
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

DSP

V Sem

2018-19

Department of Electronics & Communication Engg.

Course : Digital Signal Processing -15EC52. Sem.: 5th (2018-19)

Course Coordinator:

Prof. S. S. Ittannavar

Sampling the Fourier Transform

• Consider an a periodic sequence with a Fourier transform

• Assume that a sequence is obtained by sampling the DTFT

• Since the DTFT is periodic resulting sequence is also periodic

• We can also write it in terms of the z-transform

• The sampling points are shown in figure

• could be the DFS of a sequence

• Write the corresponding sequence

   
 

  kN/2j

kN/2

j eXeXkX
~ 



 

   jDTFT eX]n[x

     
  kN/2j

ez
eXzXkX

~
kN/2




 

 kX
~

   






1N

0k

knN/2jekX
~

N

1
]n[x~

Sampling the Fourier Transform Cont’d

• The only assumption made on the sequence is that DTFT exist

• Combine equation to get

• Term in the parenthesis is

• So we get

   




 
m

mjj emxeX    






1N

0k

knN/2jekX
~

N

1
]n[x~    kN/2jeXkX

~ 

     

          

 














































mm

1N

0k

mnkN/2j

1N

0k

knN/2j

m

kmN/2j

mnp
~

mxe
N

1
mx

eemx
N

1
]n[x~

       








 
r

1N

0k

mnkN/2j rNmne
N

1
mnp

~

     









rr

rNnxrNnnx]n[x~

Sampling the Fourier Transform Cont’d

Sampling the Fourier Transform Cont’d

• Samples of the DTFT of an aperiodic sequence

– can be thought of as DFS coefficients

– of a periodic sequence

– obtained through summing periodic replicas of original sequence

• If the original sequence

– is of finite length

– and we take sufficient number of samples of its DTFT

– the original sequence can be recovered by

• It is not necessary to know the DTFT at all frequencies

– To recover the discrete-time sequence in time domain

• Discrete Fourier Transform

– Representing a finite length sequence by samples of DTFT

   



 


else0

1Nn0nx~
nx

The Discrete Fourier Transform

• Consider a finite length sequence x[n] of length N

• For given length-N sequence associate a periodic sequence

• The DFS coefficients of the periodic sequence are samples of the DTFT

of x[n]

• Since x[n] is of length N there is no overlap between terms of x[n-rN]

and we can write the periodic sequence as

• To maintain duality between time and frequency

– We choose one period of as the Fourier transform of x[n]

  1Nn0 of outside 0nx 

   





r

rNnxnx~

        NkXN mod kXkX
~



 kX
~

   




 


else0

1Nk0kX
~

kX

        NnxN mod nxnx~ 

The Discrete Fourier Transform Cont’d

• The DFS pair

• The equations involve only on period so we can write

• The Discrete Fourier Transform

• The DFT pair can also be written as

   






1N

0k

knN/2jekX
~

N

1
]n[x~   







1N

0n

knN/2je]n[x~kX
~

 
 









 






else0

1Nk0e]n[x~
kX

1N

0n

knN/2j

   









 






else0

1Nk0ekX
~

N

1
]n[x

1N

0k

knN/2j

   






1N

0n

knN/2je]n[xkX    






1N

0k

knN/2jekX
N

1
]n[x

 ]n[xkX DFT
 

Properties of DFT

• Linearity

• Duality

• Circular Shift of a Sequence

   
   

       kbXkaXnbxnax

kXnx

kXnx

21
DFT

21

2
DFT

2

1
DFT

1

 

 

 

   
       mN/k2jDFT

N

DFT

ekX1-Nn0 mnx

kXnx
 

 

   
     N

DFT

DFT

kNxnX

kXnx

 

 

Symmetry Properties

Circular Convolution

• Circular convolution of of two finite

length sequences

       





1N

0m
N213 mnxmxnx

       





1N

0m
N123 mnxmxnx

Fast Fourier Transforms

Discrete Fourier Transform

• The DFT pair was given as

• Baseline for computational complexity:

– Each DFT coefficient requires

• N complex multiplications

• N-1 complex additions

– All N DFT coefficients require

• N2 complex multiplications

• N(N-1) complex additions

• Complexity in terms of real operations

• 4N2 real multiplications

• 2N(N-1) real additions

• Most fast methods are based on symmetry properties

– Conjugate symmetry

– Periodicity in n and k

   






