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Sampling the Fourier Transform

Consider an a periodic sequence with a Fourier transform

Ak Xﬁej“)
Assume that a sequence is obtained by sampling the DTFT

YiL1_ jo il i2r/NK
X[k] B X(e }w:(Zn/N)k B X(e )
Since the DTFT is periodic resulting sequence is also periodic

We can also write it in terms of the z-transform

. | %Lkl i X(le =X X(ej(Zn/N)k)
The sampling points are shown irrfigure

X[k] could be the DFS of a sequence
Write the corresponding sequence z-plane
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Sampling the Fourier Transform Cont'd

The only assumption made on the sequence is that DTFT exist

X(ej@) i i X[m]e—jmm ’)\(’[k] _ X(ej(Zn/N)k) X[n] = %sz r>‘<’[k]ej(2n/N)kn
k=0

M=-o0

Combine equation to get

X[n] = % Nzl { 3" x[mje- s/ Mk }ej@"/ 0

k=0 | m=-w
_ Z.O: x[m{% :Z_‘; i/ N)k(”‘m)} = Z.o: x[mp[n — m]

Term in the parenthesis is

So we get



Sampling the Fourier Transform Cont’d
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Sampling the Fourier Transform Cont’d

« Samples of the DTFT of an aperiodic sequence

— can be thought of as DFS coefficients

— of a periodic sequence

— obtained through summing periodic replicas of original sequence
- If the original sequence

— Is of finite length

— and we take sufficient number of samples of its DTFT

— the original sequence can be recovered by

X[n]:{')\(l[n] O<n<N-1
0 else

« Itis not necessary to know the DTFT at all frequencies
— To recover the discrete-time sequence in time domain
* Discrete Fourier Transform
— Representing a finite length sequence by samples of DTFT



The Discrete Fourier Transform

Consider a finite length sequence x[n] of length N
x[n]=0 outsideof 0<n<N-1
For given length-N sequence associate a periodic sequence

(e 0]

X[n]= > x[n - rN]

The DFS coefficients of the periodic sequence are samples of the DTFT
of x[n]

Since x[n] is of length N there is no overlap between terms of x[n-rN]
and we can write the periodic sequence as

X|n]= x|(n mod N)| = x|((n))\]

To maintain duality between tiﬁr}ne and frequency
— We choose one period of X[k] as the Fourier transform of x[n]

x[ﬂ:{*’@k] OkEN-1 Xk mod V=X



The Discrete Fourier Transform Cont’d

The DFS pair
~ N-1 3 : N 1 - j(2n/N)kn
X[k] 5 Z X[nJeJ2r/Nkn X[n] = 4 Z X[k]e
n=0 k=0
The equations involve only on period so we can write
(N-1
X[n]e /N o<k <N-1
Xk] = 1 2
0 else
flluz_f%[k]ej(zf‘/”)k” 0<k<N-1
X[n] =N~ ) -
0 else

"

The Discrete Fourier Transform
= - 1 N1 _
X[k] = ¥ x[n]e 12=/Nkn ] = 3" Xk Jeee/ Nk
n=0 vy

The DFT pair can also be written as
X[k |« x[n]




Properties of DFT

« Linearity
A R T 1) [R—— !
X T X, K] |
axn]+bxn] T ax ]+ k] T
« Duality
Xn] 2= X[k]

« Circular Shift of a Sequence

x[n] > X[k]
x[(N—m)Josn<N-1 « o7 Xk ek/nm
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Properties 15-17 apply only when x|n| is real.

15.

Symmetry Properties

x[({n—m))y]
1‘_1‘_;."; n X | 1 |

N-1

E xyimxz[({n—m)y]

m=(
xi|[n)xz|n|

x*|n]

x*[((—n))N]

Rel{x|n|}

JTmix[nl}

Xep|n| = jl{:{[r:| + x*[({(—n))n]}

Xop|rt] = %{x|n| —x*[{((—n)In|}

Svmmelry properties

WEm X (k|
X[((k—=1))n]

X1[k| Xz [ K]

N-1
TE X1(0) Xa|((k— ) n]
.-:[:I

X*((=k)) Nl

X*[k]
Xeplkl = 2(X[((k)N] + X*[((—k))N])
Xoplk] = %{X[[ (k))N] — X¥[((=k)IN])
Re{ X[K])
jTm{X|kl}

[ X|k] = X*[((—k)) V]

Re| X|k|} = Re{ X|((—=k))n])
T X[k} = =Tm{X|({=k)In]}
| X [k]| = | X[((=k)N]|
<Y X[k} = —<U{X[((—k)n]}
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Circular Convolution

Circular convolution of of two finite
length sequences
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Fast Fourier Transforms



Discrete Fourier Transform

The DFT pair was given as

N-1
X[k] i Nz_f X[n]e—j(Zn/N)kn X[n] = % Z X[k]ej(zn/N)kn
n=0 o
Baseline for computational complexity:
— Each DFT coefficient requires
* N complex multiplications
* N-1 complex additions
— All N DFT coefficients require
* N2 complex multiplications
* N(N-1) complex additions
Complexity in terms of real operations
* 4N? real multiplications
* 2N(N-1) real additions
Most fast methods are based on symmetry properties
_ Conjugate symmetry e—j(Zn/N)k(N—n) |8 e—j(Zn/N)kNe—j(Zn/N)k(—n) . ej(Zn/N)kn
— Periodicity in n and k e—j(Zn/N)kn |5 e—j(Zn/N)k(n+N) i ej(2n/N)(k+N)n



