SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. os

— — — H YO\ - T ,—:,;VSem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 51" (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-03
Memory Management

Introduction

Managing the Memory Hierarchy
Static and Dynamic Memory Allocation
Execution of Programs

Memory Allocation to a Process

Heap Management

Contiguous Memory Allocation

Introduction (continued)

Noncontiguous Memory Allocation
Paging

Segmentation

Segmentation with Paging

Kernel Memory Allocation

Using Idle RAM Effectively

Managing the Memory Hierarchy

L3 cache

Disk

and use of allocated memory is managed
by run-time libraries

Allocation and use is managed by
the kernel

CPU Levels How managed Performance issues
Caches Allocation and use is managed by Ensuring high hit ratios
hardware
L1 cache e
Memory Allocation is managed by the kernel (1) Accommodating more process

in memory, (2) Ensuring high hit ratios

Quick loading and storing of parts of
process address spaces

Virtual
memory

Figure 11.1 Managing the memory hierarchy.

Static and Dynamic Memory Allocation

 Memory allocation is an aspect of a more general action in
software operation known as binding

Definition 11.1 Static Binding A binding performed before the execution of
a program (or operation of a software system) is set in motion.

Definition 11.2 Dynamic Binding A binding performed during the execution
of a program (or operation of a software system).

— Static allocation performed by compiler, linker, or loader

* Sizes of data structures must be known a priori

— Dynamic allocation provides flexibility

* Memory allocation actions constitute an overhead during operation

Execution of Programs

A has to be transformed before it can be executed

— Many of these transformations perform memory bindings

» Accordingly, an address is called compiled address, linked address,

etc
Library 6\ Data
. l
I e T
s o
Object Binary — Data flow
modules programs —-» Control flow

Figure 11.2 Schematic diagram of transformation and execution of a program.

A Simple Assembly Language

* Format of an assembly language statement:

[Label] <Opcode> <operand spec> ,<operand spec>

— First operand is always a GPR
 AREG, BREG, CREG or DREG

— Second operand is a GPR or a symbolic name that
corresponds to a memory byte

— Opcodes are self-explanatory
« ADD, MULT, MOVER, MOVEM, BC

— For simplicity, assume that addresses and constants are in
decimal, and instructions occupy 4 bytes

Relocation

Assembly statement Generated code
Address Code

START 500
ENTEY TOTAL
EXTEN MAX, ALPFHA

READ A 500) + 09 O 540
LOOP 504)
MCVER AREG, ALPHA 51s) + 04 1 000
EC ANY, MAX 520) +0& & 00O
BC LT, LOOP 532) +0& 1 504
STOP 535) + 00 O 000
A DS 1 5410)
TOTAL DS 3 541)
END

Figure 11.3 Assembly program P and its generated code.

* Instructions using memory addresses are address-
sensitive

— Relocation is needed if program is to execute correctly in
some other memory area: involves changing addresses

Relocation (continued)

* Relocation may be performed in two ways:
— Static (before program is executed)

— Dynamic (during program execution)
« Alternative 1: suspend execution and relocate

 Alternative 2: use a relocation register

Program CPU Memory

50000 ey

register |
: R 75000 | Add 65784
65784 | x (55000) i

'\—_il__/H
e 5 85784 |
(65784)

(@) (b)

Figure 11.4 Program relocation using a relocation register: (a) program; (b) its execution.

Linking

* Assembler puts information about ENTRY and EXTRN
statements in an object module for linker’s use

— Called entry points and external references

* Linking: binding external reference to correct address
— Linker links modules to form an executable program
— Loader loads program in memory for execution

— Static linking produces binaries with no unresolved external
references

— Dynamic linking enables sharing of a single copy of a module
and dynamic updating of library modules

* E.g., Dynamically linked libraries (DLLs)

Program Forms Employed in Operating
Systems

Table 11.1 Program Forms Employed in Operating Systems

Program form Features

Object module Contains instructions and data of a program and
information required for its relocation and linking.

Binary program Ready-to-execute form of a program.

Dynamically linked Linking is performed in a lazy manner, i.e., an object

program module defining a symbol is linked to a program only
when that symbol is referenced during the program’s
execution.

Self-relocating program The program can relocate itself to execute in any area

of memory.
Reentrant program The program can be executed on several sets of data
concurrently.

