SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. os

— — — H YO\ - T ,—:,;VSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553 Sem.: 51" (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-02
Structure of Operating System

Introduction

Operation of an OS

Structure of an Operating System

Operating Systems with Monolithic Structure
Layered Design of Operating Systems

Introduction (continued)

Virtual Machine Operating Systems
Kernel-Based Operating Systems
Microkernel-Based Operating Systems
Case Studies

Operation of an OS

When a computer is switched on, boot procedure

— analyzes its configuration—CPU type, memory size, [/0
devices, and details of other hardware

— Loads part of OS in memory, initializes data structures, and
hands it control of computer system

During operation of the computer, interrupts caused by:
— An event: [/O completion; end of a time slice
— System call made by a process (software interrupt)
Interrupt servicing routine:
— Performs context save
— Activates event handler
Scheduler selects a process for servicing

Operation of an OS (continued)

A condition in A request by a
hardware causes a process causes a
hardware interrupt software interrupt
4 ¥
Context
save
i b4 Y
1O Memory Event
handler handler handlers

Scheduler

¥
CPU is switched to
the scheduled process

Figure 4.1 Overview of OS operation.

Operation of an OS (continued)

Table 4.1 Functions of an OS

Function Description

Process management [nitiation and termination of processes, scheduling

Memory management Allocation and deallocation of memory, swapping,
virtual memory management

I/O management [/O interrupt servicing, initiation of 1/0O operations,
optimization of /0O device performance

File management Creation, storage and access of files

Security and protection Preventing interference with processes and resources

Network management Sending and receiving of data over the network

Structure of an Operating System

 Policies and Mechanisms

* Portability and Extensibility of Operating
Systems

Policies and Mechanisms

* In determining how OS will perform a function, designer
needs to think at two distinct levels:

— Policy: Principle under which OS performs function

* Decides what should be done

— Mechanism: Action needed to implement a policy

* Determines how to do it and actually does it
 Example:
— Round-robin scheduling is a policy

— Mechanisms: maintain queue of ready processes and
dispatch a process

Portability and Extensibility of
Operating Systems

« Porting: adapting software for use in a new computer
system

« Portability: ease with which a software program can be
ported

— Inversely proportional to the porting effort

« Porting an OS: changing parts of its code that are
architecture-dependent to work with new HW

— Examples of architecture-dependent data and
Instructions in an OS:

* Interrupt vector, memory protection information, I/O instructions,
etc.

Portability and Extensibility of
Operating Systems (continued)

» Extensibility: ease with which new functionalities can be
added to a software system

— Extensibility of an OS is needed for two purposes:
* Incorporating new HW in a computer system
— Typically new /0 devices or network adapters
* Providing new features for new user expectations
— Early OSs did not provide either kind of extensibility
— Modern OSs facilitate addition of a device driver
* They also provide a plug-and-play capability

Operating Systems with Monolithic
Structure

* Early OSs had a monolithic structure

— OS formed a single software layer between the user and the
bare machine (hardware)

User User
Interface process

OS layer

Bare machine

Figure 4.2 Monolithic OS.

Operating Systems with Monolithic
Structure (continued)

* Problems with the monolithic structure:
— Sole OS layer had an interface with bare machine
* Architecture-dependent code spread throughout OS
— Poor portability
* Made testing and debugging difficult
— High costs of maintenance and enhancement
» Alternative ways to structure an OS:
— Layered structure
— Kernel-based structure
— Microkernel-based OS structure

Layered Design of Operating Systems

Definition 4.1 Semantic Gap The mismatch between the nature of opera-
tions needed in the application and the nature of operations provided in the
machine.

* Semantic gap is reduced by:
— Using a more capable machine

— Simulating an extended machine in a lower layer

Layered Design of Operating Systems
(continued)

Routines of one layer must use only the facilities of the

layer directly below it

— Through its interfaces only

Operating
system

Process
management

ra &
Semantic / \

/O
management

gap TILELDE LI L L L L L L L DN L D D R D L L L L L
v \ v
Extended Context Dispatch Perform
machine save a process 110
Y \ 4 Y

Figure 4.4 Layered OS design.

Bare machine

Example: Structure of the THE
Multiprogramming System

Table 4.2 Layers in the THE Multiprogramming System

Layer Description

Layer 0 Processor allocation and multiprogramming
Layer | Memory and drum management

Layer 2 Operator—process communication

Layer 3 I/O management

Layer 4 User processes

Layered Design of Operating Systems
(continued)

* Problems:
— System operation slowed down by layered structure

— Difficulties in developing a layered design
* Problem: ordering of layers that require each other’s services
— Often solved by splitting a layer into two and putting other
layers between the two halves
— Stratification of OS functionalities
* Complex design
* Loss of execution efficiency

* Poor extensibility

Virtual Machine Operating Systems

Different classes of users need different kinds of user
service

Virtual machine operating system (VM OS) creates several
virtual machines

— Avirtual machine (VM) is a virtual resource

— Each VM is allocated to one user, who can use any OS
e Guest 0Ss run on each VM

VM OS runs in the real machine
— schedules between guest OSs

Distinction between privileged and user modes of CPU
causes some difficulties in use of a VM OS

Example: Structure of VM /370

CMS 0OS/370

VM/370

Figure 4.5 Virtual machine operating system VM/370.

Virtual Machine Operating Systems
‘continued)

* Virtualization: mapping interfaces and resources of a VM
into interfaces and resources of host machine

— Full virtualization may weaken security

— Paravirtualization replaces a nonvirtualizable instruction
by easily virtualized instructions

* Code of a guest OS is modified to avoid use of nonvirtualizable
instructions, done by:

— Porting guest OS to operate under VM OS

— Or, using dynamic binary translation for kernel of a guest OS

Virtual Machine Operating Systems
‘continued)

* VMs are employed for diverse purposes:
— Workload consolidation

— To provide security and reliability for applications that use
the same host and the same OS

— To test a modified OS on a server concurrently with
production runs of that OS

— To provide disaster management capabilities

* A VM is transferred from a server that has to shutdown to another
server available on the network

Virtual Machine Operating Systems
continued)

e VMs are also used without a VM OS:
— Virtual Machine Monitor (VMM)

« Also called a hypervisor
* E.g., VMware and XEN

— Programming Language Virtual Machines
* Pascal in the 70s
— Substantial performance penalty
e Java
— Java virtual machine (JVM) for security and reliability

— Performance penalty can be offset by implementing JVM in
hardware

Kernel-Based Operating Systems

User interface |

Nonkernel routines |

Kernel l

Bare machine

Figure 4.6 Structure of a kernel-based OS.
Historical motivations for kernel-based OS structure were

OS portability and convenience in design and coding of
nonkernel routines

— Mechanisms implemented in kernel, policies outside

Kernel-based OSs have poor extensibility

Kernel-Based Operating Systems

(continued)

Table 4.3 Typical Functions and Services Offered by the Kernel

OS functionality

Examples of kernel functions and services

Process management
Process communication
Memory management
I/0O management

File management

Security and protection

Network management

Save context of the interrupted program, dispatch a
process, manipulate scheduling lists

Send and receive interprocess messages

Set memory protection information, swap-in/
swap-out, handle page fault (that is, “missing from
memory’ interrupt of Section 1.4)

[nitiate /O, process [/O completion interrupt,
recover from 1/O errors

Open a file, read/write data

Add authentication information for a new user,
maintain information for file protection

Send/receive data through a message

Evolution of Kernel-Based Structure of
Operating Systems

* Dynamically loadable kernel modules

— Kernel designed as set of modules

* Modules interact through interfaces

— Base kernel loaded when system is booted
e Other modules loaded when needed

— Conserves memory
— Used to implement device drivers and new system calls
» User-level device drivers

— Ease of development, debugging, deployment and
robustness

— Performance is ensured through HW and SW means

Microkernel-Based Operating Systems

The microkernel was developed in the early 1990s to
overcome the problems concerning portability,
extensibility, and reliability of kernels

A microkernel is an essential core of OS code

— Contains only a subset of the mechanisms typically included
in a kernel

— Supports only a small number of system calls, which are
heavily tested and used

— Less essential code exists outside the kernel

Microkernel-Based Operating Systems
(continued)

* Microkernel does not include scheduler and memory
handler
* They execute as servers

Servers User processes
Round-
robin Memory
process handler
scheduler

Microkernel

Bare machine

Figure 4.7 Structure of microkernel-based operating systems.

Microkernel-Based Operating Systems
(continued)

Considerable variation exists in the services included in a
microkernel

OSs using first-generation microkernels suffered up to
50% degradation in throughput

— L4 microkernel is second-generation

* Made IPC more efficient by eliminating validity /rights checking by
default, and by tuning microkernel to HW

* Only 5% degradation
— Exokernel merely provides efficient multiplexing of
hardware resources

* Distributed resource management

* Extremely fast

Case Studies

Architecture of Unix

The Kernel of Linux

The Kernel of Solaris
Architecture of Windows

Architecture of Unix

* Original Unix kernel was monolithic
* Kernel modules were added later

Nonkernel routines

System calls
[nterrupts A 4 Kernel

|

|

|

: . STt TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT I

| File management | ! !

| . Interprocess .

| . . Memory .

| v ! Scheduler communi- !

| ! : management |

| Buffer cache | | cation .
I |

: 4 4 | |

| | 1

| . : : Process management !

! Device drivers . .

|

|

|

|

|

Figure 4.8 Kernel of the Unix operating system.

The Kernel of Linux

Provides functionalities of Unix System V and BSD
Compliant with the POSIX standard
Monolithic kernel
Individually loadable modules
— A few kernel modules are loaded on boot

Improvements in Linux 2.6 kernel:

— Kernel is preemptible

* More responsive to users and application programs
— Supports architectures that do not possess a MMU
— Better scalability through improved model of threads

The Kernel of Solaris

SunOS was based on BSD Unix
Solaris is based on Unix SVR4

Since 1980s, Sun has focused on networking and
distributed computing

— Features have become standards
e RPC
e NFS

Later, Sun focused on multiprocessor systems too
— Multithreading the kernel, making it preemptible

— Fast synchronization techniques in the kernel

The Kernel of Solaris (continued)

Solaris 7 employs the kernel-design methodology of
dynamically loadable kernel modules

— Supports seven types of loadable modules:
e Scheduler classes
* File systems
* Loadable system calls
» Loaders for different formats of executable files
e Streams modules
* Bus controllers and device drivers
e Miscellaneous modules

— Provides easy extensibility

Architecture of Windows

User
Environment application
subsystem
’ Subsystem
DLL
))
Y \
Executive
/O
Manager Kernel Device drivers
Hardware abstraction layer (HAL)

Bare machine

Figure 4.9 Architecture of Windows.

* HAL interfaces with the bare machine

* Environment subsystems support execution of programs
written for MS DOS, Win 32 and OS/2

Summary

Portability: ease with which the OS can be implemented
on a computer having a different architecture

Extensibility: ease with which its functionalities can be
modified or enhanced to adapt it to a new computing
environment

An OS functionality typically contains a policy, and a few
mechanisms

Early OSs had a monolithic structure

Summary (continued)

Layered design used the principle of abstraction to control
complexity of designing the OS

The virtual machine operating system (VM OS) supported
operation of several OSs on a computer simultaneously

— Create a virtual machine for each user

In a kernel-based design, kernel is the core of the OS,
which invokes the nonkernel routines to implement
operations on processes and resources

A microkernel is the essential core of OS code
— Policy modules implemented as server processes