The Goertzel Algorithm

Makes use of the periodicity
ej(Zn/N)Nk I8 ejan _1

Multiply DFT equation with this factor
N-1
X[k] e_](ZTc/N kN x[r]e j(2n/N)rn X[r]e_] (27 /N)r(N-n)
> "2

r=0

Define o _
yn]= > x[rle’/M0yln —r]
With this definition and urgi_ﬁog X[n]=0 for n<0 and n>N-1

X[k] = Yk [n]n:N

X[k] can be viewed as the output of a filter to the input x[n]
— Impulse response of filter:

e j2n/ N)knu[n]

— X[K] is the output of the filter at time n=N



The Goertzel Filter

Goertzel Filter

Hk (Z) = .ZTEk

Computational complexity

— 4N real multiplications

— 2N real additions

— Slightly less efficient than the direct method

Multiply both numerator and denominator

Hk (Z) bt 21 2n 1
[1 i eijzlj(l N eijzlJ 1- 2c052|7\t|k z"'+2z7




Second Order Goertzel Filter

» Second order Goertzel Filter o . o . - . . o
x[n] yiln]
A o] ‘Fz_l
K
5 ék 1 2 COSL( N ) —Vt"rf{:
1-e Nz S g
Hy (Z) B
an _1 _2 Y ,—1
1-2 COSN Z +Z ¢

« Complexity for one DFT coefficient
— Poles: 2N real multiplications and 4N real additions
— Zeros: Need to be implement only once
* 4 real multiplications and 4 real additions
« Complexity for all DFT coefficients
— Each pole is used for two DFT coefficients
« Approximately N2 real multiplications and 2N? real additions
« Do not need to evaluate all N DFT coefficients

— Goertzel Algorithm is more efficient than FFT if
* less than M DFT coefficients are needed
* M<log,N



Decimation-In-Time FFT Algorithms

Makes use of both symmetry and periodicity
Consider special case of N an integer power of 2
Separate x[n] into two seguence of length N/2
— Even indexed samples in the first sequence
— 0Odd indexed samples in the other sequence

[k] Zx[n]e i(2m/ Nk ZX[n]e j(2n/ Nk n Zx[n]e j(2r /N

n even n odd

Substitute variabINeszn1 2r for n even and n=2r+1 for odd

X[k] = Zx[Zr]w2rk + Zx[Zr + 1wtk

Nr/ 20 N/2-1
ZO X[2rIWgs5, + Wy Zc; X[2r + 1]Wy,
= Glk |+ WiH[K]

G[k] and HI[K] are the N/2-point DFT’s of each subsequence



Decimation In Time

8-point DFT example using
decimation-in-time
Two N/2-point DFTs
— 2(N/2)? complex multiplications
— 2(N/2)? complex additions
Combining the DFT outputs
— N complex multiplications
— N complex additions
Total complexity
— N?2/2+N complex multiplications
— N?/2+N complex additions
— More efficient than direct DFT
Repeat same process
— Divide N/2-point DFTSs into
— Two N/4-point DFTs
— Combine outputs
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Decimation In Time Cont’'d

o After two steps of decimation in time

xl0je>—f ) o XT0]
J? — point H-".\U; \\ //;[Q
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* Repeat until we're left with two-point DFT’s
x[0] ¢

ot

x[4] 0



Decimation-In-Time FFT Algorithm

Final flow graph for 8-point decimation in time
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Complexity:
— Nlog,N complex multiplications and additions



Butterfly Computation

« Flow graph constitutes of butterflies

mth

stage

(m —1)st

stage

(.

(r+ Ni2)

Ir'V.,\:

* We can implement each butterfly with one multiplication

o > -

(m—1)st mth
stage stage

o -

-1

* Final complexity for decimation-in-time FFT
— (N/2)log,N complex multiplications and additions



In-Place Computation

« Decimation-in-time flow graphs require two sets of registers
— Input and output for each stage

* Note the arrangement of the input indices
— Bit reversed indexing

X,|0] = x[0] «> X,[000] = x[000]
X,[1] = x[4] < X,[001] = x[100]
X,[2] = x[2] &> X,[010] = x[010]
X,[3] = x[6] & X,[011] = x[110]
X,|4] = x[1] <> X,[100] = x[001]
X,[5] = x[5] <> X,[101] = x[101]
X,[6] = x[3] &> X,[110] = x[011]
X,[7]= x[7] & X,[111] = x[111]




Decimation-In-Frequency FFT Algorithm
« The DFT equation

X[k] = E x[nJW«

« Split the DFT equation into even and odd frequency Indexes

N-1 N/2-1
X[2r]= > x[N]Wg*" = Zx[n]wnzr + Zx[n]wnzr
n=0 n=N/2
« Substitute variables to get
N/2-1 N/2-1 N/2-1
X[2r] = Zx[n]wn2r . Zx[n + N/ 2IWN/2R0 = N (x[n] + x[n + N/ )W,

Il
(@)

n

« Similarly for odd-numbered frequencies
N/2-1
X[2r +1] = > (x[n] - x[n + N/ 2])wy'z*

n=0



Decimation-In-Frequency FFT Algorithm

Final flow graph for 8-point decimation in frequency
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