

Department of Electronics & Communication Engg.

Course : Operating Systems -15EC553.

Sem.: 5th (2018-19 ODD)

Course Coordinator: Prof. Nyamatulla M Patel

Operating Systems-15EC553 Module-01 Overview of Operating System

Introduction

Twin aims of an operating system are:

User convenience

System performance

Performance measures depend on the computing environment.

Number of requests serviced per unit time, etc

Fundamental tasks of an OS

- Management of Programs
 - * Organize their execution by sharing the CPU
 - * Ensure good user service and efficient use.
- Management of Resources
 * Efficient allocation/de-allocation without constraining user programs.
- Security and Protection
 - * Ensure absence of interference with programs and resources by entities within and outside the OS

Overview of Security and Protection Threats

Computer system

Memory utilization during operation of an OS

Model of a Computer System

Fields of Program Status Word (PSW)

- IM : Interrupt Mask
- P : Privileged mode
- IC : Interrupt Code
- MPI : Memory Protection Information
- CC : Condition Code
- PC : Program Counter

(a) Program (b) State of CPU after executing COMPARE instruction

Address		Instru	iction		Р
0142 0146 0150		MOVE COMPARE BEQ	A, ALPHA A, 1 NEXT	PSW	0 00 0150 CC PC
0192 0210	NEXT ALPHA	 DS	1	CPU registers	1 A B X
		(a)		(b)

Memory hierarchy containing cache, main memory and disk

Memory hierarchy

Cache memory * Organization – Cache block or cache line -- Inclusive or exclusive -- Direct, fully associative, -- Set associative

* Different levels of caches – Why? How many levels?
* Cache hit ratio – What factors influence it?

Main memory * Memory protection * Virtual memory?

Memory protection using Bound registers

A schematic of virtual memory operation

Input / Output organization

Involvement of the CPU in I/O operations -- Should be the minimum possible due to imbalance between CPU and I/O speeds.

 -- CPU should be free to execute instructions while I/O operations are in progress.

Different I/O modes

- -- Programmed I/O
- -- Interrupt I/O
- -- Direct memory access (DMA)

Input Output Modes

I/O mode	Description
Programmed I/O	Operands of an I/O instruction indicate details of an I/O operation. CPU decodes the instruction and sends a signal to an I/O device. Data transfer between the I/O device and the memory takes place through the CPU. CPU cannot perform any other operation while I/O is in progress.
Interrupt I/O	CPU executes an I/O instruction. It starts an I/O operation and frees the CPU to execute other instructions. An interrupt is raised when a data byte is to be transferred between the I/O device and the memory. The CPU executes an interrupt processing routine that transfers the byte.
Direct Memory Access (DMA)	An I/O instruction indicates the I/O operation to be per- formed and also the number of bytes to be transferred. I/O operation starts when the instruction is executed. Data trans- fer between the device and memory takes place over the sys- tem bus. The CPU is not involved in data transfer. An inter- rupt is raised when the transfer of all bytes is complete.

Interrupts

An interrupt signals the occurrence of an event to the CPU.

The CPU is diverted to execution of an OS routine.

Different classes of interrupts convey occurrence of different kinds of events

Classes of Interrupts

Class	Description
Program interrupt	Caused by conditions within the CPU that require supervisor attention, for example, arithmetic exceptions like overflow and loss of precision, addressing exceptions and memory protection violations.
	An interrupt called a <i>software interrupt</i> is caused by execu- tion of a special instruction called the software interrupt in- struction.
I/O interrupt	Caused by conditions like I/O completion and malfunction- ing of I/O devices.
Timer interrupt	Raised by the interval timer of the computer system.

The interrupt action

Steps in Interrupt action

Step	Description	
1. Set Interrupt code	The interrupt hardware for the chosen interrupt forms a code describing the cause of the interrupt. This code is stored in the <i>interrupt code</i> field of the PSW. For example, for an 'I/O completion' interrupt, the code could be the address of the I/O device causing the interrupt.	
2. Save the PSW	The PSW is copied into the <i>saved PSW information</i> area in the unit corresponding to the interrupt class.	
3. Load interrupt vector	The interrupt vector corresponding to the interrupt class is accessed. Information from the interrupt vec- tor is loaded into the corresponding fields of the PSW. This action transfers control to an appropriate interrupt processing routine.	

An operating system in its computing environment

Computing environment

System Call

A system call is a request made by a program through a special instruction called a `software interrupt' instruction.

- The software interrupt is a program interrupt.
- When a software interrupt occurs, the interrupt hardware transfers control to a routine of the OS. The operand of the software interrupt instruction indicates what kind of request is being made by a program

Interrupt driven operation of a kernel

System Calls

Туре	Examples		
Resource	Allocate/deallocate resource, check resource availability		
Program	Set/await timer interrupt, execute/terminate program		
File	Open/close a file, read/write a file		
Information	Get time and date, get OS information, get resource information		
Communication	Send/receive message, setup/terminate connection		

Interrupt processing and scheduling

Simple and nested interrupt processing

