
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

OS

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 5th (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-04
File Systems & IOCS

Introduction

• Overview of File Processing

• Files and File Operations

• Fundamental File Organizations and Access Methods

• Directories

• Mounting of File Systems

• File Protection

• Allocation of Disk Space

• Interface Between File System and IOCS

Introduction (continued)

• File Processing

• File Sharing Semantics

• File System Reliability

• Journaling File Systems

• Virtual File System

• Case Studies of File Systems

• Performance of File Systems

Overview of File Processing

File System and the IOCS

• File system views a file as a collection of data that is
owned by a user, shared by a set of authorized users, and
reliably stored over an extended period

• IOCS views it as a repository of data that is accessed
speedily and stored on I/O device that is used efficiently

• Two kinds of data: file data and control data

File Processing in a Program

• At programming language level:

– File: object with attributes describing organization of its
data and the method of accessing the data

• File types can be grouped into two classes:

– Structured files: Collection of records
• Record: collection of fields

• Field: contains a single data item

• Each record is assumed to contain a unique key field

– Byte stream files: “Flat”

• A file has attributes, stored in its directory entry

Files and File Operations

Fundamental File Organizations and
Access Methods

• Fundamental record access patterns:

– Sequential access

– Random access

• File organization is a combination of two features:

– Method of arranging records in a file

– Procedure for accessing them

• Accesses to files governed by a specific file organization
are implemented by IOCS module called access method

Sequential File Organization

• Records are stored in an ascending or descending
sequence according to the key field

• Record access pattern of an application is expected to
follow suit

• Two kinds of operations:

– Read the next (or previous) record

– Skip the next (or previous) record

• Uses:

– When data can be conveniently presorted into an ascending
or descending order

– For byte stream files

Direct File Organization

• Provides convenience/efficiency of file processing when
records are accessed in a random order

• Files are called direct-access files

• Read/write command indicates value in key field

– Key value is used to generate address of record in storage
medium

• Disadvantages:

– Record address calculation consumes CPU time

– Some recording capacity of disk is wasted

– Dummy records exist for key values that are not in use

Example: Sequential and Direct Files

• Employees with the employee numbers 3, 5–9 and 11
have left the organization

– Direct file has dummy records for them

Index Sequential File Organization

• An index helps determine location of a record from its key
value

– Pure indexed organization: (key value, disk address)

– Index sequential organization uses index to identify section
of disk surface that may contain the record
• Records in the section are then searched sequentially

Access Methods

• Access method: IOCS module that implements accesses to
a class of files using a specific file organization

– Procedure determined by file organization

– Advanced I/O techniques are used for efficiency:
• Buffering of records

– Records of an input file are read ahead of the time when they are
needed by a process

• Blocking of records

– A large block of data, whose size exceeds the size of a record in
the file, is always read from, or written onto, the I/O medium

Directories

Directories (continued)

• File system needs to grant users:

– File naming freedom

– File sharing

• File system creates several directories

– Uses a directory structure to organize them
• Provides file naming freedom and file sharing

Directory Trees

• Some concepts: home directory, current directory

• Path names used to uniquely identify files

– Relative path name

– Absolute path name

Directory Graphs

• Tree structure leads to a fundamental asymmetry in the
way different users can access a shared file

– Solution: use acyclic graph structure for directories

• A link is a directed connection between two existing files in the
directory structure

Operations on Directories

• Most frequent operation on directories: search

• Other operations are maintenance operations like:

– Creating or deleting files

– Updating file entries (upon a close operation)

– Listing a directory

– Deleting a directory

• Deletion becomes complicated when directory structure
is a graph

– A file may have multiple parents

– File system maintains a link count with each file

Organization of Directories

• Flat file that is searched linearly inefficient

• Hash table directory efficient search

– Hash with open addressing requires a single table

– (Sometimes) at most two comparisons needed to locate a
file

– Cumbersome to change size, or to delete an entry

• B+ tree directory fast search, efficient add/delete

– m-way search tree where m ≤ 2×d (d: order of tree)

– Balanced tree: fast search

– File information stored in leaf nodes

– Nonleaf nodes of the tree contain index entries

Directory as a B+ tree

Mounting of File Systems

• There can be many file systems in an OS

• Each file system is constituted on a logical disk

– i.e., on a partition of a disk

• Files can be accessed only when file system is mounted

File Protection

• Users need controlled sharing of files

– Protection info field of the file’s directory entry used to
control access to the file

• Usually, protection info. stored in access control list

– List of (<user_name>,<list_of_access_privileges>)

• User groups can be used to reduce size of list

• In most file systems, privileges are of three kinds:

– Read

– Write

– Execute

Allocation of Disk Space

• Disk space allocation is performed by file system

• Before contiguous memory allocation model

– Led to external fragmentation

• Now noncontiguous memory allocation model

– Issues:
• Managing free disk space

– Use: free list or disk status map (DSM)

• Avoiding excessive disk head movement

– Use: Extents (clusters) or cylinder groups

• Accessing file data

– Depends on approach: linked or indexed

Allocation of Disk Space (continued)

• The DSM has one entry for each disk block

– Entry indicates if block is free or allocated to a file

– Information can be maintained in a single bit

• DSM also called a bit map

• DSM is consulted every time a new disk block has to be
allocated to a file

Linked Allocation

• Each disk block has data, address of next disk block

– Simple to implement

– Low allocation/deallocation overhead

• Supports sequential files quite efficiently

• Files with nonsequential organization cannot be
accessed efficiently

• Reliability is poor (metadata corruption)

Linked Allocation (continued)

• MS-DOS uses a variant of linked allocation that stores the
metadata separately from the file data

• FAT has one element corresponding to every disk block in
the disk

– Penalty: FAT has to be accessed to obtain the address of the
next disk block

• Solution: FAT is held in memory during file processing

Indexed Allocation

• An index (file map table (FMT)) is maintained to note the
addresses of disk blocks allocated to a file

– Simplest form: FMT can be an array of disk block addresses

Indexed Allocation (continued)

• Other variations:

– Two-level FMT organization: compact, but access to data
blocks is slower

– Hybrid FMT organization: small files of n or fewer data
blocks continue to be accessible efficiently

Performance Issues

• Issues related to use of disk block as allocation unit

– Size of the metadata

– Efficiency of accessing file data

• Both addressed using a larger unit of allocation

– Use the extent as a unit of disk space allocation

• Extent: set of consecutive disk blocks

• Large extents provide better access efficiency
– Problem: more internal fragmentation

– Solution: variable extent sizes

» Size is indicated in metadata

Interface Between File System and IOCS

• Interface between file system and IOCS consists of

– File map table (FMT)

– Open files table (OFT)

– File control block (FCB)

Interface Between File System and IOCS
(continued)

Interface Between File System and IOCS
(continued)

When alpha is opened:

• File system copies FMTalpha in memory

• Creates fcbalpha in the OFT

• Initializes fields appropriately

• Passes offset in OFT to process, as

internal_idalpha

File Processing

• File System Actions at open

– Sets up the arrangement involving FCB and OFT

• File System Actions during a File Operation

– Performs disk space allocation if necessary

• File System Actions at close

– Updates directories if necessary

File system actions at open

• Perform path name resolution

– For each component in the path name, locate the correct directory
or file

– Handle path names passing through mount points

• A file should be allocated disk space in its own file system

– Build FCB for the file

• Retain sufficient information to perform a close operation on the file

– Close may have to update the file’s entry in the parent directory

– It may cause changes in the parent directory’s entry in ancestor
directories

File System Actions at open

File System Actions during a File
Operation

• Each file operation is translated into a call:

– < opn > (internal_id, record_id,< IO_areaaddr >);

• Internal_id is the internal id of <file_name> returned by the open call

• Record_id is absent for sequential-access files

– Operation is performed on the next record

• Disk block address obtained from record_id

File System Actions at close

File Sharing Semantics

• File system provides two methods of file sharing for
processes to choose from:

– Sequential sharing

• Only one process accesses a file at a time

• Implemented through lock field in file’s directory entry

– Concurrent sharing
• System creates a separate FCB for each process

• Three sharing modes exist (see Table 13.4)

• File sharing semantics:

– Determine how results of file manipulations performed by
concurrent processes are visible

File Sharing Semantics (continued)

Single-image Mutable Files

Multiple-image Mutable Files

File System Reliability

• Degree to which a file system will function correctly even
when faults occur

– E.g., data corruption in disk blocks, system crashes due to
power interruptions

• Two principal aspects are:

– Ensuring correctness of file creation, deletion, and updates

– Preventing loss of data in files

• Fault: defect in some part of the system

– Occurrence of a fault causes a failure

• Failure: system behavior that is erroneous

– Or that differs from its expected behavior

Loss of File System Consistency

• File system consistency implies correctness of metadata
and correct operation of the file system

• A fault may cause following failures:

– Some data from an open file may be lost

– Part of an open file may become inaccessible

– Contents of two files may get mixed up

• For example, consider addition of a disk block to a file and
a fault during step 3:

1. dj.next := d1.next;

2. d1.next := address (dj);

3. Write d1 to disk.

4. Write dj to disk.

Loss of File System Consistency
(continued)

Approaches to File System Reliability

• Recovery is a classic approach that is activated when a
failure is noticed

• Fault tolerance provides correct operation of file system
at all times

Recovery Techniques

• A backup is a recording of the file system state

– Overhead of creating backups

• When indexed allocation of disk space is used, it is possible to create
an on-disk backup of a file cheaply with technique that resembles
copy-on-write of virtual memory

– Overhead of reprocessing

• Operations performed after lash backup have to be reprocessed

– Solution: Use a combination of backups and incremental
backups

Recovery Techniques (continued)

Recovery Techniques (continued)

• To reduce overhead of creating backups (when indexed
allocation is used) only the FMT and disk block whose
contents are updated after the backup is created would be
copied

– Conserves both disk space and time

Fault Tolerance Techniques

• File system reliability can be improved by taking two
precautions:

– Preventing loss of data or metadata due to I/O device
malfunction

• Approach: use stable storage

– Preventing inconsistency of metadata due to faults
• Approach: use atomic actions

• Maintain two copies of data

– Can tolerate one fault in recording of a data item

– Incurs high space and time overhead

– Can’t indicate if copy that survived is old or new

Stable Storage

Atomic Actions

Atomic Actions (continued)

Journaling File Systems

• An unclean shutdown results in loss of data

– Traditional approach: recovery techniques

– Modern approach: use fault tolerance techniques so system
can resume operation quickly after shutdown

• A journaling file system implements fault tolerance by maintaining a
journal

Virtual File System

• A virtual file system (VFS) facilitates simultaneous
operation of several file systems

– It provides generic open, close, read and write

– Invokes operations of a specific file system

Case Studies of File Systems

• Unix File System

– Berkeley Fast File System

• Linux File System

• Solaris File System

• Windows File System

Unix file system

• File system data structures

– A directory entry contains only the file name

– Inode of a file contains file size, owner id, access permissions and
disk block allocation information

– A file structure contains information about an open file

• It contains current position in file, and pointer to its inode

– A file descriptor points to a file structure

– Indexed disk space allocation uses 3 levels of indirection

• Unix file sharing semantics

– Result of a write performed by a process is immediately visible to
all other processes currently accessing the file

Unix File System

Berkeley Fast File System

• FFS was developed to address the limitations of the file
system s5fs

• Supports some enhancements like long file names and use
of symbolic links

• Includes several innovations concerning disk block
allocation and disk access:

– Permits use of large disk blocks (up to 8KB)

– Uses cylinder groups to reduce disk head movement

– Tries to minimize rotational latency when reading
sequential files

Linux File System

• Linux provides a virtual file system (VFS)

– Supports a common file model that resembles the Unix file
model

• Standard file system is ext2

– Variety of file locks for process synchronization

• Advisory locks, mandatory locks, leases

– Uses notion of a block group

• ext3 incorporates journaling

Solaris File System

• Unix-like file access permissions

– Three access control pairs in each access control list

• Convenience and flexibility in file processing, through a
virtual file system

• Record-level locking provided to implement fine-grained
synchronization between processes

– Nonblocked I/O mode to avoid indefinite waits

• Asynchronous I/O mode: a process is not blocked for its
I/O operation to complete

• Provides file integrity

Windows File System

• NTFS is designed for servers and workstations

– Key feature: recoverability of the file system

• Notion of partition and volumes (single and spanned);
volumes have a master file table (MFT)

• Directory organized as a B+ tree

• Hard links and symbolic links (called junctions)

• Special techniques for sparse files and data compression

• Metadata modifications are atomic transactions

• Write behind capabilities of journaling file systems

• Vista has many new features for recovery

Performance of File Systems

Log-Structured File System

• Caching reduces disk head movement during reads

• Log-structured file systems reduce head movement
through a radically different file organization

– Writes file data of all files in a single sequential structure
that resembles a journal (log file)

• Little head movement during write operations

Summary

• Files are structured or unstructured (byte stream)

• File system provides:

– File organizations (sequential, direct, indexed)

– Directories for grouping of related files logically

– Sharing and protection of files

– Disk space allocation, typically indexed
• File map table (FMT) stores allocation information

• File control block (FCB) stores information about a file’s
processing

• Atomic actions can be used for fault tolerance

• Journaling file systems provide reliability modes

• VFS permits several file systems to be in operation