Self-Relocating Programs

e Aself-relocating program:

— Knows its own translated origin and translated addresses of
its address-sensitive instructions

— Contains relocating logic

 Start address of the relocating logic is specified as the execution start
address of the program

— Starts off by calling a dummy function
* Return address provides its own execution-time address

* Now performs its own relocation using this address

— Passes control to first instruction to begin its own execution

Re-entrant Programs

* (Can be executed concurrently by many users
— Code accesses its data structures through the GPR

E- " Program Program
““““ A A
E Program
e Presme B
B » Program

C

(a) (b)
Figure 11.5 Sharing of program C by programs A and B: (a) static sharing; (b) dynamic

sharing.
AREG—» 224G |
AREG —»_ 24| AREG—s 2 | Data(Cy |

(a) (b) ()

Figure 11.6 (a) Structure of a reentrant program; (b)-(c) concurrent invocations of the
program.

Stacks and Heaps

* Stack: LIFO allocations/deallocations (push and pop)

— Memory is allocated when a function, procedure or block is
entered and is deallocated when it is exited

Top of
stack —»| Local data Stack
(TOS) of calc frame
sum for
b call on
a calc
Frame ret_ad (sample)
Top of base —»| Previous FB
stack Local data (FB) Local data
(TOS) of sample Stack f of sample \“nﬁ Stack
i frame i \ frame
Y for Y | for
X call on X / call on
Frame ret_ad (main) | o ample ref_ad (main) |/ sam ple
base —»| Previous FB N Previous FB
(FB)
(a) (b)

Figure 11.7 Stack after (a) main calls sample; (b) sample calls calc.

Stacks and Heaps (continued)

float *fleoatptrl, *flocatptri;
int *intptr;

floatptrl = (float *) calloc (5, sizeof (float)) ;
floatptr2 = (float *) calloc (4, sizeof (float));
intptr = (int *) calloc (10, sizeof (int));

free (floatptr2) ;

floatptrl » 20] floatptrl > 20 |
floatptr2 i floatptr2 | —
intptr X 16 | intptr \ 1:1[;“;
>0 40
Length
field Free Free
area area

(a) (b)

Figure 11.8 (a) A heap; (b) A “hole” in the allocation when memory is deallocated.

A heap permits random allocation/deallocation
— Used for program-controlled dynamic data (PCD data)

Memory Allocation to a Process

» Stacks and Heaps
* The Memory Allocation Model
* Memory Protection

The Memory Allocation Model

Low end of
allocated memory

Free
area

High end of
allocated memory

Code

Static data

PCD Data

Stack

Figure 11.9 Memory allocation model for a process.

l
T

Direction
of growth

Direction
of growth

Memory Protection

 Memory protection uses base and size register

— Memory protection violation interrupt is raised if an address
used in a program lies outside their range

* On processing interrupt, kernel aborts erring process

— Base/size registers constitute the memory protection
information (MPI) field of PSW
* Kernel loads appropriate values while scheduling a process
— Loading and saving are privileged instructions

* When a relocation register is used, this register and the size register
constitute MPI field of PSW

Heap Management

Reuse of Memory
— Maintaining a Free List
— Performing Fresh Allocations by Using a Free List
— Memory Fragmentation
— Merging of Free Memory Areas
Buddy System and Power-of-2 Allocators
Comparing Memory Allocators

Heap Management in Windows

Reuse of Memory

Table 11.2 Kernel Functions for Reuse of Memory

Function

Description

Maintain a free list

Select a memory area for
allocation

Merge free memory areas

The free list contains information about each free
memory area. When a process frees some memory,
information about the freed memory is entered in the
free list. When a process terminates, each memory area
allocated to it 1s freed, and information about it is
entered in the free list.

When a new memory request is made, the kernel selects
the most suitable memory area from which memory
should be allocated to satisfy the request.

Two or more adjoining free areas of memory can be
merged to form a single larger free area. The areas
being merged are removed from the free list and the
newly formed larger free area is entered in it.

Maintaining a Free List

@ Y | !
free list ﬂ“ﬂ HHH HHH m

header h c d 7z e

{b} |i—| \r+!| *‘L! !I ¥ I
free st LI I I ﬂl
X

hﬁi.idﬁ[' a i }l C d 7z e

Figure 11.10 Free area management: (a) singly linked free list; (b) doubly linked free list.
* For each memory area in free list, kernel maintains:

— Size of the memory area

— Pointers used for forming the list

* Kernel stores this information it in the first few bytes of a
free memory area itself

Performing Fresh Allocations by Using
a Free List

« Three techniques can be used:
— First-fit technique: uses first large-enough area
— Best-fit technique: uses smallest large-enough area
— Next-fit technique: uses next large-enough area

(@ T T T
Free list
header 200 10 e
b ¥ v Y
{) Ii—l 100 |30 400 First-fit
[| 100
¥ Y ¥
C
(c) Ii—l 100[50 400 Best-fit
o 0 100
d T T
(d) I__l_l 00 50 400 Next-fit
100 120 100

Figure 11.11 (a) Free list; (b}-(d) allocation using first-fit, best-fit and next-fit.