1N

0k

knN/2jekX
N

1
]n[x   







1N

0n

knN/2je]n[xkX

           knN/2jnkN/2jkNN/2jnNkN/2j eeee  
        nNkN/2jNnkN/2jknN/2j eee  

The Goertzel Algorithm

• Makes use of the periodicity

• Multiply DFT equation with this factor

• Define

• With this definition and using x[n]=0 for n<0 and n>N-1

• X[k] can be viewed as the output of a filter to the input x[n]

– Impulse response of filter:

– X[k] is the output of the filter at time n=N

  1ee k2jNkN/2j  

         










 
1N

0r

nNrN/2j
1N

0r

rnN/2jkNN/2j e]r[xe]r[xekX

       




 
r

rnkN/2j
k rnue]r[xny

   
Nnk nykX




   nue knN/2j 

The Goertzel Filter

• Goertzel Filter

• Computational complexity

– 4N real multiplications

– 2N real additions

– Slightly less efficient than the direct method

• Multiply both numerator and denominator

 
1

k
N

2
j

k

ze1

1
zH









 
21

1
k

N

2
j

1
k

N

2
j

1
k

N

2
j

1
k

N

2
j

k

zz
N

k2
cos21

ze1

ze1ze1

ze1
zH































































Second Order Goertzel Filter

• Second order Goertzel Filter

• Complexity for one DFT coefficient

– Poles: 2N real multiplications and 4N real additions

– Zeros: Need to be implement only once

• 4 real multiplications and 4 real additions

• Complexity for all DFT coefficients

– Each pole is used for two DFT coefficients

• Approximately N2 real multiplications and 2N2 real additions

• Do not need to evaluate all N DFT coefficients

– Goertzel Algorithm is more efficient than FFT if

• less than M DFT coefficients are needed

• M < log2N

 
21

1
k

N

2
j

k

zz
N

k2
cos21

ze1
zH
















Decimation-In-Time FFT Algorithms

• Makes use of both symmetry and periodicity

• Consider special case of N an integer power of 2

• Separate x[n] into two sequence of length N/2

– Even indexed samples in the first sequence

– Odd indexed samples in the other sequence

• Substitute variables n=2r for n even and n=2r+1 for odd

• G[k] and H[k] are the N/2-point DFT’s of each subsequence

       











 
1N

odd n

knN/2j
1N

even n

knN/2j
1N

0n

knN/2j e]n[xe]n[xe]n[xkX

   

   kHWkG

W]1r2[xWW]r2[x

W]1r2[xW]r2[xkX

k
N

12/N

0r

rk
2/N

k
N

12/N

0r

rk
2/N

12/N

0r

k1r2
N

12/N

0r

rk2
N



























Decimation In Time

• 8-point DFT example using

decimation-in-time

• Two N/2-point DFTs

– 2(N/2)2 complex multiplications

– 2(N/2)2 complex additions

• Combining the DFT outputs

– N complex multiplications

– N complex additions

• Total complexity

– N2/2+N complex multiplications

– N2/2+N complex additions

– More efficient than direct DFT

• Repeat same process

– Divide N/2-point DFTs into

– Two N/4-point DFTs

– Combine outputs

Decimation In Time Cont’d

• After two steps of decimation in time

• Repeat until we’re left with two-point DFT’s

Decimation-In-Time FFT Algorithm

• Final flow graph for 8-point decimation in time

• Complexity:

– Nlog2N complex multiplications and additions

Butterfly Computation

• Flow graph constitutes of butterflies

• We can implement each butterfly with one multiplication

• Final complexity for decimation-in-time FFT

– (N/2)log2N complex multiplications and additions

In-Place Computation

• Decimation-in-time flow graphs require two sets of registers

– Input and output for each stage

• Note the arrangement of the input indices

– Bit reversed indexing

       
       
       
       
       
       
       
       111x111X7x7X

011x110X3x6X

101x101X5x5X

001x100X1x4X

110x011X6x3X

010x010X2x2X

100x001X4x1X

000x000X0x0X

00

00

00

00

00

00

00

00

















Decimation-In-Frequency FFT Algorithm

• The DFT equation

• Split the DFT equation into even and odd frequency indexes

• Substitute variables to get

• Similarly for odd-numbered frequencies

  





1N

0n

nk
NW]n[xkX

  













1N

2/Nn

r2n
N

12/N

0n

r2n
N

1N

0n

r2n
N W]n[xW]n[xW]n[xr2X

     














12/N

0n

nr
2/N

12/N

0n

r22/Nn
N

12/N

0n

r2n
N W]2/Nn[x]n[xW]2/Nn[xW]n[xr2X

     







12/N

0n

1r2n
2/NW]2/Nn[x]n[x1r2X

Decimation-In-Frequency FFT Algorithm

• Final flow graph for 8-point decimation in frequency

