
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

OS

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553 Sem.: 5th (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-02
Structure of Operating System

Introduction

• Operation of an OS

• Structure of an Operating System

• Operating Systems with Monolithic Structure

• Layered Design of Operating Systems

Introduction (continued)

• Virtual Machine Operating Systems

• Kernel-Based Operating Systems

• Microkernel-Based Operating Systems

• Case Studies

Operation of an OS

• When a computer is switched on, boot procedure

– analyzes its configuration—CPU type, memory size, I/O
devices, and details of other hardware

– Loads part of OS in memory, initializes data structures, and
hands it control of computer system

• During operation of the computer, interrupts caused by:

– An event: I/O completion; end of a time slice

– System call made by a process (software interrupt)

• Interrupt servicing routine:

– Performs context save

– Activates event handler

• Scheduler selects a process for servicing

Operation of an OS (continued)

Operation of an OS (continued)

Structure of an Operating System

• Policies and Mechanisms

• Portability and Extensibility of Operating
Systems

Policies and Mechanisms

• In determining how OS will perform a function, designer
needs to think at two distinct levels:

– Policy: Principle under which OS performs function

• Decides what should be done

– Mechanism: Action needed to implement a policy

• Determines how to do it and actually does it

• Example:

– Round-robin scheduling is a policy

– Mechanisms: maintain queue of ready processes and
dispatch a process

Portability and Extensibility of
Operating Systems

• Porting: adapting software for use in a new computer
system

• Portability: ease with which a software program can be
ported

– Inversely proportional to the porting effort

• Porting an OS: changing parts of its code that are
architecture-dependent to work with new HW

– Examples of architecture-dependent data and
instructions in an OS:

• Interrupt vector, memory protection information, I/O instructions,
etc.

Portability and Extensibility of
Operating Systems (continued)

• Extensibility: ease with which new functionalities can be
added to a software system

– Extensibility of an OS is needed for two purposes:

• Incorporating new HW in a computer system

– Typically new I/O devices or network adapters

• Providing new features for new user expectations

– Early OSs did not provide either kind of extensibility

– Modern OSs facilitate addition of a device driver

• They also provide a plug-and-play capability

Operating Systems with Monolithic
Structure

• Early OSs had a monolithic structure

– OS formed a single software layer between the user and the
bare machine (hardware)

Operating Systems with Monolithic
Structure (continued)

• Problems with the monolithic structure:

– Sole OS layer had an interface with bare machine

• Architecture-dependent code spread throughout OS

– Poor portability

• Made testing and debugging difficult

– High costs of maintenance and enhancement

• Alternative ways to structure an OS:

– Layered structure

– Kernel-based structure

– Microkernel-based OS structure

Layered Design of Operating Systems

• Semantic gap is reduced by:

– Using a more capable machine

– Simulating an extended machine in a lower layer

Layered Design of Operating Systems
(continued)

• Routines of one layer must use only the facilities of the
layer directly below it

– Through its interfaces only

Example: Structure of the THE
Multiprogramming System

Layered Design of Operating Systems
(continued)

• Problems:

– System operation slowed down by layered structure

– Difficulties in developing a layered design

• Problem: ordering of layers that require each other’s services

– Often solved by splitting a layer into two and putting other
layers between the two halves

– Stratification of OS functionalities

• Complex design

• Loss of execution efficiency

• Poor extensibility

Virtual Machine Operating Systems

• Different classes of users need different kinds of user
service

• Virtual machine operating system (VM OS) creates several
virtual machines

– A virtual machine (VM) is a virtual resource

– Each VM is allocated to one user, who can use any OS
• Guest OSs run on each VM

• VM OS runs in the real machine

– schedules between guest OSs

• Distinction between privileged and user modes of CPU
causes some difficulties in use of a VM OS

Example: Structure of VM/370

Virtual Machine Operating Systems
(continued)

• Virtualization: mapping interfaces and resources of a VM
into interfaces and resources of host machine

– Full virtualization may weaken security

– Paravirtualization replaces a nonvirtualizable instruction
by easily virtualized instructions

• Code of a guest OS is modified to avoid use of nonvirtualizable
instructions, done by:

– Porting guest OS to operate under VM OS

– Or, using dynamic binary translation for kernel of a guest OS

Virtual Machine Operating Systems
(continued)

• VMs are employed for diverse purposes:

– Workload consolidation

– To provide security and reliability for applications that use
the same host and the same OS

– To test a modified OS on a server concurrently with
production runs of that OS

– To provide disaster management capabilities

• A VM is transferred from a server that has to shutdown to another
server available on the network

Virtual Machine Operating Systems
(continued)

• VMs are also used without a VM OS:

– Virtual Machine Monitor (VMM)

• Also called a hypervisor

• E.g., VMware and XEN

– Programming Language Virtual Machines

• Pascal in the 70s

– Substantial performance penalty

• Java

– Java virtual machine (JVM) for security and reliability

– Performance penalty can be offset by implementing JVM in
hardware

Kernel-Based Operating Systems

• Historical motivations for kernel-based OS structure were
OS portability and convenience in design and coding of
nonkernel routines

– Mechanisms implemented in kernel, policies outside

• Kernel-based OSs have poor extensibility

Kernel-Based Operating Systems
(continued)

Evolution of Kernel-Based Structure of
Operating Systems

• Dynamically loadable kernel modules

– Kernel designed as set of modules

• Modules interact through interfaces

– Base kernel loaded when system is booted

• Other modules loaded when needed

– Conserves memory

– Used to implement device drivers and new system calls

• User-level device drivers

– Ease of development, debugging, deployment and
robustness

– Performance is ensured through HW and SW means

Microkernel-Based Operating Systems

• The microkernel was developed in the early 1990s to
overcome the problems concerning portability,
extensibility, and reliability of kernels

• A microkernel is an essential core of OS code

– Contains only a subset of the mechanisms typically included
in a kernel

– Supports only a small number of system calls, which are
heavily tested and used

– Less essential code exists outside the kernel

Microkernel-Based Operating Systems
(continued)

• Microkernel does not include scheduler and memory
handler

• They execute as servers

Microkernel-Based Operating Systems
(continued)

• Considerable variation exists in the services included in a
microkernel

• OSs using first-generation microkernels suffered up to
50% degradation in throughput

– L4 microkernel is second-generation
• Made IPC more efficient by eliminating validity/rights checking by

default, and by tuning microkernel to HW

• Only 5% degradation

– Exokernel merely provides efficient multiplexing of
hardware resources
• Distributed resource management

• Extremely fast

Case Studies

• Architecture of Unix

• The Kernel of Linux

• The Kernel of Solaris

• Architecture of Windows

Architecture of Unix

• Original Unix kernel was monolithic
• Kernel modules were added later

The Kernel of Linux

• Provides functionalities of Unix System V and BSD

• Compliant with the POSIX standard

• Monolithic kernel

• Individually loadable modules

– A few kernel modules are loaded on boot

• Improvements in Linux 2.6 kernel:

– Kernel is preemptible

• More responsive to users and application programs

– Supports architectures that do not possess a MMU

– Better scalability through improved model of threads

The Kernel of Solaris

• SunOS was based on BSD Unix

• Solaris is based on Unix SVR4

• Since 1980s, Sun has focused on networking and
distributed computing

– Features have become standards

• RPC

• NFS

• Later, Sun focused on multiprocessor systems too

– Multithreading the kernel, making it preemptible

– Fast synchronization techniques in the kernel

The Kernel of Solaris (continued)

• Solaris 7 employs the kernel-design methodology of
dynamically loadable kernel modules

– Supports seven types of loadable modules:
• Scheduler classes

• File systems

• Loadable system calls

• Loaders for different formats of executable files

• Streams modules

• Bus controllers and device drivers

• Miscellaneous modules

– Provides easy extensibility

Architecture of Windows

• HAL interfaces with the bare machine
• Environment subsystems support execution of programs

written for MS DOS, Win 32 and OS/2

Summary

• Portability: ease with which the OS can be implemented
on a computer having a different architecture

• Extensibility: ease with which its functionalities can be
modified or enhanced to adapt it to a new computing
environment

• An OS functionality typically contains a policy, and a few
mechanisms

• Early OSs had a monolithic structure

Summary (continued)

• Layered design used the principle of abstraction to control
complexity of designing the OS

• The virtual machine operating system (VM OS) supported
operation of several OSs on a computer simultaneously

– Create a virtual machine for each user

• In a kernel-based design, kernel is the core of the OS,
which invokes the nonkernel routines to implement
operations on processes and resources

• A microkernel is the essential core of OS code

– Policy modules implemented as server processes

