
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

OS

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 5th (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-03
Memory Management

Introduction

• Managing the Memory Hierarchy

• Static and Dynamic Memory Allocation

• Execution of Programs

• Memory Allocation to a Process

• Heap Management

• Contiguous Memory Allocation

Introduction (continued)

• Noncontiguous Memory Allocation

• Paging

• Segmentation

• Segmentation with Paging

• Kernel Memory Allocation

• Using Idle RAM Effectively

Managing the Memory Hierarchy

Static and Dynamic Memory Allocation

• Memory allocation is an aspect of a more general action in
software operation known as binding

– Static allocation performed by compiler, linker, or loader

• Sizes of data structures must be known a priori

– Dynamic allocation provides flexibility

• Memory allocation actions constitute an overhead during operation

Execution of Programs

• A has to be transformed before it can be executed

– Many of these transformations perform memory bindings

• Accordingly, an address is called compiled address, linked address,
etc

A Simple Assembly Language

• Format of an assembly language statement:
[Label] <Opcode> <operand spec> ,<operand spec>

– First operand is always a GPR

• AREG, BREG, CREG or DREG

– Second operand is a GPR or a symbolic name that
corresponds to a memory byte

– Opcodes are self-explanatory

• ADD, MULT, MOVER, MOVEM, BC

– For simplicity, assume that addresses and constants are in
decimal, and instructions occupy 4 bytes

Relocation

• Instructions using memory addresses are address-
sensitive

– Relocation is needed if program is to execute correctly in
some other memory area: involves changing addresses

Relocation (continued)

• Relocation may be performed in two ways:

– Static (before program is executed)

– Dynamic (during program execution)

• Alternative 1: suspend execution and relocate

• Alternative 2: use a relocation register

Linking

• Assembler puts information about ENTRY and EXTRN
statements in an object module for linker’s use

– Called entry points and external references

• Linking: binding external reference to correct address

– Linker links modules to form an executable program

– Loader loads program in memory for execution

– Static linking produces binaries with no unresolved external
references

– Dynamic linking enables sharing of a single copy of a module
and dynamic updating of library modules

• E.g., Dynamically linked libraries (DLLs)

Program Forms Employed in Operating
Systems

Self-Relocating Programs

• A self-relocating program:

– Knows its own translated origin and translated addresses of
its address-sensitive instructions

– Contains relocating logic

• Start address of the relocating logic is specified as the execution start
address of the program

– Starts off by calling a dummy function

• Return address provides its own execution-time address

• Now performs its own relocation using this address

– Passes control to first instruction to begin its own execution

Re-entrant Programs

• Can be executed concurrently by many users

– Code accesses its data structures through the GPR

Stacks and Heaps

• Stack: LIFO allocations/deallocations (push and pop)

– Memory is allocated when a function, procedure or block is
entered and is deallocated when it is exited

Stacks and Heaps (continued)

• A heap permits random allocation/deallocation

– Used for program-controlled dynamic data (PCD data)

Memory Allocation to a Process

• Stacks and Heaps

• The Memory Allocation Model

• Memory Protection

The Memory Allocation Model

Memory Protection

• Memory protection uses base and size register

– Memory protection violation interrupt is raised if an address
used in a program lies outside their range

• On processing interrupt, kernel aborts erring process

– Base/size registers constitute the memory protection
information (MPI) field of PSW

• Kernel loads appropriate values while scheduling a process

– Loading and saving are privileged instructions

• When a relocation register is used, this register and the size register
constitute MPI field of PSW

Heap Management

• Reuse of Memory

– Maintaining a Free List

– Performing Fresh Allocations by Using a Free List

– Memory Fragmentation

– Merging of Free Memory Areas

• Buddy System and Power-of-2 Allocators

• Comparing Memory Allocators

• Heap Management in Windows

Reuse of Memory

Maintaining a Free List

• For each memory area in free list, kernel maintains:

– Size of the memory area

– Pointers used for forming the list

• Kernel stores this information it in the first few bytes of a
free memory area itself

Performing Fresh Allocations by Using

a Free List

• Three techniques can be used:

– First-fit technique: uses first large-enough area

– Best-fit technique: uses smallest large-enough area

– Next-fit technique: uses next large-enough area

Performing Fresh Allocations by Using

a Free List

• Three techniques can be used:

– First-fit technique: uses first large-enough area

– Best-fit technique: uses smallest large-enough area

– Next-fit technique: uses next large-enough area

Memory Fragmentation

• Fragmentation leads to poor memory utilization

Merging of Free Memory Areas

• External fragmentation can be countered by merging free
areas of memory

• Two generic techniques:

– Boundary tags

– Memory compaction

Merging of Free Memory Areas
(continued)

• A tag is a status descriptor for a memory area

– When an area of memory becomes free, kernel checks the
boundary tags of its neighboring areas

• If a neighbor is free, it is merged with newly freed area

Merging of Free Memory Areas
(continued)

• The 50-percent rule holds when merging is performed

Merging of Free Memory Areas
(continued)

• Memory compaction is achieved by “packing” all allocated
areas toward one end of the memory

– Possible only if a relocation register is provided

Buddy System and Power-of-2
Allocators

• These allocators perform allocation of memory in blocks
of a few standard sizes

– Leads to internal fragmentation

– Enables the allocator to maintain separate free lists for
blocks of different block sizes

• Avoids expensive searches in a free list

• Leads to fast allocation and deallocation

• Buddy system allocator performs restricted merging

• Power-of-2 allocator does not perform merging

Buddy System Allocator

Power-of-2 Allocator

• Sizes of memory blocks are powers of 2

• Separate free lists are maintained for blocks of different
sizes

• Each block contains a header element

– Contains address of free list to which it should be added
when it becomes free

• An entire block is allocated to a request

– No splitting of blocks takes place

• No effort is made to coalesce adjoining blocks

– When released, a block is returned to its free list

Heap Management in Windows

• Heap management aims at low allocation overhead and
low fragmentation

– By default, uses free list and best-fit allocation policy

• Not adequate: (1) when process makes heavy use of heap, and (2) in
a multiprocessor environment

