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Fourier representation for signals
Introduction:

Fourier Representation for four Signal Classes

FS DTES DTFT

5.1 The Fourier transform

5.1.1 From Discrete Fourier Series to Fourier Transform:
Let x [ n ] be a nonperiodic sequence of finite duration. That is, for some positive
integer N ,

x[n] =0 In| > N,

Such a sequence is shown in Fig. 6-1(a). Let x,Jn] be a periodic sequence formed by
repeating x [ n ] with fundamental period No as shown in Fig. 6-I(b). If we let NoO -, m, we
have

lim x, [n] =x[n]

Ny
The discrete Fourier series of XNo[n] is given by
. 2
xNu[n] = ). c ek o= —
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Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b) periodic sequence formed by periodic extension of
x[n]
1 Ny . * .
o=y L xlnlem= o T xln]eh
NU"=—N|: N!‘.I n=—-x
X(Q)= 2 x[n]e /0

n= —noc
the Fourier coefficients ¢, can be expressed as

1
Cp = Fx(knu)

0

x.«f.,[”] = Z

k=1{Ny?

1
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Properties of the Fourier transform

Periodicity
As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of
R(radians) only over the range0 < Q <2z or © < Q <, while in the continuous-time case we
have to consider values of 0 (radians/second) over the entire range —o < ® < .
X(Q+27)=X(Q)
Linearity:
ax [n] +ayx;[n] > a, X, () +a,X,(Q2)

|



x[n—no] e mX(Q)

My n] - X(Q - Q)
njugation:

x*[n] = X*(—Q)

Time Reversal:

x[=n] > X(-Q)

Time Scaling:

x(at)c——»%‘lX(g)

Duality:

The duality property of a continuous-time Fourier transform is expressed as
X(t)e—2mx(—w)

There is no discrete-time counterpart of this property. However, there is a duality between

the discrete-time Fourier transform and the continuous-time Fourier series. Let

x[n] > X(Q)

e

X(Q)= Y x[n]e’®"
X(Q+27)=X(N)
Since ) is a continuous variable, letting =t and n = —k

X(t)= L x[—k]e*

k= —m

Since X(t) is periodic with period To = 2 7t and the fundamental frequency o, = 2m/To =1,
Equation indicates that the Fourier series coefficients of X(t) will be X [ - k ] . This duality
relationship is denoted by

X(t) ¢, =x[-k]
where FS denotes the Fourier series and c, are its Fourier coefficients.



Differentiation in Frequency:

dX(Q)
mpn]esj=on

Differencing:

x[n] —x[n—1] (1 - ) X(Q)
The sequence X[Nn] -x[n — 1] is called the first difference sequence. Equation is easily obtained
from the linearity property and the time-shifting property .

Accumulation:
n 1
k= —o0

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the
right-hand side of Eq. (6.57) reflects the dc or average value that can result from the
accumulation.

Convolution:
x,[n]* x,[n] = X,(Q)X,(Q)
As in the case of the z-transform, this convolution property plays an important role in the
study of discrete-time LTI systems.
Multiplication:
1
x [n]x;[n] & s=X\(Q) @ X;(2)
™

—

where @ denotes the periodic convolution defined by

X,(2)®X,(2) = [ X,(6)X,(2-6)do
The multiplication propertg/"(6.59) is the dual property of Eq. (6.58).

Parseval's Relations:

Z xi[n]x,[n] ="£‘ﬂ'_ , X\(2)X,(—Q)dd
- 2 _ 0 2
): lx[n]l"= . 217[}&’(ﬂ)i df)



Summary

Frequency

Property x(L), v(L) X(fw) Y(fo)
Linearity axl(t) + byvie) aX(jw) + b Y (jw)
Time Shifting it =t g e X )
Frequency Shifting el oty (1) X(jlw — wy))
Conjugation x'{L) A (—ju)
Time Reversal xi—t) X{—jow)
Time and Frequency xlat) L Jw
Sealing lal” T:'
Convaolution x(t) =+ y(t) X{ja)¥ijw)
Multiphcation y(t)p(t) X{jea) =4 Y (j)
[hfferentiation in Tume [_fr“_i JennX (i)

o G 1
Integration v(de :}" (fuw) + X (0 w)

LE

Differentiation in tx(t) d

;H.I[’,Im.

