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Sampling the Fourier Transform

• Consider an a periodic sequence with a Fourier transform

• Assume that a sequence is obtained by sampling the DTFT

• Since the DTFT is periodic resulting sequence is also periodic

• We can also write it in terms of the z-transform

• The sampling points are shown in figure

• could be the DFS of a sequence

• Write the corresponding sequence
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Sampling the Fourier Transform Cont’d

• The only assumption made on the sequence is that DTFT exist

• Combine equation to get

• Term in the parenthesis is 

• So we get
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Sampling the Fourier Transform Cont’d



Sampling the Fourier Transform Cont’d

• Samples of the DTFT of an aperiodic sequence

– can be thought of as DFS coefficients 

– of a periodic sequence 

– obtained through summing periodic replicas of original sequence

• If the original sequence

– is of finite length

– and we take sufficient number of samples of its DTFT

– the original sequence can be recovered by

• It is not necessary to know the DTFT at all frequencies

– To recover the discrete-time sequence in time domain

• Discrete Fourier Transform

– Representing a finite length sequence by samples of DTFT
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The Discrete Fourier Transform

• Consider a finite length sequence x[n] of length N

• For given length-N sequence associate a periodic sequence

• The DFS coefficients of the periodic sequence are samples of the DTFT 

of x[n]

• Since x[n] is of length N there is no overlap between terms of x[n-rN] 

and we can write the periodic sequence as

• To maintain duality between time and frequency

– We choose one period of          as the Fourier transform of x[n]
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The Discrete Fourier Transform Cont’d

• The DFS pair

• The equations involve only on period so we can write

• The Discrete Fourier Transform 

• The DFT pair can also be written as
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Properties of DFT

• Linearity

• Duality

• Circular Shift of a Sequence
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Symmetry Properties



Circular Convolution

• Circular convolution of of two finite 

length sequences
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Fast Fourier Transforms



Discrete Fourier Transform

• The DFT pair was given as

• Baseline for computational complexity: 

– Each DFT coefficient requires

• N complex multiplications

• N-1 complex additions

– All N DFT coefficients require

• N2 complex multiplications

• N(N-1) complex additions

• Complexity in terms of real operations

• 4N2 real multiplications

• 2N(N-1) real additions

• Most fast methods are based on symmetry properties

– Conjugate symmetry

– Periodicity in n and k
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The Goertzel Algorithm

• Makes use of the periodicity

• Multiply DFT equation with this factor

• Define 

• With this definition and using x[n]=0 for n<0 and n>N-1

• X[k] can be viewed as the output of a filter to the input x[n]

– Impulse response of filter: 

– X[k] is the output of the filter at time n=N
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The Goertzel Filter

• Goertzel Filter

• Computational complexity

– 4N real multiplications

– 2N real additions

– Slightly less efficient than the direct method

• Multiply both numerator and denominator 
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Second Order Goertzel Filter

• Second order Goertzel Filter

• Complexity for one DFT coefficient

– Poles: 2N real multiplications and 4N real additions 

– Zeros: Need to be implement only once

• 4 real multiplications and 4 real additions

• Complexity for all DFT coefficients

– Each pole is used for two DFT coefficients 

• Approximately N2 real multiplications and 2N2 real additions

• Do not need to evaluate all N DFT coefficients

– Goertzel Algorithm is more efficient than FFT if 

• less than M DFT coefficients are needed

• M < log2N
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Decimation-In-Time FFT Algorithms

• Makes use of both symmetry and periodicity

• Consider special case of N an integer power of 2

• Separate x[n] into two sequence of length N/2

– Even indexed samples in the first sequence

– Odd indexed samples in the other sequence

• Substitute variables n=2r for n even and n=2r+1 for odd

• G[k] and H[k] are the N/2-point DFT’s of each subsequence
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Decimation In Time

• 8-point DFT example using 

decimation-in-time

• Two N/2-point DFTs

– 2(N/2)2 complex multiplications

– 2(N/2)2 complex additions

• Combining the DFT outputs

– N complex multiplications

– N complex additions

• Total complexity

– N2/2+N complex multiplications

– N2/2+N complex additions

– More efficient than direct DFT

• Repeat same process 

– Divide N/2-point DFTs into 

– Two N/4-point DFTs

– Combine outputs



Decimation In Time Cont’d

• After two steps of decimation in time

• Repeat until we’re left with two-point DFT’s



Decimation-In-Time FFT Algorithm

• Final flow graph for 8-point decimation in time

• Complexity:

– Nlog2N complex multiplications and additions



Butterfly Computation

• Flow graph constitutes of butterflies

• We can implement each butterfly with one multiplication

• Final complexity for decimation-in-time FFT

– (N/2)log2N complex multiplications and additions



In-Place Computation

• Decimation-in-time flow graphs require two sets of registers

– Input and output for each stage

• Note the arrangement of the input indices

– Bit reversed indexing
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Decimation-In-Frequency FFT Algorithm

• The DFT equation

• Split the DFT equation into even and odd frequency indexes

• Substitute variables to get

• Similarly for odd-numbered frequencies
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Decimation-In-Frequency FFT Algorithm

• Final flow graph for 8-point decimation in frequency