Memory Fragmentation

* Fragmentation leads to poor memory utilization

Definition 11.3 Memory Fragmentation The existence of unusable areas in
the memory of a computer system.

Table 11.3 Forms of Memory Fragmentation

Form of fragmentation

Description

External fragmentation
Internal fragmentation

Some area of memory is too small to be allocated.

More memory is allocated than requested by a process,
hence some of the allocated memory remains unused.

Merging of Free Memory Areas

* External fragmentation can be countered by merging free
areas of memory

* Two generic techniques:

— Boundary tags
— Memory compaction
boundary tag boundary tag
of left neighbor of right neighbor
\ allocated/free area /
. - N
|
|
1924
free list f,,---”’ f " f "’
pointer allocation allocation K

status size status size
L. _— L. —_

boundary tag boundary tag

Figure 11.12 Boundary tags and the free list pointer.

Merging of Free Memory Areas
(continued)

* Atag is a status descriptor for a memory area

— When an area of memory becomes free, kernel checks the
boundary tags of its neighboring areas

» Ifaneighbor is free, it is merged with newly freed area

¥ | ¥ ¥
(a) I—L_I 0| =] [+0 30| [40 0] Ro[TT=D] [+5 45| [30
Free list [F[[lll ella] X [allal Y [a|lellllella] Z |alle

header

¥ ¥ L
(b) I__l_l 70| [40 E 20! 0| [45 3| [0 £
B0 11 R
L
(c) I—_I_l t! 30| [0 0 m! 60| [+ EE;
||| a AR

F F(lA X AllFE

L]

T B

a0
F

@ b i
Hi HNESAARERNA |

Status flag values: A: Allocated, F: Free

Figure 11.13 Merging using boundary tags: (a) free list; (b)-(d) freeing of areas X, Y, and Z,
respectively.

Merging of Free Memory Areas
(continued)

* The 50-percent rule holds when merging is performed

A B|C|B A B | B A

Number of allocated areas, n = #A + #B 4 #C
Number of free areas. m = %(2 x #A + #B)

In the steady state #A = #C. Hence m = n/2

Merging of Free Memory Areas
(continued)

« Memory compaction is achieved by “packing” all allocated
areas toward one end of the memory

— Possible only if a relocation register is provided

| ¥ L ¥
@) - a b C d ¢
Free list
header
(b) - Y
= a b C d |e

Figure 11.14 Memory compaction.

Buddy System and Power-of-2
Allocators

These allocators perform allocation of memory in blocks
of a few standard sizes

— Leads to internal fragmentation

— Enables the allocator to maintain separate free lists for
blocks of different block sizes

* Avoids expensive searches in a free list

* Leads to fast allocation and deallocation
Buddy system allocator performs restricted merging
Power-of-2 allocator does not perform merging

Buddy System Allocator

Block Free list Free Block Free list Free
size header memory blocks size header memory blocks
16 ':"—’IIIj 16 =
)
32] > 32
3 =1
64 = 64 IITH—r N
128 Ij“_I"i—l' . 4-‘ 128 Ijh_I*—l" . Nl
Memory layout
g 2 3 4 3
Buddy blocks lavout
[T]
[[2]
I [| 4 1T |
I [3 I [3
(a) (b)

Figure 11.15 Buddy system operation when a block is released.

Power-of-2 Allocator

Sizes of memory blocks are powers of 2

Separate free lists are maintained for blocks of different
sizes

Each block contains a header element

— Contains address of free list to which it should be added
when it becomes free

An entire block is allocated to a request
— No splitting of blocks takes place
No effort is made to coalesce adjoining blocks

— When released, a block is returned to its free list

Heap Management in Windows

 Heap management aims at low allocation overhead and
low fragmentation

— By default, uses free list and best-fit allocation policy
* Notadequate: (1) when process makes heavy use of heap, and (2) in
a multiprocessor environment
— Alternative: use the low-fragmentation heap (LFH)
* Maintains many free lists; each for areas of a specific size
— Neither splitting, nor merging is performed
* Analogous to power-of-2 allocator

* OS monitors requests and adjusts sizes to fine-tune performance

Contiguous Memory Allocation

* In contiguous memory allocation each process is allocated
a single contiguous area in memory

— Faces the problem of memory fragmentation
* Apply techniques of memory compaction and reuse
— Compaction requires a relocation register
— Lack of this register is also a problem for swapping

Kernel Kernel Kernel
A A A
: (U :
C C D
D D E
(AT RN
(a) (b) (c)

Figure 11.16 Memory compaction.

Non-contiguous Memory Allocation

Portions of a process address space are distributed
among different memory areas

— Reduces external fragmentation

100K

300K

450K

600K
(@)

Process component

Memory

o

Kernel

F

AR
C

I
D

P-1

P-2

P-3
S50KB

3J0KB

80KB

40KB

Memory

Kemel

F

307488 3

C

D

Size Memory start address
50 KB 100K
30 KB 300K
60 KB 450K
100K
300K
Process P 450K
0 XYyZ
51488 [,
140K —1 000K
(b) (c)

Figure 11.17 Noncontiguous memory allocation to process P.

P-1

P-2

P-3
20KB

40KB

Logical Addresses, Physical Addresses,
and Address Translation

* Logical address: address of an instruction or data byte as
used in a process

— Viewed as a pair (comp, byte))

* Physical address: address in memory where an instruction
or data byte exists

Memory Memory
Effective memory address of (comp;., byte;) /_ﬂ”f“?ﬂ“‘?”
| X Kernel information
= start address of memory area allocated to comp;, m,ig/ of P
byte number of byte; within comp;
T D) -t Pi [Operand address
1 <" in current instruction
4
Memory
Management |«
Unit T g Meemory areas allocated

L ‘o process P

Memory address
where operand exists

Figure 11.18 A schematic of address translation in noncontiguous memory allocation.

Approaches to Non-contiguous Memory
Allocation

* Two approaches:
— Paging
* Process consists of fixed-size components called pages

* Eliminates external fragmentation
* The page size is defined by hardware

— Segmentation

* Programmer identifies logical entities in a program; each is called a
segment

 Facilitates sharing of code, data, and program modules between
processes

* Hybrid approach: segmentation with paging
— Avoids external fragmentation

Table 11.4 Comparison of Contiguous and Noncontiguous

Memory Allocation

Function

Contiguous allocation

Noncontiguous allocation

Memory
allocation

Address

translation

Memory
fragmentation

Swapping

The kernel allocates a single
memory area to a process.

Address translation 1s not
required.

External fragmentation
arises if first-fit, best-fit, or
next-fit allocation is used.
Internal fragmentation
arises if memory allocation
1s performed in blocks of a
few standard sizes.

Unless the computer system
provides a relocation
register, a swapped-in
process must be placed in its
originally allocated area.

The kernel allocates
several memory areas to a
process—each memory
area holds one component
of the process.

Address translation 1s
performed by the MMU
during program execution.
In paging, external
fragmentation does not
occur but internal
fragmentation can occur.
In segmentation, external
fragmentation occurs, but
internal fragmentation
does not occur.

Components of a
swapped-in process can be
placed anywhere in
memory.

Memory Protection

 Memory areas allocated to a program have to be
protected against interference from other programs

— MMU performs this through a bounds check

* While performing address translation for a logical address (comp,,
byte;), MMU checks if comp; actually exists in program and whether
byte; exists in comp;

— Protection violation interrupt raised if check fails
* Bounds check can be simplified in paging

— byte; cannot exceed size of a page

Paging

In the logical view, the address space of a process consists
of a linear arrangement of pages

Each page has s bytes in it, where s is a power of 2

— The value of s is specified in the architecture of the
computer system

Processes use numeric logical addresses

()

o [l

sample

~i

(0

[—

A

N

Process P Process R

Figure 11.19 Logical view of processes in paging.

Paging (continued)

« Memory is divided into areas called page frames
« A page frame is the same size as a page

Page Id of Effective memory address of (3, 128)
frame # page = start address of page frame #8 + 128
0 R-0 =8 x 1024 4+ 128
I P-0 = 8320
% l;_' II Page frame #
yl T . 01 1
sam |1|L<1 l;__’g Jz ; Page frame #
7 - 3 0 4]
8= E_i 17 | g
9 P-2 508 2135 Free frames
list
Memory Page table of P Page table of R

Figure 11.20 Physical organization in paging.

Paging (continued)

« Notation used to describe address translation:
s Size of a page
|| Length of a logical address (i.e., number of bits in it)
|, Length of a physical address
n, Number of bits used to represent the byte number in a logical address
n, Number of bits used to represent the page number in a logical address
n; Number of bits used to represent frame number in a physical address

 The size of a page, s, Is a power of 2
— n, is chosen such that s = 2™

logical address start address of frame q; effective physical address
l— Hp e N = Mf e By = Tf e By
Pi b; qi 0cevnns 0 i b;

fe———— ly — e p o, —

Example: Address Translation In
Paging

32-bit logical addresses

Page size of 4 KB

— 12 bits are adequate to address the bytes in a page
. 212 = 4KB

For a memory size of 256 MB, |, =28

If page 130 exists in page frame 48,

— p; = 130, and g; = 48

— If b, = 600, the logical and physical addresses are:
Logical address Physical address

— 20 —— 12 — 16 —— 12—
0 ... 010000010 | 001001011000 0 ... 00110000} 001001011000

Segmentation

« Asegment is a logical entity in a program
— E.g., a function, a data structure, or an object

/— main \
update
search
database
stack
!
\ d
Process ()

Figure 11.21 A process Q in segmentation.

« Each logical address used in Q has the form (s;, b))
— s, and b, are the ids of a segment and a byte within a

segment

Name Size Address
main 476 | 23500
database (20240 | 32012
search 378 | 76248
update 642 | 91376
stack 500 | 54500

Segment table of Q

Segmentation with Paging

Each segment in a program is paged separately

Integral number of pages allocated to each segment

Simplifies memory allocation and speeds it up

Avoids external fragmentation

/ main \\
update ' Page table
search Name Size address

main 476
... Jatabase [20040
database search 378
o update 642
stack 500

\ """""""" / Segment table of Q

Process ()

Figure 11.22 A process Q in segmentation with paging.

Kernel Memory Allocation

* Kernel creates and destroys data structures at a high rate
during its operation

— Mostly control blocks
* E.g.,, PCB, ECB, IOCB, FCB

— Sizes of control blocks known in OS design stage
* Helps make memory allocation simple and efficient

 Modern OSs use noncontiguous memory allocation with
paging
— McKusick-Karels allocator
— Lazy buddy allocator
— Slab allocator

Kernel Memory Allocation (continued)

McKusick-Karels and lazy buddy allocators allocate
memory areas that are powers of 2 in size within a page
— Start address of each allocated memory area of size 2"is a
multiple of 2"
* Boundary alignment on a power of 2

— Leads to a cache performance problem

— Some parts of the cache face a lot of contention leading to poor
cache performance of kernel code

Slab allocator uses an interesting technique to avoid this
cache performance problem

Kernel Memory Allocation (continued)

e Slab allocator was first used in Solaris 2.4

— Has been used in Linux since version 2.2

* Aslab consists of many slots; each can hold an object

— Coloring areas are chosen such that objects in different
slabs of pool have different alignments with respect to the
closest multiples of a power of 2

* Map into different areas of a set-associative cache

Using Idle RAM Effectively

 Memory is idle when applications are not active
* How can idle memory be exploited by OS?

— Run utilities during idle periods of a computer
* E.g., antivirus software
* Can have a negative impact on performance by displacing
applications from memory
— Windows Vista uses techniques that use idle RAM to
enhance system performance
» SuperFetch: preloads frequently used applications in idle RAM
* Readyboost: uses USB drive as a cache between disk and RAM

Summary

Compiler assumes a specific memory area to be available
to program and generates object module

Linker performs relocation of a program, and performs
linking to connect the program with library functions

Self-relocating programs perform their own relocation
CPU has a relocation register to facilitate relocation

Memory allocation can be: static or dynamic
— Both combined in programs through stack and heap

Summary

* Allocation/deallocation of memory can lead to
fragmentation: internal or external

— First-fit, next-fit and best-fit strategies try to reduce
fragmentation

— buddy systems and power-of-2 allocators eliminate external
fragmentation

— Noncontiguous allocation reduces external fragmentation

* Requires use of the memory management unit (MMU) of CPU
* Kernel creates and destroys data structures at high rate

— Uses special techniques to make memory reuse fast and
efficient

