
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

OS

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553. Sem.: 5th (2018-19 ODD)

Course Coordinator:

Prof. Nyamatulla M Patel

Operating Systems-15EC553

Module-02
Processes & Threads

Introduction

• Processes and Programs

• Implementing Processes

• Threads

• Case Studies of Processes and Threads

Processes and Programs

• What Is a Process?

• Relationships between Processes and Programs

• Child Processes

• Concurrency and Parallelism

What Is a Process?

• A process comprises six components:

– (id, code, data, stack, resources, CPU state)

Relationships between Processes and
Programs

• A program is a set of functions and procedures

– Functions may be separate processes, or they may
constitute the code part of a single process

Child Processes

• Kernel initiates an execution of a program by creating a
process for it

– Primary process may make system calls to create other
processes

• Child processes and parents create a process tree

• Typically, a process creates one or more child processes
and delegates some of its work to each

– Multitasking within an application

Child Processes (continued)

Example: Child Processes in a
Real-Time Application

Concurrency and Parallelism

• Parallelism: quality of occurring at the same time

– Two tasks are parallel if they are performed at the same
time

– Obtained by using multiple CPUs
• As in a multiprocessor system

• Concurrency is an illusion of parallelism

– Two tasks are concurrent if there is an illusion that they are
being performed in parallel whereas only one of them may
be performed at any time

– In an OS, obtained by interleaving operation of processes on
the CPU

• Both concurrency and parallelism can provide better
throughput

Implementing Processes

• To OS, a process is a unit of computational work

– Kernel’s primary task is to control operation of processes to
provide effective utilization of the computer system

Process States and State Transitions

Process States and State Transitions

(continued)

• A state transition for a process is a change in its state

– Caused by the occurrence of some event such as the

start or end of an I/O operation

Process States and State Transitions
(continued)

Example: Process State Transitions

• A system contains two processes P1 and P2

Suspended Processes

• A kernel needs additional states to describe processes
suspended due to swapping

Process Context and the Process Control
Block

• Kernel allocates resources to a process and schedules it
for use of the CPU

– The kernel’s view of a process is comprised of the process
context and the process control block

Context Save, Scheduling, and
Dispatching

• Context save function:

– Saves CPU state in PCB, and saves information concerning
context

– Changes process state from running to ready

• Scheduling function:

– Uses process state information from PCBs to select a ready
process for execution and passes its id to dispatching
function

• Dispatching function:

– Sets up context of process, changes its state to running, and
loads saved CPU state from PCB into CPU

– Flushes address translation buffers used by MMU

Event Handling

• Events that occur during the operation of an OS:

1. Process creation event

2. Process termination event

3. Timer event

4. Resource request event

5. Resource release event

6. I/O initiation request event

Event Handling (continued)

• Events that occur during the operation of an OS
(continued):

1. I/O completion event

2. Message send event

3. Message receive event

4. Signal send event

5. Signal receive event

6. A program interrupt

7. A hardware malfunction event

Event Handling (continued)

• When an event occurs, the kernel must find the process
whose state is affected by it

– OSs use various schemes to speed this up

• E.g., event control blocks (ECBs)

P1 initiates I/O operation on d

Sharing, Communication and
Synchronization Between Processes

Signals

• A signal is used to notify an exceptional situation to a
process and enable it to attend to it immediately

– Situations and signal names/numbers defined in OS

• CPU conditions like overflows

• Conditions related to child processes

• Resource utilization

• Emergency communications from a user to a process

• Can be synchronous or asynchronous

• Handled by process-defined signal handler or OS provided
default handler

Example: Signal handling

Threads

• A thread is an alternative model of program execution

• A process creates a thread through a system call

• Thread operates within process context

• Use of threads effectively splits the process state into two
parts

– Resource state remains with process

– CPU state is associated with thread

• Switching between threads incurs less overhead than
switching between processes

Threads (continued)

Coding for use of threads

• Use thread safe libraries to ensure
correctness of data sharing

• Signal handling: which thread should
handle a signal?

– Choice can be made by kernel or by application

• A synchronous signal should be handled by the
thread itself

• An asynchronous signal can be handled by any
thread of the process

– Ideally highest priority thread should handle it

POSIX Threads

• The ANSI/IEEE Portable Operating System Interface
(POSIX) standard defines pthreads API

– For use by C language programs

– Provides 60 routines that perform the following:
• Thread management

• Assistance for data sharing─mutual exclusion

• Assistance for synchronization─condition variables

– A pthread is created through the call

pthread_create(< data structure >,< attributes >,
< start routine >,< arguments >)

– Parent-child synchronization is through pthread_join

– A thread terminates pthread_exit call

Kernel-Level, User-Level, and Hybrid
Threads

• Kernel-Level Threads

– Threads are managed by the kernel

• User-Level Threads

– Threads are managed by thread library

• Hybrid Threads

– Combination of kernel-level and user-level threads

Kernel-Level Threads

• A kernel-level thread is like a process except that it has a
smaller amount of state information

• Switching between threads of same process incurs the
overhead of event handling

User-Level Threads

• Fast thread switching because kernel is not involved

• Blocking of a thread blocks all threads of the process

• Threads of a process: No concurrency or parallelism

Scheduling of User-Level Threads

• Thread library maintains thread state, performs switching

Hybrid Thread Models

• Can provide a combination of parallelism and low overhead

Case Studies of Processes and Threads

• Processes in Unix

• Processes and Threads in Linux

• Threads in Solaris

• Processes and Threads in Windows

Processes in Unix

• Process executes kernel code on an interrupt or system
call, hence kernel running and user running states

• A process Pi can wait for the termination of a child
process through the system call wait

Processes in Unix (continued)

Processes and Threads in Linux

• Process states: Task_running, Task_interruptible, Task-
uninterruptible, task_stopped and task_zombie

• Information about parent and child processes or threads
is stored in a task_struct

Threads in Solaris

• Three kinds of entities govern concurrency and
parallelism within a process:

– User threads

– Lightweight processes (LWPs)
• Provides arallelism within a process

• User thread are mapped into LWPs

– Kernel threads

• Supported two different thread models

– M x N model upto solaris 8

– 1 : 1 model Solaris 8 onwards

• Provides scheduler activations to avoid thread blocking
and notify events

Threads in Solaris (continued)

Processes and Threads in
Windows

• Each process has at least one thread in it.

• Uses three control blocks per process

– Executive process block: process id, a kernel process
block and address of process environment block

– Kernel process block: process state, KTB addresses

– Process environment block: information about code
and heap

• Uses three thread blocks per thread

– Executive thread block contains pointer to kernel
thread block and executive process block

– Kernel thread block: stack, state and kernel
environment block

Processes and Threads in Windows
(continued)

Summary

• Execution of a program can be speeded up through either
parallelism or concurrency

• A process is a model of execution of a program

– Can create other processes by making requests to the OS
through system calls

• Each of these processes is called its child process

• Provides parallelism or concurrency

• OS provides process synchronization means

• OS allocates resources to a process and stores information
about them in the process context of the process

