3

4

5

6

2n–2

2n–1

m bits

4

Memory Sizes

• Use power-of-2 multipliers

– Kilo (K): 210 = 1,024 ≈ 103

– Mega (M): 220 = 1,048,576 ≈ 106

– Giga (G): 230 = 1,073,741,824 ≈ 109

• Example

– 32K × 32-bit memory

– Capacity = 1,025K = 1Mbit

– Requires 15 address bits

• Size is determined by application requirements

5

Basic Memory Operations
• a inputs: unsigned address

• d_in and d_out
– Type depends on application

• Write operation
– en = 1, wr = 1

– d_in value stored in location given
by address inputs

• Read operation
– en = 1, wr = 0

– d_out driven with value of location
given by address inputs

• Idle: en = 0

a(0)

… …a(1)

en

wr

a(n–1)

d_in(0)

… …d_in(1)

d_in(m–1)

d_out(0)

…

…d_out(1)

d_out(m–1)

6

Example: Audio Delay Unit
• System clock: 1MHz

• Audio samples: 8-bit signed, at 50kHz
– New sample arrives when audio_in_en = 1

• Delay control: 8-bit unsigned ⇒ ms to delay

• Output: audio_out_en = 1 when output ready

7

Audio Delay Datapath

• Max delay = 255ms

– Need to store 255 × 50 = 12,750 samples

– Use a 16K × 8-bit memory (14 address bits)

0

1

a

d_in d_out

en

wr

en Q

clk

×50

–
audio_out

audio_in

delay

clk

count_en

addr_sel

mem_en

mem_wr

8

14

14

14

16

16

8

Audio Delay Control Section
Step 1: (idle state)

– audio_in_en = 0 ⇒ do nothing

– audio_in_en = 1 ⇒ write memory using counter
value as address

• Step 2:
– Read memory using subtracter output as address,

increment counter

State audio_
in_en

Next state addr_sel mem_en mem_wr count_en audio_
out_en

Step 1 0 Step 1 0 0 0 0 0

Step 1 1 Step 2 0 1 1 0 0

Step 2 – Step 1 1 1 0 1 1

9

Wider Memories

• Memory components have a fixed width

– E.g., ×1, ×4, ×8, ×16, ...

• Use memory

components in

parallel to make

a wider memory

– E.g, three 16K×16

components for a

16K×48 memory

a(13…0)

en

wr

d_in(15…0)

d_out(15…0)

a(13…0)

en

wr

d_in(15…0)

d_out(15…0)

a(13…0)

en

wr

d_in(15…0)

d_out(15…0)

d_out(31…16)

d_out(47…32)

d_out(15…0)

d_in(31…16)

d_in(47…32)

d_in(15…0)

a(13…0)

en

wr

10

More Locations

• To provide 2n locations with

2k-location components

– Use 2n/2k components

• Address A

– at offset A mod 2k

• least-significant k bits of A

– in component A/2k

• most-significant n–k bits of A

• decode to select component

0
1

2k–1
2k

2k+1

2×2k–1
2×2k

2×2k+1

3×2k–1

2n–2k

2n–2k +1

2n–1

11

More Locations

 Example:

64K×8 memory

composed of

16K×8 components

a(13…0)

en

wr

d_in(7…0)

d_out(7…0)

a(13…0)

en

wr

d_in(7…0)

d_out(7…0)

a(13…0)

en

wr

d_in(7…0)

d_out(7…0)

a(13…0)

en

wr

d_in(7…0)

d_out(7…0)

d_out(7…0)

d_in(7…0)

a(13…0)

a(15…14)

en

wr

0

1

2

3

0
en

1

2

3

12

Tristate Drivers
• Allow multiple outputs to be connected together

– Only one active at a time

– Remaining outputs are high-impedance

• Both output transistors turned off

• Allow bidirectional input/output ports

output

+V

13

Memories with Tristate Ports

• During write

– memory d drivers hi-Z

– memory senses d

• During read

– selected memory drives d

• Fewer pins and wires

– Reduced cost of PCB

• Usually not available

within ASICs or FPGAs

a(13…0)

en

wr

d(7…0)

a(13…0)

en

wr

d(7…0)

a(13…0)

en

wr

d(7…0)

a(13…0)

en

wr

d(7…0)d(7…0)

a(13…0)

a(15…14)

en

wr

0
en

1

2

3

14

Memory Types

• Random-Access Memory (RAM)
– Can read and write

– Static RAM (SRAM)
• Stores data so long as power is supplied

• Asynchronous SRAM: not clocked

• Synchronous SRAM (SSRAM): clocked

– Dynamic RAM (DRAM)
• Needs to be periodically refreshed

• Read-Only Memory (ROM)
– Combinational

– Programmable and Flash rewritable

• Volatile and non-volatile

15

Asynchronous SRAM

• Data stored in 1-bit latch cells
– Address decoded to enable a given cell

• Usually use active-low control inputs

• Not available as components in ASICs or
FPGAs

A

CE

WE

OE

D

16

Asynch SRAM Timing

• Timing parameters published in data sheets

• Access time

– From address/enable valid to data-out valid

• Cycle time

– From start to end of access

• Data setup and hold

– Before/after end of WE pulse

– Makes asynch SRAMs hard to use in clocked

synchronous designs

17

Example Data Sheet

18

Synchronous SRAM (SSRAM)

