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Introduction: 

 

Fourier representation for signals 

 

 
 

 

 

 

5.1 The Fourier transform 

 
5.1.1 From Discrete Fourier Series to Fourier Transform: 

Let x [ n ] be a nonperiodic sequence of finite duration. That is, for some positive 

integer N , 

 

Such a sequence is shown in Fig. 6-l(a). Let x,Jn] be a periodic sequence formed by 

repeating x [ n ] with fundamental period No as shown in Fig. 6-l(b). If we let No -, m, we 

have 
 

The discrete Fourier series of xNo[n] is given by 

 



  
 

 

 
 

 

 

 
 
 

 

Properties of the Fourier transform 

 

Periodicity 

As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of 

R(radians) only over the range0 < Ω < 2π or π < Ω < π, while in the continuous-time case we 

have to consider values of 0 (radians/second) over the entire range –∞ < ω < ∞. 

Linearity: 
 

 
 
 

 
 



  
 

 

 

Time Shifting: 
 
 

 

Frequency Shifting: 

 

 
Conjugation: 

 

 

Time Reversal: 

 

 

Time Scaling: 
 

 
Duality: 

The duality property of a continuous-time Fourier transform is expressed as 

There is no discrete-time counterpart of this property. However, there is a duality between 

the discrete-time Fourier transform and the continuous-time Fourier series. Let 

 

 

 

Since X(t) is periodic with period To = 2 π and the fundamental frequency ω0 = 2π/T0 = 1 , 

Equation indicates that the Fourier series coefficients of X( t) will be x [ - k ] . This duality 

relationship is denoted by 

 

where FS denotes the Fourier series and c, are its Fourier coefficients. 



  
 

 

Differentiation in Frequency: 
 

 
Differencing: 

The sequence x[n] -x[n – 1] is called the first difference sequence. Equation is easily obtained 

from the linearity property and the time-shifting property . 

 

Accumulation: 

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the 

right-hand side of Eq. (6.57) reflects the dc or average value that can result from the 

accumulation. 

 
 

Convolution: 

As in the case of the z-transform, this convolution property plays an important role in the 

study of discrete-time LTI systems. 

 

Multiplication: 

where @ denotes the periodic convolution defined by 
 

The multiplication property (6.59) is the dual property of Eq. (6.58). 

 

Parseval's Relations: 
 



  
 

 

 
 

 
 

Recommended Questions 
 

1. Obtain the Fourier transform of the signal e 
-at

. u(t) and plot spectrum. 

 

2. Determine the DTFT of unit step sequence x(n) = u(n) its magnitude and phase. 

 

3. The system produces the output of yet) = e
-t
 u(t), for an input of x(t) = e-2t.u(t). Determine 

impulse response and frequency response of the system. 

4. The input and the output of a causal LTI system are related by differential equation 

+ + 8y(t)= 2x(t) 

i) Find the impulse response of this system 
ii) What is the response of this system if x(t) = te

-at
 u(t)? 

 

5. Discuss the effects of a time shift and a frequency shift on the Fourier representation. 

 
 

6. Use the equation describing the DTFT representation to determine the time-domain 

signals corresponding to the following DTFTs : 

i) X(e
jΩ

)= Cos(Ω)+j Sin(Ω) 

ii) X(e
jΩ

)={1, for π/2<Ω< π; 0 otherwise and X(e
jΩ

)=-4 Ω 

 

7. Use the defining equation for the FT to evaluate the frequency-domain representations 

for the following signals: 

i) X(t)= e
-3t

u(t-1) 

ii) X(t)=e
-t
 Sketch the magnitude and phase spectra. 

 

8. Show that the real and odd continuous time non periodic signal has purely imaginary Fourier 

transform. (4 Marks)



  
 

 

 
 

 
 

 

 

Example: 
 

 
 

 



  
 

 



  
 

 

 
 
 



  
 

 

 



  
 

 

 



  
 

 

 



  
 

 
 

 



  
 

 

 



  
 

 

 
 



  
 

 
 

 



  
 

 

 



  
 

 

 

 



  
 

 

 
 
 



  
 

 

 



  
 

 

Recommended Questions 
 

 

1. Find the frequency response of the RLC circuit shown in the figure. Also 

find the impulse response of the circuit 

 

2. 

 

 
3. If x(t)↔X(f). Show that x(t)Cosw0t↔1/2[X(f-f0)+X(f-f0)] where w0=2πf0 

 

4. 

 

 

 

5. 

 

 
6. State sampling theorem. Explain sampling of continuous time 

signals with relevant expressions and figures. 

 

7. Find the Nyquist rate for each of the following signals: 

i) x (t) = sinc(200t) ii) x (t) =sinc
2
 (500t) 

 

 


