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Time scaling

Time Scaling

Xt — —— Y(t) = X(at)

The signal y(#) =x(z¢) is a time-scaled version of x(#).
If |z| = 1, we are SPEEDING UP x(¢) by a factor of .

If |z| =1, we are SLOWING DOWN x(¢) by a factor of z.

The signal y{t) has period = ks

?
2

where T 15 the period of x{t ).

Example:[f Given x(¢), find y(¢) = x(2¢). This SPEEDS UP x(t)
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Time reversal
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Contd...

a<l -> slows down - Larger period - Graph expands |

Example: Given x(t), find y(t) = x(2t). This SPEEDS
UP x(t) (the graph is shrinking

1 xED




« Given y(t),
— find w(t) = y(3t)
—v(t) = y(t/3).

Contd...

»UED
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wi{r) = v(31)
2 Speed up by 3
0 1 t

T vy = v/
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Time Shifting

X(t) —

« The original signal
g(t) is shifted by an
amount tO .

Time Shift: y(t)=g(t-to)

« g(t)=>g(t-to) ; to=0
- Signal
Delayed-> Shift to
the right

Time Shifting

— X(t - to)
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Amplitude Operations

Given x,(t), find 1 - x5(t).




Multiplication of two signals:x,(t)u(t)

Find x2{t)ur)

@ T x) T ulf)




Multiplication of two signals:x,(t)u(t)

Find x2{t)ur)

@ T x) T ulf)




Example

* Given x(t) find xe(t) and xo(t)

Xz (t)
Xo(2)

(x(2) + x(-2))
(x(2) - x(-2))

Bt | bt o | et




Signal Characteristics

Even and odd signals
1.  X(t) = Xe(t) + Xo(t)
2.  X(-t) = X(t) € Even
3. X(-t) = -X(t) € Odd

xz(%)
xa(t)

(@) + x(-2))
Ce(z) - x(-2))

1
2
1
2




Example
* Given x(t) find xe(t) and xo(t)

-0.5t
R w0 -
x(t) =

-
S

/

(x(2) + x(-2))
(x() - x(-2))

Bl | b e |




Example

* Given x(t) find xe(t) and xo(t)
_w.a

(x(2) + x(-2))

xe(t) =

2
1

o) = 3 GO -x)




Periodic and Aperiodic Signals

* Given x(1) Is a continuous-time signal

« X (t) is periodic iff X(t) = x(t+nT) forany T
and any integer n

* Example
— Is X(t) = A cos(wt) periodic?
e X(t+nT) = Acos(m(t+Tn)) =
* A cos(ot+m2nm)= A cos(mt)
— Note: f0=1/T0; wo=2n/To <= Angular freq.

— TO Is fundamental period; TO is the minimum
value of T.that satisfies X(t) = x(t+T)



Sum of periodic Signals

o X(1) = x1(t) + X2(t)

o X(t+nT) = x1(t+m,T,) + X2(t+m,T,)

* m, T,=m,T, = To = Fundamental period

« Example:
— cos(trn/3)+sin(tr/4)
— T1=(2n)/(n/3)=6; T2 =(2mr)/(n/4)=8;
— T1/T2=6/8 = % = (rational number) = m2/ml
—m;T,=m,T, 2 Find m1 and m2->

=4 =38=24 =To (n=l)==



Product of periodic Signals

X() = X5(0) * Xy(t) =
= 2sin[t(7n/24)]* cos[t(r/24)];
find the period of x(t)

*We know: = 2sin[t(77/12)/2]* cos|t(n/12)/2],

— Using Trig. Itentity:

X(t) = sin(tr/3)+sin(tn/4)
*Thus, To=24 , as before!

=

et - 3 . T ——
i e - -
——

= o - ¥ . - .

http://Ww.sosmath.com/tring rig5/trig5/pdf/pdf.html

e Sum-to-Product Formulas

sinu + sinv = 2sin (
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COSW + Q080 = 2 cos (

w

2
+
2

u T u

L aq . i — U
. =111 9

L

' s k= U
Ll 5
o




Sum of periodic Signals (cont.)