Recommended Questions

1. Obtain the Fourier transform of the signal e . u(t) and plot spectrum.

2. Determine the DTFT of unit step sequence x(n) = u(n) its magnitude and phase.

3. The system produces the output of yet) = e* u(t), for an input of x(t) = e-2t.u(t). Determine
impulse response and frequency response of the system.
4. The input and the output of a causal LTI system are related by differential equation

div(ty edy()

ar? ar

-+ 8y(t)= 2x(t)

i) Find the impulse response of this system
ii) What is the response of this system if x(t) = te® u(t)?

5. Discuss the effects of a time shift and a frequency shift on the Fourier representation.

6. Use the equation describing the DTFT representation to determine the time-domain
signals corresponding to the following DTFTSs :

i) X (€Y= Cos(Q)+j Sin(Q)

i) X(@H={1, for 1/2<Q< 1; 0 otherwise  and X(e’})=-4 Q

7. Use the defining equation for the FT to evaluate the frequency-domain representations

for the following signals:
i) X(t)= e*'u(t-1)

i) X(t)=e" Sketch the magnitude and phase spectra.

8. Show that the real and odd continuous time non periodic signal has purely imaginary Fourier

transform. (4 Marks)




Fourier Series and LTI System
» Fourier series representation can be used to construct any periodic signals in

discrete as well as continuous-time signals of practical importance.

* We have also seen the response of an LTI system to a linear combination of
complex exponentials taking a simple form.

* Now, let us see how Fourier representation is used to analyze the response of
LTI System.

Consider the CTFS synthesis equation for x(t) given by
Suppose we apply this signal as an mput to an LTI System with impulse respose h(t).
Then, since each of the complex exponentials in the expression is an eigen function of

the system. Then, with sk = jkwo, it follows that the output 1s
+ co
y(t) — Z akH(ejka)ejkwor
k=—o

Thus y(t) 1s periodic with frequency as x(t). Further, if ak is the set of Fourier series

; 5 y akH (ejka) . . ;
coefficients for the mput x(t), then { } 1s the set of coefficient for the
y(t). Hence in LTI, modify each of the Fourier coefficient of the input by multiplying
by the frequency response at the corresponding frequency.

Example:
Consider a periodic signal x(t), with fundamental frequency 2, that is expressed in

the form
+3

il = z a2t
(1)

k=-3
where, Qao=1, Qi=A1=1/4, AQ2=A2=1/2, A3=A3=1/3,
Suppose that the this periodic signal is mnput to an LTI system with impulse response
To calculate the FS Coeff. Of o/p y(t), lets compute the frequency response.The
impulse response 1s therefore,

H(jw) = fooe“’ e~ 1¥Tdr = —Le'fe'f“” N
0 1 +j(1) 0
and
AU =130
Y(t) at ®o = 2m . We obtain,
+3

(i) = Z bke /2™t
-t with bx = axH (jk2m), so that



, Lo 1 b_1( 1 )b
1_4(1+j2n) T 2\1+jan/)

b __1( 1 )b 1 1
T 4\1 —j2r '2_'2(1——j4n)

bo =1
The above o/p coefficients. Could be substituted in
+3

y(t) = z brelk2mt
K=—3

_1(
3
1

3

1

(
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+ j6ém

1
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Finding the Frequencv Response

We can begin to take advantage of this way of finding the output for any input once
we have H(®).
To find the frequency response H(®) for a system, we can:
1. Put the input x(t) = &' into the system definition
2. Put in the corresponding output y(t) = H(®) "
3. Solve for the frequency response H(®). (The terms depending on t will
cancel.)

Example:

Consider a system with impulse response

1
h(t)— 1z fort<[05]

O otherwise
Find the output corresponding to the input x{t) = cos(10 t).

o) 5
y() = [h(x)x(t—tydc= | %cos(10(t _z))de
T——00 =0
y(ty=21 ( L 1 (sin(10t) — sin(10(t — 5)))
5 10 .o 50

Differential and Difference Equation Descriptions

Frequency Response is the system’s steady state response to a sinusoid. In contrast to
differential and difference-equation descriptions for a system, the frequency response
description cannot represent initial conditions, it can only describe a system in a

steady state condition. The differential-equation representation for a continuous-time

system is
Z Y@ = Z bue x(0)

d
since,—g(t) JwG(jw)

dt
Rearranging the equation we get




Y(jw) Yiiob(jw)*
X(w) YN axc(jw)k

The frequency of the response is

H(jw) =

, M A
Y(jw) _ Yi—obx(jw)

. e N .
X(]w) Zk=o ak(]w)k
Hence, the equation implies the frequency response of a system described by a linear
constant-coefficient differential equation is a ratio of polynomials in jo.