– Alternative: use the low-fragmentation heap (LFH)

• Maintains many free lists; each for areas of a specific size

– Neither splitting, nor merging is performed

• Analogous to power-of-2 allocator

• OS monitors requests and adjusts sizes to fine-tune performance

Contiguous Memory Allocation

• In contiguous memory allocation each process is allocated
a single contiguous area in memory

– Faces the problem of memory fragmentation
• Apply techniques of memory compaction and reuse

– Compaction requires a relocation register

– Lack of this register is also a problem for swapping

Non-contiguous Memory Allocation

• Portions of a process address space are distributed
among different memory areas

– Reduces external fragmentation

Logical Addresses, Physical Addresses,
and Address Translation

• Logical address: address of an instruction or data byte as
used in a process

– Viewed as a pair (compi, bytei)

• Physical address: address in memory where an instruction
or data byte exists

Approaches to Non-contiguous Memory
Allocation

• Two approaches:

– Paging

• Process consists of fixed-size components called pages

• Eliminates external fragmentation

• The page size is defined by hardware

– Segmentation

• Programmer identifies logical entities in a program; each is called a
segment

• Facilitates sharing of code, data, and program modules between
processes

• Hybrid approach: segmentation with paging

– Avoids external fragmentation

Memory Protection

• Memory areas allocated to a program have to be
protected against interference from other programs

– MMU performs this through a bounds check

• While performing address translation for a logical address (compi,
bytei), MMU checks if compi actually exists in program and whether
bytei exists in compi

– Protection violation interrupt raised if check fails

• Bounds check can be simplified in paging

– bytei cannot exceed size of a page

Paging

• In the logical view, the address space of a process consists
of a linear arrangement of pages

• Each page has s bytes in it, where s is a power of 2

– The value of s is specified in the architecture of the
computer system

• Processes use numeric logical addresses

Paging (continued)

• Memory is divided into areas called page frames

• A page frame is the same size as a page

Paging (continued)

• Notation used to describe address translation:
s Size of a page

ll Length of a logical address (i.e., number of bits in it)

lp Length of a physical address

nb Number of bits used to represent the byte number in a logical address

np Number of bits used to represent the page number in a logical address

nf Number of bits used to represent frame number in a physical address

• The size of a page, s, is a power of 2

– nb is chosen such that s = 2nb

logical address start address of frame qi effective physical address

Example: Address Translation in

Paging

• 32-bit logical addresses

• Page size of 4 KB

– 12 bits are adequate to address the bytes in a page

• 212 = 4KB

• For a memory size of 256 MB, lp = 28

• If page 130 exists in page frame 48,

– pi = 130, and qi = 48

– If bi = 600, the logical and physical addresses are:

Segmentation

• A segment is a logical entity in a program

– E.g., a function, a data structure, or an object

• Each logical address used in Q has the form (si, bi)

– si and bi are the ids of a segment and a byte within a

segment

Segmentation with Paging

• Each segment in a program is paged separately

• Integral number of pages allocated to each segment

• Simplifies memory allocation and speeds it up

• Avoids external fragmentation

Kernel Memory Allocation

• Kernel creates and destroys data structures at a high rate
during its operation

– Mostly control blocks
• E.g., PCB, ECB, IOCB, FCB

– Sizes of control blocks known in OS design stage
• Helps make memory allocation simple and efficient

• Modern OSs use noncontiguous memory allocation with
paging

– McKusick–Karels allocator

– Lazy buddy allocator

– Slab allocator

Kernel Memory Allocation (continued)

• McKusick–Karels and lazy buddy allocators allocate
memory areas that are powers of 2 in size within a page

– Start address of each allocated memory area of size 2n is a
multiple of 2n

• Boundary alignment on a power of 2

– Leads to a cache performance problem

– Some parts of the cache face a lot of contention leading to poor
cache performance of kernel code

• Slab allocator uses an interesting technique to avoid this
cache performance problem

Kernel Memory Allocation (continued)

• Slab allocator was first used in Solaris 2.4

– Has been used in Linux since version 2.2

• A slab consists of many slots; each can hold an object

– Coloring areas are chosen such that objects in different
slabs of pool have different alignments with respect to the
closest multiples of a power of 2

• Map into different areas of a set-associative cache

Using Idle RAM Effectively

• Memory is idle when applications are not active

• How can idle memory be exploited by OS?

– Run utilities during idle periods of a computer

• E.g., antivirus software

• Can have a negative impact on performance by displacing
applications from memory

– Windows Vista uses techniques that use idle RAM to
enhance system performance

• SuperFetch: preloads frequently used applications in idle RAM

• Readyboost: uses USB drive as a cache between disk and RAM

Summary

• Compiler assumes a specific memory area to be available
to program and generates object module

• Linker performs relocation of a program, and performs
linking to connect the program with library functions

• Self-relocating programs perform their own relocation

• CPU has a relocation register to facilitate relocation

• Memory allocation can be: static or dynamic

– Both combined in programs through stack and heap

Summary

• Allocation/deallocation of memory can lead to
fragmentation: internal or external

– First-fit, next-fit and best-fit strategies try to reduce
fragmentation

– buddy systems and power-of-2 allocators eliminate external
fragmentation

– Noncontiguous allocation reduces external fragmentation
• Requires use of the memory management unit (MMU) of CPU

• Kernel creates and destroys data structures at high rate

– Uses special techniques to make memory reuse fast and
efficient