— X1(t) = cos(3.5t) > f1 =3.52r > T1=2x/3.5 1 T2 T3
27/3. 21/2 127/

_ X2(t) =sin(2t) > 2= 2121 > T2 = 21 /2 = !
— X3(t) = 2cos(t7/6) - 3 = (7/6)/12x > T3 = 2n /(7/6) ;1_;21 'er:ﬂz & .
0 - T1/T2 = 4/7 Ratio or two integers

] _ mi1xT1 m2xT2 m3xT3
0 - T1/T3 =1/3 Ratio or two integers 12 12n 12n
0 - Summation is periodic

— m1T1=m2T2 =m3T3 =To : Hence we find To

— The question is how to choose m1, m2, m3 such that the above
relationship holds
— We know: 7(T1) =4(T2) & 3(T1)=1(T3); > ml(T1)=m2(T2)
— Hence:
21(T1) = 12(T2)= 7(T3);
Thus, fundamental period: To = 21(T1) = 21(2x /3

), - 2 —

5)=12(T2)=12x

D

-t

Find even and odd parts of v(t).



Important Engineering Signals

 Euler’'s Formula

40 __ . 4 Ccin it —i in L P L
i s 0 N, S0 ¢ COS ” _ f 111 f T

« Unit Step Function (Singularity Function)
— Can you draw x(t) = cos(t)[u(t) — u(t-2n)]?

I

1, { =10
u(t) = 0, f <0
L undefined, ¢+ =10

« Use Unit Step Function to express a block function (window) @
|

< = - .- B

-T2 T2




Unit Step Function Applications:
Creating Block Function

rect(t/T)

Note:

Period is T; & symmetric ‘

Can be expressed as u(T/2-t)-u(-T/2-t)

— Draw u(t+T/2) first; then reverse it!

ZT12. ol
1

12 72
1

Can be expressed as u(t+T/2)-u(t-T/2)

Can be expressed as u(t+T/2).u(T/2-t)

-T/2 T/IZ

-T/2 T/2



Unit Step Function Applications:
Creating Unit Ramp Function

Unit ramp function can be achieved by:

f(t)=iu(r—to)a’r:tjdr:(t—to)u(t—to)
\ to t(§)+1

Non-zero only
for t>t0

The ramp function (F( ) : R
: : may be defined analytically in several
Examplg: Using Math_emat'ca: ways. Possible definitions are:
(t-2)*unitstep[t-2] — click here:

http://www.wolframalpha.com/input/?i=%28t-2%29*unitstep%5Bt-2%5D . /R € P ”
R(x) =

- " v E - - B

| e e NS - . — =



Unit Step Function Applications:
Example

f(t)=3u(t)+u(t)-[t-1]u(t—1)-5u(t—2]

3u(t) -1 t=2
{4 l=t=<?2

t4+3 (otherwise)

3« UnitStep (t) +
t« UnitStep ity —
(it— 1)« UnitStepit—1) -
S« UnitStep it - 2)

Computed by Wolfram |Alpha




Unit Step Function Applications:

Example

* Plot
f(t)=3[t+2]u(t+2)—6[t+1]u(t+1)+3[t—1]u(t—1)+3u(t-3)

. t<-2 S f(t)=0

. 2<t<-1 S f(t)=3[t+2] “L
. -l<t<l S f(t)=-3t SN
¢ I<t<3 = f(t)=-3

. 3<t< > f(1)=0

Using Mathematica - click here:

http://www.wolframalpha.com/input/?i=3*%28t%2B2%29*UnitStep%28t%2B2%29



Unit Impulse Function o(t)

Not real (does not exist in nature — similar to i=sqrt(-1)

Also known as Dirac delta function +o0, x=~0
. , : . 5[:12) = t
— Generalized function or testing function 0 %0

The Dirac delta can be loosely thought of as a

function of the r_ea_ll line whi(_:h. is. zero everywhere /:}c: 5(z) do = N

except at the origin, where it is infinite —oo ~

Note that impulse function is not a true function — it is

not defined for all values /w 8(@)d(z) dz = ¢(0)
— Itis a generalized function —o0

Mathematical definition

B
. aw)ia Mathematical definition A
4 The Dirac defta function as the limit (in 8(t)
' the sense of distributionz) of the
3 sequence of Gaussians
]_ 3 9
2 — = s
ﬁﬂ_l:I) = e ' as 0
1 ﬂ-ﬁ
; J \ a— 0. 5(t-to)
— 1 R — . = .
B -2 -1 0 1 2

= - : 0 to



Unit Impulse Properties

* Integration of a test function [ atoits — ojas =
= /X *"T-"(T-(})(i(f — to)dt
— Example — ;;:(?‘.”) /: (5{3‘_ — to)dt = J__.(?t_“)
o e
/ it — a) Hlllz({:—)(ﬁ?
J s ,,

