

Department of Electronics & Communication Engg.

Course : Verilog HDL-15EC53.

Sem.: 5th

Course Coordinator: Prof. Sachin S Patil

<u>Verilog HDL</u> B.E., V Semester, Electronics & Communication Engineering/ Telecommunication Engineering

[As per Choice Based Credit System (CBCS) scheme]

Subject Code	15EC53	IA Marks	20			
Number of Lecture	04	Exam Marks	80			
Hours/Week						
Total Number of	50 (10 Hours / Module)	Exam Hours	03			
Lecture Hours						
	CREDITS –	04				
	Modules	\$				
	Module-	1				
Overview of Digital	Design with Verilog HDL					
Evolution of CAD, er	nergence of HDLs, typical H	IDL-flow, why Ver	ilog HDL?, trends in			
HDLs. (Text1)						
Hierarchical Model	ing Concepts					
Top-down and botto	m-up design methodology, o	differences betwee	en modules and			
module instances, p	arts of a simulation, design	block, stimulus b	olock. (Text1)			
	Module-2	2				
Basic Concepts						
Lexical conventions,	data types, system tasks, o	compiler directives	s. (Text1)			
Modules and Ports						
Module definition, p	oort declaration, connecting	g ports, hierarchi	cal name referencing.			
(Text1)						
	Module	2				
Cate Level Modelin	module-	5				
Modeling using besi	S A Varilag gata primitivas d	locarintian of and	(or and buf/not turns			
sates rise fall and turn off delays min may and turical delays (Tavt1)						
Deteflow Modeling						
Continuous assignments delay specification expressions operators operands						
operator types (Tevt1)						
operator types. (react)						
Module-4						
Behavioral Modeling						
Structured procedures, initial and always, blocking and non-blocking statements,						
delay control, generate statement, event control, conditional statements, multiway						
branching, loops, sequential and parallel blocks. (Text1)						
Module-5						
Introduction to VH	Introduction to VHDL					
Introduction: Why use VHDL?, Shortcomings, Using VHDL for Design Synthesis,						
Design tool flow, Font conventions.						

Entities and Architectures: Introduction, A simple design, Design entities, Identifiers, Data objects, Data types, and Attributes. (Text 2)

Question paper pattern:

- The question paper will have ten questions
- Each full question consists of 16 marks.
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module
- The students will have to answer 5 full questions, selecting one full question from each module

Text Books:

- Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis", Pearson Education, Second Edition.
- 2. Kevin Skahill, "VHDL for Programmable Logic", PHI/Pearson education, 2006.

Reference Books:

- 1. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description Language", Springer Science+Business Media, LLC, Fifth edition.
- 2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL" Pearson (Prentice Hall), Second edition.
- 3. Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley, 2016 or earlier.

HDL Lab B.E., V Semester, EC/TC

[As per Choice Based Credit System (CBCS) scheme]						
Subject Code	15ECL58	IA Marks	20			
Number of Lecture	01 Hr Tutorial (Instructions)	Exam Marks	80			
Hours/Week	+ 02 Hours Laboratory = 03					
	ũ					
		Exam Hours	03			
CREDITS - 02						
Laboratory Experiments						
Part-A (Using Xilinx Tool)						
 Write Verilog code to realize all the logic gates 						
2 Write a Verilog program for the following combinational designs						

- a. 2 to 4 decoder
- b. 8 to 3 (encoder without priority & with priority)
- c. 8 to 1 multiplexer.
- d. 4 bit binary to gray converter
- e. Multiplexer, de-multiplexer, comparator.
- 3. Write a VHDL and Verilog code to describe the functions of a Full Adder using three modeling styles.
- 4. Write a Verilog code to model 32 bit ALU using the schematic diagram shown below

- ALU should use combinational logic to calculate an output based on the four bit op-code input.
- ALU should pass the result to the out bus when enable line in high, and tri-state the out bus when the enable line is low.
- ALU should decode the <u>4 bit op-code according to the example given below.</u>

OPCODE	ALU Operation
1.	A+B
2.	A-B
3.	A Complement
4.	A*B
5.	A AND B

6.	A OR B
7.	A NAND B
8.	A XOR B

- 5. Develop the Verilog code for the following flip-flops, SR, D, JK and T.
- 6. Design a 4 bit binary, BCD counters (Synchronous reset and Asynchronous reset) and "any sequence" counters, using Verilog code.

Part – B INTERFACING (at least four of the following must be covered using VHDL/Verilog

- 1. Write HDL code to display messages on an alpha numeric LCD display.
- Write HDL code to interface Hex key pad and display the key code on seven segment display.
- 3. Write HDL code to control speed, direction of DC and Stepper motor.
- Write HDL code to accept Analog signal, Temperature sensor and display the data on LCD or Seven segment display.
- 5. Write HDL code to generate different waveforms (Sine, Square, Triangle, Ramp etc.,) using DAC change the frequency.
- 6. Write HDL code to simulate Elevator operation.

Conduct of Practical Examination:

- 1. All laboratory experiments are to be included for practical examination.
- Strictly follow the instructions as printed on the cover page of answer script for breakup of marks.
- 3. Change of experiment is allowed only once and 15% of Marks allotted to the procedure part to be made zero.

What does HDL stand for?

HDL is short for Hardware Description Language

VHDL – <u>VHSIC</u> Hardware Description Language (Very High Speed Integrated Circuit) Verilog- Verify Logic

Why use an HDL?

Question:

How do we know that we have not made a mistake when we manually draw a schematic and connect components to implement a function?

Answer:

By describing the design in a high-level (=easy to understand) language, we can simulate our design before we manufacture it. This allows us to catch design errors, i.e., that the design does not work as we thought it would.

Simulation guarantees that the design behaves as it should.

IC Integrated Circuit

fppt.com

Invention of the Transistor

- Vacuum tubes ruled in first half of 20th century Large, expensive, power-hungry, unreliable
- 1947: first point contact transistor
 - John Bardeen and Walter Brattain at Bell Labs
 - See Crystal Fire
 by Riordan, Hoddeson

AT&T Archives. Reprinted with permission.

A Brief History of IC (Chip)

- 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments
- 2010
 - Intel Core i7 µprocessor
 - 2.3 billion transistors
 - 64 Gb Flash memory
 - > 16 billion transistors

Courtesy Texas Instruments

[Trinh09] © 2009 IEEE

Scale of Integration	Number of Transistors 2 ≈ 64 64 ≈ 2000 2000 - 64,000 2000			
SSI				
MSI				
LSI				
VLSI	64,000-2,000,000			
ULSI	2,000,000 - No limit			

CPU Transistor Counts 1971-2008 & Moore's Law

10,000nm 1971

6,000nm 1974

in use

2Q09 Rank	1Q09 Bank	2008 Rank	Company	Headquarters	2008 Tot Semi	08/07 % Change	1Q09 Tot Semi	2Q09 Tot Semi	2Q09/1Q09 % Change
1	1	1	Intel	US	34 490	-2%	0573	7382	12%
2	2	2	Samsung	South Korea	20 272	2%	3080	4707	29%
3	3	5	Toshiba	Japan	10 422	-12%	2008	2310	15%
4	4	3	TI	US	11 018	-13%	1939	2285	18%
5	10	4	TSMC*	Taiwan	10 550	8%	1102	2238	93%
0	5	•	\$T	Europe	10 325	3%	1057	1993	20%
7	0	8	Guaicomm^{ta}	US	6477	15%	1316	1788	30%
8	8	7	Renesas	Japan	7017	-12%	1233	1381	12%
9	7	9	Sony	Japan	6420	-11%	1270	1360	7%
10	13	10	Hymix	South Korea	0182	-83%	927	1301	40%
11	11	14	Micron	US	5088	3%	1020	1225	20%
12	9	12	AMD	US	5808	-1%	1177	1184	1%
13	12	11	Infineon	Europe	5903	2%	970	1150	19%
14	14	13	NEC	Japan	5732	2%	863	1005	10%
15	10	18	Broadcom**	US	4500	20%	827	900	17%
10	15	19	Panasonic	Japan	4321	13%	850	920	8%
17	19	25	MediaTek**	Taiwan	2845	16%	704	847	20%
18	21	20	Nvidia ^{ex}	US	4950	-11%	597	795	33%
19	20	15	NXP	Europe	5020	-14%	048	788	22%
20	18	10	Freescale	US	4959	-11%	798	784	-2%
-	-	-	Total Top 20	-	173 523	-	30 225	30 407	21%
Source: IC I	nsights, compa	any reports		* Foundry	** Fabless				

Rank	Rank		2009	2010	2009-2010	2010 Market
2009	2010	Company	Revenue	Revenue	Growth (%	Share (%)
)	
1	1	Intel	33,253	41,430	24.6	13.8
2	2	Samsung Electronics	17,686	28,256	59.8	9.4
3	3	Toshiba	9,604	12,376	28.9	4.1
4	4	Texas Instruments	9,142	12,356	35.2	4.1
11	5	Renesas Electronics*	4,542	10,368	128.3	3.5
7	6	Hynix Semiconductor	6,035	10,350	71.5	3.4
5	7	STMicroelectronics	8,510	10,290	20.9	3.4
13	8	Micron Technology **	4,170	8,884	113.0	3.0
6	9	Qualcomm	6,409	7,167	11.8	2.4
10	10	Infineon	4,682	6,680	42.7	2.2
		Others	124,338	152,156	22.4	50.7
		Total	228,371	300,313	31.5	100.0

Source: Gartner (December 2010)

EMBEDDED SYSTEM DESIGN A Unified Hardware/Software Introduction

Frank Vahid / Tony Givargis

VHDL & Verilog language can be regarded as an integrated amalgamation of the following languages:

Sequential language + Concurrent language + Net-list language + Timing specification + Waveform generation language => VHDL & Verolog

Digital circuit design have evolved rapidly over the 25 years. The earliest digital circuit were designed with vacuum tubes and transistors.

Integrated circuits were then invented where logic gates were placed on a single chip. The first IC Integrated chip was

SSI- Small Scale Integration (gate count was very small).

MSI- Medium Scale Integration (Hundred of gate, transistor on a chip).

LSI- Large scale integration (Thousands of gates on a single chip), at this point the design processes started getting very complicated, and so designer felt to automate these processes.

VLSI-Very large scale integration (Designer could design single chip with more than 100,00 transistors). Because of the complexity of these circuit it was not possible to verify these circuits on breadboard..

Computer Aided Design (CAD) technique began to evolve.

Chip designer began to use circuit and logic simulation technique to verify the functionality of building blocks of the order of about 100 transistor.

Using CAD computer programs to do automatic placement and routing of circuits layout.

Technically the term CAD tools refer to **Back-end tool** that perform functions related to place and route and layout of the chip.

Emergence of HDL

- For a long time programming language such as FORTRAN, PASCAL and C were being used to describe computer programs that were Sequential in nature.
- Similarly, in the digital design field designers felt the need for a standard language to describe digital circuits. Thus, HDL came into existence.
- HDL allowed the designer to model the Concurrency of processes found in hardware elements. HDL's such as VERILOG HDL, and VHDL.
- HDL is a Computer Aided design (CAD) tool for the modern design and synthesis of digital systems.
- HDL Hardware Description Language is a programming language used to model the intended operation of a piece of hardware.

Why HDL

- The recent, steady advance in semiconductor technology continue to increase the power and complexity of digital systems.
- Due to their complexity, such systems cannot be realized using discrete ICs. They are realized using high density, programmable chips, such as ASICs, FPGA and require sophisticated CAD tools.
- HDL offers the designer a very efficient tool for implementing and synthesizing designs on chips.
- Debugging the design is easy, since HDL packages implements simulators and test benches.

VLSI DESIGN FLOW

BOTTOM-UP (FULL CUSTOM) DESIGN METHODOLOGY

- Meets performance specs
 Consumes too much power
- Wastes area higher die cost
- Product not competitive

Under Design

Ex: Insufficient Margin to Spec

- Fails performance specs
- · Yield loss higher die cost
- Causes mask re-spins
- Slow ramp to production

- Competitive product on time
- Avoid circuit failure in silicon
- Improve yield
- Fast ramp to production

Right Design with Variation Designer

Design Loss - Over or Under Design

