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Convolution

input Continuous time output

x(t) system y(t)




Discrete time Convolution

input impulse response

h[n]

X|n]




z(n) — L] — y(n)

DT convolution is based on an earlier result where we showed that any signal z(n) ca
expressed as a sum of impulses.

>0

z(n) = Y z(k)d(n — k)

k=—m0

So let us consider z(n) written in this form to be our input to the LTT system.

y(n) =Llz(n)] =L [ > z(k)d(n— ff)]

k=—00

This looks like our general linear form with a scalar x(k) and a signal in n, 6(n — k). R
that for an LTT system:

e Linearity (L): azi(n) + bxo(n) — | L | — ayi(n) + bya(n)

e Time Invariance (TI): z(n —n,) — |L| — y(n — ny,)

We can use the property of linearity to distribute the system L over our input.

k=—mo bk=—nm0

y(n) =L [ Y 2(k)d(n — k)] = Y z(k)L[5(n— k)]



then we can infer

2(n) — |L] — y(n)

which gives us the following.

y(n) = ) a(k)h(n— k)

h=—00

This is the convolution sum for DT LTI systems.

The convolution sum for z(n) and h(n) is usually written as shown here.

o0

y(n) = z(n) «h(n) = Y a(k)h(n k)

k=—n0




Example 2.1: DT Convolution: Step Response

Say we are given the following signal z(n) and system impulse response h(n).

2(n) =u(n) and h(n):(%)nu(n)

We wish to find the step response s(n) of the system (i.e. the response of the
system to the unit step input z(n) = u(n). This is shown below.




0

s(n) = z(n) = h(n) = Y a(k)h(n — k)

k=—o00

Thus the step response is as follows, found by substituting our actual signals into
the general convolution sum.

s(n) = _2_: u(k) (%)n_ku(n— )

Let’s look at this step response in smaller ranges to see what happens.

e First, consider the case where n < 0.




Here, s(n) = 0. This is because u(n — k) (and the associated exponential)
will be starting at a point less than 0 in the k£ domain., and will extend to
—o0, whereas u(k) starts at 0 and extends to +oc. We can visualize this,

say for a value of n = —2.

x(k) = u(k)
11 O 0 0 0 0 O O

Notice that there is no non-zero overlap of z(k) and h(n — k). Since they
are multiplied together, the zero part of one signal cancels out the non-zero
part of the other, and vice versa. Thus, s(n) =0 for n < 0.




¢ The more interesting case is when n > 0.

Recall the convolution sum we are using to determin s(n).

s(n) = i (k) (é)n_ku(n—k)

h=—mc

Note that u(k) means we know the summation will be 0 for all values of
k < 0, so we can change the lower limit of the summation to 0. Similarly,
the u(n — k) term means that the summation for all values of k > n will
be 0, since that unit step is flipped and extends toward —oc. So, we can
change the upper limit of the summation to n. In the range 0 < k < n,
both of the unit steps will have a value of 1. This is shown below.
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k=0
We can pull out any terms only in n

since that 1s not the summation variable.
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Now we have a form consistent with a geometric series. We can use that to
solve.
1 — 2n+1

—:2n—|—1_1
1-2

Recall Zﬂ: ok —

k=0

So we have s(n) as follows.

s = (3) @7y
_ [%)n(zﬁgn—n
HOIQORY
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s(n) = 2_(%)11

We can visualize this, say for n = 2, as shown below. Note how the system




Example: y(7) = x(t)*h(t) = u(t)*u(r)

e Setting up the convolution integral we have

o0

w(1) = I u(T)u(t — t)de

—a0

u(t—71) 1 u(T)




B 0, <0
| =0

yv(r) = tu(r) =r(r),

which 1s known as the unit ramp

or simply




e For r—2 <0 or t<2 there 1s no overlap in the product that
comprises the integrand, so y(7) = 0

e For r—2>0 or t>2 there 1s overlap for T € [0,7—2), soO
here

v(n) = | e

(9.39)

(1)
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Evaluating Convolution Integrals

Step and Exponential
e Consider x(7) = u(r—2) and h(r) = 3_3%:({)
 We wish to find v(7) = x(7)*h(7)
(1) = J e u(t)u(r—1 —2)dr (9.38)
* To evaluate this integral we first need to consider how the
step functions in the integrand control the limits of integra-
tion

u(t—1—

a0







Properties of Convolution

e Commutativity:

x(t)xh(t) = h(t)*x(1)

* Associativity:
[x(2)xh () [xhy (1) = x(2)x[h ()%, (1)]
e Distributivity over Addition:
x(0)x[h(D)xhy(1)] = x()xh (1) + x(1)*h,(1)
e Identity Element of Convolution:

x(t)xh(t) = h(r)




What is x(7)?
— It turns out that x(7) = 0(¢#) = o(#)*h(t) = h(t)
proot

j' ’ S(T)h(1—1)dt = j' . S(T)h(1—0)dr

—0 -0

= h(1) J' " 8(t)drt = h(1)




Integrator

§
h(r) = I x(1)dr = u(r)
- x(1) = 8(1)
Ideal delay
h(t) = x(r—rd)‘ = 0(t—1,)

x(t) = 8(¢)
 Note that this means that

x()x0(r—1t,;) = x(t—1t,)




* For a cascade of two LTI systems having impulse responses
h(t) and h,(7) respectively, the impulse response of the cas-
cade 1s the convolution of the impulse responses

hcascade(r) = hl(r)*hz(r) (9.44)

X(f) — = hl(f) > hz(g‘) (1)

<

X(1) = () = hy(1)¥hy(r) > w(1)




* For two systems connected 1n parallel, the impulse response

1s the sum of the impulse responses

hparallel(r) = h(t) + hy(7) (9.45)

X(1) ———»

Parallel

hy(1)

I (1)

&

— V(1)

X(1) ——

h(t) = hy(t) + hy(2)

(1)
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