« Other properties:

o [ f(t—1y)o(t —t))dt = f(t, —tg), if f(t) is continuous at t; — 1,

o [ 8(T —ty)dr = u(t — 1)

o )(t)=0d(—1)
Make sure you can understand why!
= e Jlat) = |;—_|{'5[f) |




Unit Impulse Properties

 Example: Verify d(at) = ﬁgm
Schaum’s p38
1
« Evaluate the following [ (3t2+1)é(t)=?
-1
Schaum’s p40

o Remember:
{‘) ?L— .[} (ﬁ —

[
[

e = z(ty) / Ot — to)dt = x(tp)

?L.[} (3 T — ?L{].)ﬁ"f

[ ]

L |
»
|

|
l-..,.



Continuous-Time Systems

* A system Is an operation for which cause-
and-effect relationship exists

— Can be described by block diagrams
— Denoted using transformation T].]

« System behavior described by
mathematical model

X(t t
(t) T y(®




Continuous-Time Systems -
Properties

« Systems with Memory: 0 0 = 7100

——]

A system y(fg) has memory if its output at time ¢ depends on the input
z(t) for t > &y or ¢ < &g, Le. 1t depends on values of the input other than

z(ty). y(t) = Tlz(t)]

y(t) = S[a(?)]

« Examples — Memoryless/Memory?

z(t) — y(t)
v(ty) = Ri(ty): v(ty) = %_J'i"!x i(t)dt:
y(t) = (t+5)x(t) 2(1) = [x(t+5)]? a(t) = (5)
E‘fﬂ e e S . . e

T —— 1 : . - - — t; -

Has memory if output depends on inputs other than the one defined at current time



Continuous-Time Systems -
Properties

Inverse of a System W0 [T y0=TEo)
A system is invertible if you can determine the input uniquely from the _7
output, i.e. there is a one-to-one relationship between the input and output. y(t) = Tlz(t)]

y(t) = S[=(t)]
Examples

x(t) =y(t)/R y(t) = x°(t) z(t) = y(t)

Nonlnvertlble Systems

y(t) = x(Hu(t) = zeros out much of the input «—

Thermostat
Example!
(notes)

y(t) = *'f-'z(?t-) = don’t know sign
y(t) = coslz(t)] = add 27 to x(t)

Pe—— B - —— - —

Each distinct input - distinct output




Continuous-Time Systems -
Invertible

« If a system is invertible it has an Inverse System

X(t) Svstem y(t) | Inverse X(t)
y System

v
Y
Y

« Example: y(t)=2x(t)
— System is invertible: For any x(t) we get a distinct output y(t)

— Thus, the system must have an Inverse
« X(t)=1/2 y(t)=z(t)

X(t) System y(t)=2x(t) Inverse X(t)
> (multiplier) > System >
(divider)

If the system is not invertible it does not have an INVERSE!




Continuous-Time Systems -

| . Causahty
Causality (non-anticipatory system)

- A System can be causal with non-causal components!

Output y(t) depends only on past and present inputs and not on the future.

All physical real-time systems are causal because we can not anticipate
the future.

Image processing—Non-causal filters like blurring masks.

Music processing — record and process later — noncausal but not real-time

Examples

v(ty) = i(tg) R — memoryless = Causal | Remember: Reverse is not TRUE!

ty - .
v(ty) = g—l ' i(t)dt — Causal since only depends on past and present

;‘y{h}) Sl w(t)dt. 22 - y(t) = x(—t) 22 What it t<0?

S— — - — — —
= : - - ; ) r_

Depends on cause-and-effect - no future dependency




Continuous-Time Systems — Time
Invariance

If you shift your input signal in time for a time-invariant system, all that will
happen is you will get a similar shift in your output signal. Alternatively,
the system behaves the same each day and does not change over time.

If y(t —19) = Slxz(t — ty)], then system is Time-Invariant. Else it is
Time-Varying.

Testing for Time Invariance To test: y(t)[t-to > y(t)[x(t-to)
0 test: y(t)[t-to = y(t)|x(t-to
20 y©) y(r—ro) Example:
y(t) = e”x(t):
y(t)|t=t-to > e”x(t-to)

x@) Delay |xtig [~ ’ 0 y(t)|x(t-to) > e”x(t-to)

- Time Invariance

What if the system is time reversal? (next slide)

| —— " T - — - e
="

- R ——
2 , - p—. i N — RS

Time-shift in input results in time-shift in output - system always acts the same way (Fix System)




Continuous-Time Systems — Time
Invariance

Example of a system:

—— bRt G one secon TP D= s(=(- )= UL
elay
x{(fy = u(y)
on%—:?ac;nd (- 1) =uz—1) imereversal yaty=x(—t—1)y=u(-t-1)
} x(—0) = u(-1) Ax(1—D=ul~1)

: > | .