• Clocked storage registers for inputs

– address, data and control inputs

– stored on a clock edge

– held for read/write cycle

 Flow-through SSRAM

 no register on

data output

clk

A

en

wr

D_in

D_out

a
1

xx

xx M(a
2
)

a
2

19

Example: Coefficient Multiplier

• Compute function

– Coefficient stored in flow-through SSRAM

• 12-bit unsigned integer index for i

– x, y, ci 20-bit signed fixed-point

• 8 pre- and 12 post-binary point bits

– Use a single multiplier

• Multiply ci × x × x

2xcy i

20

Multiplier Datapath

D_in

A

SSRAM

en

wr

D_out

clk

D

ce

Q

clk

D

ce

Q

clk

× y

i

c_in

c_ram_wr

x_ce

c_ram_en

x

y_ce

mult_sel

clk

0

1

0

1

21

Multiplier Timing and Control

step1

1, 1, 0, 0

0

1
step2

0, 0, 0, 1

step3

0, 0, 1, 1

22

Pipelined SSRAM

• Data output also has a register

– More suitable for high-speed systems

– Access RAM in one cycle, use the data in

the next cycle

clk

A

en

wr

D_in

D_out

a
1

xx

xx M(a
2
)

a
2

23

Memories in Verilog

• RAM storage represented by an array

variable
reg [15:0] data_RAM [0:4095];
...

always @(posedge clk)
if (en)

if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else

d_out <= data_RAM[a];

24

Example: Coefficient Multiplier
module scaled_square (output reg signed [7:-12] y,

input signed [7:-12] c_in, x,
input [11:0] i,
input start,
input clk, reset);

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:-12] c_out, x_out;

reg signed [7:-12] c_RAM [0:4095];

reg signed [7:-12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

25

Example: Coefficient Multiplier
always @(posedge clk) // c RAM - flow through
if (c_ram_en)
if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin
if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

26

Example: Coefficient Multiplier

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule

27

Pipelined SSRAM in Verilog

reg pipelined_en;
reg [15:0] pipelined_d_out;
...

always @(posedge clk) begin
if (pipelined_en) d_out <= pipelined_d_out;
pipelined_en <= en;
if (en)

if (wr) begin
data_RAM([a] <= d_in; pipelined_d_out <= d_in;

end
else
pipelined_d_out <= data_RAM[a];

end

SSRAM

output

register

28

Multiport Memories

• Multiple address, data and control connections

to the storage locations

• Allows concurrent accesses

– Avoids multiplexing and sequencing

• Scenario

– Data producer and data consumer

• What if two writes to a location occur

concurrently?

– Result may be unpredictable

– Some multi-port memories include an arbiter

29

FIFO Memories

• First-In/First-Out buffer

– Connecting producer and consumer

– Decouples rates of production/consumption

FIFO
Producer

subsystem

Consumer

subsystem

 Implementation using

dual-port RAM

 Circular buffer

 Full: write-addr = read-addr

 Empty: write-addr = read-addr
write

read

30

Example: FIFO Datapath

• Equal = full or empty

– Need to distinguish between these states — How?

D_wr

A_wr A_rd

dual-port

SSRAM

wr_en

D_rd

clk

rd_en

clk

counter

8-bit

ce

reset

Q

clk

counter

8-bit

ce

reset

Q

clk
= equal

A_rd

A_wr

D_rd

clk

wr_en

D_wr

reset

rd_en

31

Example: FIFO Control

• Control FSM

– → filling when write without concurrent read

– → emptying when without concurrent write

– Unchanged when concurrent write and read

full = filling and equal

empty = emptying and equal
wr_en, rd_en

emptying

filling

1, 0 0, 1

32

Multiple Clock Domains

• Need to resynchronize data that traverses

clock domains

– Use resynchronizing registers

• May overrun if sender's clock is faster than

receiver's clock

• FIFO smooths out differences in data flow

rates

– Latch cells inside FIFO RAM written with

sender's clock, read with receiver's clock

33

Dynamic RAM (DRAM)

• Data stored in a 1-transistor/1-capacitor cell

– Smaller cell than SRAM, so more per chip

– But longer access time

• Write operation

– pull bit-line high or low (0 or 1)

– activate word line

• Read operation

– precharge bit-line to intermediate voltage

– activate word line, and sense charge equalization

– rewrite to restore charge

34

DRAM Refresh

• Charge on capacitor decays over time

– Need to sense and rewrite periodically

• Typically every cell every 64ms

– Refresh each location

• DRAMs organized into banks of rows

– Refresh whole row at a time

• Can’t access while refreshing

– Interleave refresh among accesses

– Or burst refresh every 64ms

35

Read-Only Memory (ROM)

• For constant data, or CPU programs

• Masked ROM

– Data manufactured into the ROM

• Programmable ROM (PROM)

– Use a PROM programmer

• Erasable PROM (EPROM)

– UV erasable

– Electrically erasable (EEPROM)

– Flash RAM

36

Combinational ROM

• A ROM maps address input to data output

– This is a combinational function!

– Specify using a table

• Example: 7-segment decoder

Address Content Address Content

0 0111111 6 1111101

1 0000110 7 0000111

2 1011011 8 1111111

3 1001111 9 1101111

4 1100110 10–15 1000000

5 1101101 16–31 0000000

a

b

c

d

e

f

g

BCD0

BCD1

BCD2

BCD3

blank

A0

A1

A2

A3

A4

D0

D1

D2

D3

D4

D5

D6

37

Example: ROM in Verilog
module seven_seg_decoder (output reg [7:1] seg,

input [3:0] bcd,
input blank);

always @*
case ({blank, bcd})
5'b00000: seg = 7'b0111111; // 0
5'b00001: seg = 7'b0000110; // 1
5'b00010: seg = 7'b1011011; // 2
5'b00011: seg = 7'b1001111; // 3
5'b00100: seg = 7'b1100110; // 4
5'b00101: seg = 7'b1101101; // 5
5'b00110: seg = 7'b1111101; // 6
5'b00111: seg = 7'b0000111; // 7
5'b01000: seg = 7'b1111111; // 8
5'b01001: seg = 7'b1101111; // 9
5'b01010, 5'b01011, 5'b01100,
5'b01101, 5'b01110, 5'b01111:

seg = 7'b1000000; // "-" for invalid code
default: seg = 7'b0000000; // blank

endcase

endmodule

38

Flash RAM
• Non-volatile, readable (relatively fast), writable

(relatively slow)

• Storage partitioned into blocks
– Erase a whole block at a time, then write/read

– Once a location is written, can't rewrite until erased

• NOR Flash
– Can write and read individual locations

– Used for program storage, random-access data

• NAND Flash
– Denser, but can only write and read block at a time

– Used for bulk data, e.g., cameras, memory sticks

39

Memory Errors

• Bits in memory can be flipped

• Hard error

– The chip is broken

– E.g., manufacturing defect, wear (in Flash)

• Soft error

– Stored data corrupted, but cell still works

– E.g., from atmospheric neutrons

• Soft-error rate

– frequency of occurrence

40

Error Detection using Parity

• Add a parity bit to each location

• On write access

– compute data parity and store with data

• On read access

– check parity, take exception on error

• If we could tell which bit flipped

– correct by flipping it back, then write back to
memory location

– Can’t do this with parity

41

Error-Correcting Codes (ECC)

• Allow identification of the flipped bit

• Hamming Codes

– E.g., for single-bit-error correction of N-bit word,

need log2N + 1 extra bits

• Example: 8-bit word, d1... d8

– 12-bit ECC code, e1...e12

– e1, e2, e4, e8 are check bits, the rest data

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

42

Hamming Code Example

e1 0 0 0 1

e2 0 0 1 0

e4 0 1 0 0

e8 1 0 0 0

e3 0 0 1 1

e5 0 1 0 1

e6 0 1 1 0

e7 0 1 1 1

e9 1 0 0 1

e10 1 0 1 0

e11 1 0 1 1

e12 1 1 0 0

e1 = e3 ⊕ e5 ⊕ e7 ⊕ e9 ⊕ e11

e2 = e3 ⊕ e6 ⊕ e7 ⊕ e10 ⊕ e11

e4 = e5 ⊕ e6 ⊕ e7 ⊕ e12

e8 = e9 ⊕ e10 ⊕ e11 ⊕ e12

 Every data bit covered by two

or more check bits

 On write: Compute check bits

and store with data

d
1

d
2

d
3

d
4

d
5

d
6

d
7

d
8

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
10

e
11

e
12

43

Hamming Code Example

e1 0 0 0 1

e2 0 0 1 0

e4 0 1 0 0

e8 1 0 0 0

e3 0 0 1 1

e5 0 1 0 1

e6 0 1 1 0

e7 0 1 1 1

e9 1 0 0 1

e10 1 0 1 0

e11 1 0 1 1

e12 1 1 0 0

 On read: Recompute check

bits and XOR with read check

bits
 result called the syndrome

 0000 => no error

 If data bit flipped
 covering bits of syndrome are 1

 = binary code of flipped ECC bit

 If stored check bit flipped
 that bit of syndrome is 1

 On error, unflip bit and rewrite

memory location

44

Multiple-Error Detection

• What if two bits flip

– syndrome identifies wrong bit, or is invalid

• One extra check bit allows

– single-error correction, double-error detection

N

Single-bit correction Double-bit detection

Check bits Overhead Check bits Overhead

8 4 50% 5 63%

16 5 31% 6 38%

32 6 19% 7 22%

64 7 11% 8 13%

128 8 6.3% 9 7.0%

256 9 3.5% 10 3.9%

45

Summary

• Memory: addressable storage locations

• Read and Write operations

• Asynchronous RAM

• Synchronous RAM (SSRAM)

• Dynamic RAM (DRAM)

• Read-Only Memory (ROM) and Flash

• Multiport RAM and FIFOs

• Error Detection and Correction

– Hamming Codes