The difference equation representation for a discrete-time system 1s of the form.

N M
Z axy[ln — k] = Z bxx[n — kj
k=0 k=0
Take the DTFT of both sides of this equation, using the time-shift property.
gln — k] — =ik G(e®)
To obtain
N N
N, . 5 sfE :

> a(e®) v(er) = ) an(ee) x ()
k=0 k=0

» Rewrite this equation as the ratio
; _—
r(e') S, bu(e™)
X(ei®) o @(ed)k

jw

*  The frequency response is the polynomial in €
; RN «

Y(e]w) w Y=o bx (e]w)

X(ei®) Y o a(elv)k

H(e’®) =

Differential Equation Descriptions

Ex: Solve the following differential Eqn using FT.

2 d d
YO +42y(0) + 5y(t) = 3—-x(0) + x(t)

For all t where, x(t) = (1 +e u(t)

Soln:we have
2

d d d
Y (0) +42y(0) +5y(t) = 3—x(0) + x(0)
FT gives,

[w)? + 4(jw) + 5]Y (jw) = Bjw + DX(jo)



and x(t) = (1 + e Hu(t) x(t) =u(t) + (e Hu(t)

1 1 "
Xjw)=|—+nmd(w) |+ —— ; 1
(jw) <]w ( )) (jw + 1) Since u(t) 5 (w) +jw

1

and(e ")u(t) s
1
X(jjw) = (,—+n6(w))+ -
Hence we have Ja (w+1)

And LU®)? +4(0) + 5]Y o) = GBjw + DX(jw)
i
Bjw+1)
[Gw)? + 4(jw) + 5]

Y(jw) = X(jw)

. Gw+1) 11 1
F)= [Gw+2)?2 + 1] ljw Hsia) (jw + 1)

N Bjw+1) T 1
Y00) = e a0

V(o) =YD +Y(2) +Y(3)

2 Bjw+1) [ Bjow+1)
o) = Gerr+ 1 5 "0 [Gor 2P+ ilGo+ 1)
vu = G0+ D Gj(w = 0) + Dls(0) = 1]
() = [Go+ 27+ 0 [Gw=0)+ 27+ 1Jj@@=0)
Bjw+ 1)
i [(w+2)?2+1](jw+ 1)
o A Bt
(1) =— 9D ya) =4 — -
[+ 2)? + 1]jw jo  [(w+2)%+1]
il e, B I
Performing partial fractionweget ©° 5§’ ~ §'° " 5

1/5, —1/5jw +11/5

)= ¥ Twr 27 1]
Similarly
_ Bjw + 1)
YO = Gor 22 + 1o+ D
Y(3) = R Pjw + Q

+
(ow+1) [(w+2)*+1]
Performing partial fractionwe get R=-1,P=1,0=6



—1 jo+ 6
Go+1)  [Goi2P+1]
—1 jo+6
Go+1)  [Go+2)?+1]Y(w) = Y1) +¥(2) +Y(3)
Hence,we have

Y(1) =

Y(3) =

Y(3) =

/ —1/5]w+11/5
[(]w +2)? + 1]
Y(Z) — 38(0))

Readjusting
_1/5 ~1/5j0+11/5 = ~1 jo+6
L Got22+1] 529 6o D o+ 27+ 1]

. _1 i _; 1 4jw + 41
Y(jw) = 5 [jw + ”5(“’)I Gw+ 1) g [[(jw 2911

_1_/5 = 11/5—1/5jw jo+6 1
¥(w) P 1 Gt IP T Gt D
we know that,

_ Btje

[(B + ) + we]
Wo

[(B +)@)? + we]

e Pt coswo tu(t) <

e Bt sin wo tu(t) <

v

Readjusting the last term,we get

Y(Iw)——[1+1ré’(w)] 1 4[[ ms i,

Fatil & Gw+2)2+1] " 5 [(;w+2)2+1]

Now, taking the inverse Fourier Transform,we get

1 - 33
V() = gu(t) —e fu(t) + E® ~2t cos tu(t) +e 2t sint u(t)

Differential Equation Descriptions

* Ex: Find the frequency response and impulse response of the system described

by the differential equation.
2

d d d
TV +3y() + 2y(1) = 2 x(t) +x(1)



Here we have N=2, M=1. Substituting the coefficients of this differential equation in

Y(jiw M be(jw)*
H(]'a)) - (I )= 21};_0 k(/. )k

X(jw) Xi_oax(w)
Differential Equation Descriptions

2jw + 1
(jw)*+3jw +2

We obtain

H(jw) =

The impulse response is given by the inverse FT of H(jo). Rewrite H(jo)
using the partial fraction expansion.

BE)=
Do+l jo+2

Solving for A and B we get, A=-1 and B=3. Hence

~=1 3
H(jjw) = - . 4
(o) jo+1 jw+?2
The inverse FT gives the impulse response

|h(t) = 3e % u(t)— e‘tu(t)l

Difference Equation

Ex: Consider an LTI system characterized by the following second order
linear constant coefficient difference equation.

y[n] = 1.3433y[n — 1] — 0.9025y[n — 2] + x[n]
—1.4142x[n — 1] + x[n — 2]

Find the frequency response of the system.

y[n] = 1.3433y[n — 1] —?)O.lgnbzsy[n — 2] + x[n]
—1.4142x[n — 1] + x[n — 2]
Y(e/®) = 13433(e /@)Y (e/)
—0.9025(e /2@y (e/®) + X(e’®)
~14142(e7?)X(e’?) + (e772@) X (e/?)

we know, y[n — k] — e~ Tkoy(el@)



Y(ej“’)
X(ei®)
1— 1.4142e77® 4 ¢7J2@
~ 1 —1.3433¢ /% + 0.9025e /2%

H(ef‘") =

Ex: If the unit impulse response of an LTI System is h(n)=c"u[n], find the response of

the system to an input defined by x[n] = gruln], where Bra < landa#(3

Soln:
y[nl = hln] * x[n]
Taking DTFT on both sides of the equation,we get

_ _ _ Jon 1 1
Y(e}w) = H(e}w)X(ejw) v(er) = 1 —aeJ® 1 - ge-J@
1 1 A B

Y jw) = - - = — X -
(e7) 1—ue‘f‘*’xl—ﬁe—1w 1—ae™7* 1—pe /¥

where A and B are constants to be found by using partial fractions

: A B
) Then, Y(ef"’) = X
Let, e /¥ =v 1—av 1-—pv
A= g —F
By performing partial fractions,we get =  a—f  a—f
a —p
a—p a—p

Therefore,Y(ef‘”) = — X :
l—ae o 1—BeJw

Taking inverse DTFT,we get

C(an_ﬁ

a—pf a—pf

yin] = | a'|uin)

Sampling

In this chapter let us understand the meaning of sampling and which are the different
methods of sampling. There are the two types. Sampling Continuous-time signals and
Sub-sampling. In this again we have Sampling Discrete-time signals.

Sampling Continuous-time signals

Sampling of continuous-time signals 1s performed to process the signal using digital
processors. The sampling operation generates a discrete-time signal from a
continuous-time signal DTFT 1s used to analyze the effects of uniformly sampling a
signal Let us see, how a DTFT of a sampled signal 1s related to FT of the continuous-
tume signal.

* Sampling: Spatial Domain: A continuous signal x(f) 1s measured at fixed
instances spaced apart by an interval “17. The data points so obtained form a
discrete signal x[n]=x[nT]. Here. AT 1s the sampling period and 1/ AT 1s the
sampling frequency Hence, sampling is the multiplication of the signal with an
impulse signal.




* Sampling theory

AN A

Lt 1k -

A AAN

X(t) F(jw)

* Reconstruction theory

Al AAN

*

S111C L
QDZ‘&QQ i .

x(t) Fiw)




Sampling: Spatial Domain

From the Figure we can see

Where x[n] is equal to the —

samples of x(t) at integer xs(t) = Z x(n)8(t — n1)
multiples of a sampling Mt

interval T

... Now substitute x(nT) for x[n]to obtain

xs(t) = Z x(nt) 86(t — n1)

n=—w

since x(t)8(t — nt) = x(n1)d(t — n1)

we may rewrite xs(t) as a product of time functions

xs(t) = x(t)p(t) where, p)= 6(t —n1)
Hence, Sampling is the multiplication of the signal with an impulse train.

The effect of sampling is determined by relating the FT of xs(t) to the FT

x(t) _. o : :
of ( ) Since Multiplication in the time domain corresponds to
convolution in the frequency domain, we have

1
Xs(jw) = Z—X(jm) * P(jw)
T
Substituting the value of P(®) 4 the FT of the pulse train i.e
+o0
p() = Y 8(t—nD)
We get, )
21 <
P(jw) = =2 Z 5(w — kaws)
T =
2T
where, ws = —,is the sampling frequency. Now
T
1 21
T
Xs(w) = —XGw) » — Z 5(w — kaws)
2T T
n=—ao
1~
Xs(jw) = = Z X(j(lw — kws))
m=—0ao

The FT of the sampled signal is given by an infinite sum of shifted version of
the original signals FT and the offsets are integer multiples of mg



Aliasing : an example

Frequency of original signal is 0.5 oscillations per time unit). Sampling
frequency is also 0.5 oscillations per time unit). Original signal cannot be

recovered.

Aliasing Ex:1
Sampling
points x[n]

Original signal

x(t)

ws =0.5cycles/unit

Sampling frequency
time J,

Aliased signal
which is
reconstructed

Aliasing Ex:2

Sampling
points xX[Nn]

Original signal
x(t)

ws =0.7cycles/unit

[ W)
\/

Sampling frequency l

Aliased signal appear like a sine"wave but of
lower frequency, original signal is lost

Non-Aliasing: Ex 3

Sampling
points x[n]

Original signal
Sampling frequency l x(t)

ws =1.0 cycles/unit
time i.e twice the
frequency of the
- MAAAAAANANDND]
Ll O o o B e O e i
| VVVVVUUVVVY
Non-Aliased signal appear like a sine wave but of

lower frequency, original signal is lost




Sampling below the Nyquist rate

x(t) NX(w)

Reconstruction below the Nvquist rate

(1) X(jw)



FT of sampled signal for different sampling frequency

X(w)
(a) Spectrum of continuous-time signal \
-W o w

Xs(Gw) (b) Spectrum of sampled signal, w; =3W

K=-2 K=-1 } K=0 K=1 K=2
w wWe zws

-2w, “wg -W 0

(c) Spectrum of sampled signal, w, =3/2W

-'14095 -{Sws -{2003 -wW 0 w éws éws ‘iws

* Reconstruction problem is addressed as follows.

» Aliasing is prevented by choosing the sampling interval T so that w0 >2W,
where W is the highest frequency component in the signal.

» This implies we must satisfy T<n/W.

* Also, DTFT of the sampled signal is obtained from Xs(jw)

relationship Q= oT, that is

DTFT ]
x[n] X(€) = x(w) o = are
* This scaling of the independent variable implies that ®=wm, corresponds to
Q=2n

using the

Subsampling: Sampling discrete-time signal

* FT is also used in discrete sampling signal.

o Let? [n] = x[qn] be a subsampled version x[n], where q is a positive integer.

* Relating DTFT of y[n] to the DTFT of x[n], by using FT to represent x[n] as a
sampled versioned of a continuous time signal x(t).

» Expressing now y[n] as a sampled version of the sampled version of the same
underlying CT x(t) obtained using a sampling interval q that associated with
x[n]

»  We know to represent the sampling version of x[n] as the impulse sampled CT
signal with sampling interval T.

+ o0

xs(t) = Z x(n)é6(t —n1)

n=—aoo

* Suppose, x[n] are the samples of a CT signal x(t), obtained at integer multiples

of T. That is, x[n]=x[nT]. Let *(©)

X(®) and applying it to obtain

1 —
¥s(jw) = — Z Ka— Tod)

k=—co




- Since y[n] is formed using every qth sample of x[n], we may also express y[n]

yln] = xlgn] = x(nq7)

as a sampled version of x(t).we have

- Hence, active sampling rate for yn] is T°=qT. Hence

vs(t) = x(t) Z d(t — nt") Ya(Gw) = % Z X(U(w — kws"))
n=—oc K=—o=

- Hence substituting T ’=q T, and o= ws'q
“+ oo
. 1 : k
Ys(Gw) = — E XJ(w —— ws))
qT L q

Ys(Gw) and Xs(jw)

- We have expressed both as a function of

- Expressing XGa) as a function ofXSQw) . Let us write k/q as a proper
function, we get
I m
— =1+ ,
q q

Kk
where l is the integer portion ofa, and m is the remainder

allowing k to range from — oo to + oo corresponds

to having [ range from — oo to + coand m from0Oto g — 1
—i

Yo(iw) = %qz: {% i Xs (j (e — tews— % ws))}

m=0 l=—co

Ys(Jw) = é qzi Xs (j (a) — % ws))
m=0

which represents a sum of shifted versions of

Xs(jw) normalized by q.
Converting from the FT representation back to DTFT
and substituting Q0 = wt above

and also X(e’?) = Xs(jR2/71) ,we write this result as

q—1I
Ys(e/?) = 3 Z Xq(e/2-mz2m)
=0

where, Xq(efