
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

OS

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 5th (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-05
Message Passing & Deadlocks

Introduction

• What is a Deadlock?

• Deadlocks in Resource Allocation

• Handling Deadlocks

• Deadlock Detection and Resolution

• Deadlock Prevention

• Deadlock Avoidance

• Characterization of Resource Deadlocks by Graph Models

• Deadlock Handling in Practice

What is a Deadlock?

– Resource deadlock primary concern of OS

• Pi, Pj are deadlocked after their second requests

– Deadlocks can also arise in synchronization and message
communication user concern

Deadlocks in Resource Allocation

• OS may contain several resources of a kind

– Resource unit refers to a resource of a specific kind

– Resource class to refers to the collection of all resource units
of a kind

• Resource allocation in a system entails three kinds of
events:

– Request for the resource

– Actual allocation of the resource

– Release of the resource

• Released resource can be allocated to another process

Deadlocks in Resource Allocation
(continued)

Conditions for a Resource Deadlock

• Another condition is also essential for deadlocks:

– No withdrawal of resource requests: A process blocked on a
resource request cannot withdraw it

Modelling the
Resource Allocation State

• (Resource) allocation state:

– Information about resources allocated to processes and
about pending resource requests

– Used to determine whether a set of processes is deadlocked

• Two kinds of models are used to represent the allocation
state of a system:

– A graph model

– A matrix model

Resource request and allocation graph
(RRAG)

• Nodes and edges in an RRAG

– Two kinds of nodes exist in an RRAG

• A circle is a process

• A rectangle is a resource class
– Each bullet in a rectangle is one resource unit

– Edges can also be of two kinds

• An edge from a resource class to a process is a
resource allocation

• An edge from a process to a resource class is a
pending resource request

Wait-for graph (WFG)

• A WFG can be used to depict the resource
state of a system in which every resource
class contains only one resource unit

– A Node in the graph is a process

– An edge is a wait-for relationship between
processes

• A wait-for edge (Pi, Pj) indicates that
– Process Pj holds the resource unit of a resource class

– Process Pi has requested the resource and it has become
blocked on it

– In essence Pi waits for Pj to release the resource

Graph Models

Paths in WFG and RRAG

• A path in a graph is a sequence of edges
such that the destination node of an edge is
the source node of the subsequent edge
– Consider an RRAG path P1 – R1 – P2 – R2 … Pn-1 –

Rn-1 – Pn

This path indicates that

• Process Pn has been allocated a resource unit of Rn-1

• Process Pn-1 has been allocated a resource unit of
Rn-2 and awaits a resource unit of Rn-1, etc.

– In WFG, the same path would be P1 – P2 – … Pn-

1 – Pn

Graph Models (continued)

• A deadlock cannot exist unless an RRAG, or a WFG,

contains a cycle

• A cycle in an RRAG does not necessarily imply a

deadlock if a resource class has multiple resource units

When Pk completes,

its tape unit can be

allocated to Pj

Matrix Model

• Allocation state represented by two matrices:

– Allocated_resources

– Requested_resources

• If system has n processes and r resource classes, each of
these matrices is an n × r matrix

• Auxiliary: Total_resources and Free_resources

Matrix Model

• Allocation state represented by two matrices:

– Allocated_resources

– Requested_resources

• If system has n processes and r resource classes, each of
these matrices is an n × r matrix

• Auxiliary: Total_resources and Free_resources

Handling Deadlocks

Deadlock Detection and Resolution

• A blocked process is not currently involved in a deadlock if
request on which it is blocked can be satisfied through a
sequence of process completion, resource release, and
resource allocation events

– If each resource class in system contains a single resource
unit, check for a cycle in RRAG or WFG

• Not applicable if resource classes have multiple resource units

– We will use matrix model

• Applicable in all situations

Example: Deadlock Detection

• The allocation state of a system containing 10 units of a
resource class R1 and three processes:

• Process P3 is in the running state

– We simulate its completion

• Allocate its resources to P2

– All processes can complete in this manner

• No blocked processes exist when the simulation ends

– Hence no deadlock

A Deadlock Detection Algorithm

Example: Operation of a Deadlock
Detection Algorithm

Deadlock Resolution

• Deadlock resolution for a set of deadlocked processes D is
breaking of deadlock to ensure progress for some
processes in D

– Achieved by aborting one or more processes in D
• Each aborted process is called a victim

– Choice of victim made using criteria such as process priority,
resources consumed by it, etc.

Deadlock Prevention

All Resources Together

• Simplest of all deadlock prevention policies

• Process must ask for all resources it needs in a single
request

– Kernel allocates all of them together

• A blocked process does not hold any resources

– Hold-and-wait condition is never satisfied

• Attractive policy for small operating systems

• Has one practical drawback:

– Adversely influences resource efficiency

Resource Ranking

• Resource rank associated with each resource class

• Upon resource request, kernel applies a validity
constraint to decide if it should be considered

– Rank of requested resource must be larger than rank of
highest ranked resource allocated to the process

• Result: absence of circular wait-for relationships

• Works best when all processes require their resources in
the order of increasing resource rank

– In worst case, policy may degenerate into the “all resources
together” policy of resource allocation

Deadlock Avoidance

• Banker’s algorithm

– Analogy: bankers admit loans that collectively exceed the
bank’s funds and then release each borrower’s loan in
installments

– Uses notion of a safe allocation state

• When system is in such a state, all processes can complete their
operation without possibility of a deadlock

– Deadlock avoidance implemented by taking system from
one safe allocation state to another

Deadlock Avoidance

Deadlock Avoidance (continued)

• Outline of the approach:

1. When a process makes a request, compute projected allocation state

– This would be the state if the request is granted

2. If projected allocation state is safe, grant request by updating
Allocated_resources and Total_alloc; otherwise, keep request pending

– Safety is checked through simulation

– A process is assumed to complete only if it can get its maximum

requirement of each resource satisfied simultaneously

3. When a process releases any resource(s) or completes its operation, examine
pending requests and allocate those that would put the system in a new safe
allocation state

Example: Banker’s Algorithm for a

Single Resource Class

• Now consider the following requests:

1. P1 makes a request for 2 resource units

2. P2 makes a request for 2 resource units

3. P3 makes a request for 2 resource units

– Requests by P1 and P2 do not put the system in safe
allocation states, hence they will not be granted

– Request by P3 will be granted

Example: Banker’s Algorithm for

Multiple Resource Classes

Characterization of Resource Deadlocks
by Graph Models

• A deadlock characterization is a statement of the essential
features of a deadlock

– We discuss characterization using graph models of
allocation state and elements of graph theory

• A cycle in a RRAG or WFG is a sufficient condition for a deadlock in
some systems, but not in others

Single-Instance, Single-Request (SISR)
Systems

• Each resource class contains a single instance of the
resource and each request is a single request

• A cycle in an RRAG implies a mutual wait-for relationship
for a set of processes

– Since each resource class contains a single resource unit
• Each blocked process Pi in cycle waits for exactly one other process,

say Pk, to release required resource

• Hence a cycle that involves Pi also involves Pk

• A cycle is thus a necessary and sufficient condition to
conclude that a deadlock exists in the system

• A knot in RRAG is a necessary and sufficient condition

for the existence of a deadlock in an MISR system

Multiple-Instance, Single-Request

(MISR) Systems

Single-Instance, Multiple-Request
(SIMR) Systems

• A process making a multiple request has > 1 out-edge

– It remains blocked until each of the requested resources is
available

– A cycle is a necessary and sufficient condition for a
deadlock in an SIMR system

Multiple-Instance, Multiple-Request
(MIMR) Systems

• We must differentiate between process and resource
nodes in the RRAG of an MIMR system

– All out-edges of a resource node must be involved in cycles
for a deadlock to arise

– A process node needs to have only one out-edge involved in
a cycle

• A resource knot incorporates these conditions

Multiple-Instance, Multiple-Request
(MIMR) Systems (continued)

• A resource knot is a necessary and sufficient condition for
the existence of a deadlock in an MIMR system...

– And, in all classes of systems discussed in this section

Processes in Deadlock

Deadlock Handling in Practice

• Deadlock detection-and-resolution and deadlock
avoidance are unattractive in practice (overhead)

– OS uses deadlock prevention approach or simply does not
care about possibility of deadlocks

• OSs tend to handle deadlock issues separately for each
kind of resource

– Memory: Explicit deadlock handling is unnecessary

– I/O devices: Resources are not limited (virtual devices)

– Files: Deadlocks are handled by processes, not OS

– Control blocks: Resource ranking or all-resources-together

Deadlock Handling in Unix

• Most operating systems simply ignore the possibility of
deadlocks involving user processes

– Unix is no exception

• Unix addresses deadlocks due to sharing of kernel data
structures by user processes

– Kernel uses resource ranking (deadlock prevention) by
requiring processes to set locks on kernel data structures in
a standard order

• There are exceptions to this rule; deadlocks can arise

– Special deadlock handling for buffer cache and file system

Deadlock Handling in Windows

• Vista has feature called wait chain traversal (WCT)

– Assists applications and debuggers in detecting

deadlocks

– A wait chain starts on a thread and is analogous to a path

in the RRAG

• Debugger can investigate cause of a freeze by invoking
getthreadwaitchain with the id of a thread to

retrieve a chain starting on that thread

Summary

• Deadlock: set of processes wait indefinitely for events
because each of the events can be caused only by other
processes in the set

• Resource deadlock arises when:

– Resources are nonshareable and nonpreemptible

– Hold-and-wait

– Circular wait exists

• OS can discover a deadlock by analyzing the allocation
state of a system

– Use RRAG, WFG or matrix model

• Deadlocks can be detected, prevented and avoided