-1 1 P -1 1 Pay atte_nt|on.
Due to time - reversal

Xt —1) = uft — 1) m

sx(—1—=u(-1 -1

Time reversal operation is NOT time invariant!

<«




Models of Continuous Time Signals

Signals

Sinusoidal signals
Exponential signals
Complex exponential signals
Unit step and unit ramp
Impulse functions



Sinusoidal Signals

A sinusoidal signal is of the form

X(t) = cos(Wt + ©):

where the radian frequency is !, which has the
units of radians/s.

Also very commonly written as

X(t) = Acos(2nft + ©):

where f Is the frequency in Hertz.

We will often refer to ! as the frequency, but it
must be kept in mind

that it is really the radian frequency, and the
frequency is actually f .



Contd...

@ [ he period of the sinuoid 15

T:—:—
f L

with the units of seconds.

@ The phase or phase angle of the signal is #, given in radians.

n CO5{ ol )

NAMAD AQDAT

LRV TALY A




Contd...

a The Euler relation defines /¥ = cos & + jsin .
a A complex sinusoid is

Aell=tHE) — Acos(wt + #) + jAsin(wt + &).

@ Real sinusoid can be represented as the real part of a2 complex sinusoid

R{Ael(wt+8)} — Acos(wt + #)




Exponential Signals

# An exponential signal is given by
x(t) = et

@ If o < 0 this is exponential decay.
@ |f & = 0 this is exponential growth.




Exponentially damped signals

@ A damped or growing sinusoid is given by

x(t) = e cos(wt + #)

@ Exponential growth (& = 0) or decay (o < 0), modulated by a
sinusoid.




Contd...

@ A complex exponential signal is given by
elTHIHE _ o™ cog(wt + 6) + isinfwt + A))

@ A exponential growth or decay, modulated by a complex sinusoid.
@ Includes all of the previous signals as special cases.

platislt




Unit Step Signal

@ The unit step function u(t) is defined as

1, t>=0
u(t) = T
(1) {l}, r<0

# Also known as the Heaviside step function.
o Alternate definitions of value exactly at zero, such as 1/2.




Example

@ Extracting part of another signal. For example, the piecewise-defined
signal
et t=0
x(1) = { 0, <0

can be written as
x(t) = u(r)e™"




Example

@ Combinations of unit steps to create other signals. The offset

rectangular signal
0, t=1
xt)=4¢ 1, 0<t=<1

0. t<0

can be written as

x(t)=u(t) — u(t—1).




Example

Unit rectangle signal:

_J1 ifj=1/2
rect() = { 0 otherwise.

rect(f)




Unit Ramp Signal

@ The unit ramp is defined as
t, t=0
r(t) = { 0, <0
@ The unit ramp is the integral of the unit step,

r(t) — f_ tm u(r)dr

{1 r(t)

, -
-2 -1 ] 1 2 &




Unit Triangular Signal

Unit Triangle Signal

1= iffr =1
Afr) = { 0 otherwise.




Linearity

* A linear system obeys the following
ax (1) + Px, (1) = ay (1) + By,(7) (9.28)

where the inputs are applied together or applied individually
and combined via o and 3 later

e The squarer is nonlinear by virtue ot the tact that

y(1) = [ox; (1) + Bray()]°

= 07X (1) + 20Bx, (D3, (1) + By (1)

produces a cross term which does not exist when the two

mputs are processed separately and then eombmed




Time-Invariance

* A time invariant system obeys the following

x(t—=1ty) = y(t—=1,) (9.26)

for any 7,
* Both the squarer and integrator are time invariant

* The system
y(1) = cos(m,1)x(r) (9.27)

1S not time nvariant as the gain changes as a tunction of time




e The integrator is linear since

(1)

[

| Taxy (o) + Bxy()]de

ajf ¥, (1)dr +ij x,(1)dr




Time-Invariance
o A time invariant system obeys the following
X(t=1ty) > y(t-1,) (9.26)
for any 7,
* Both the squarer and integrator are time invariant
 The system
y(1) = cos(® 1)x(1) (9.27)

1S not time Invariant as the gain changes as a function of time

fppt.com
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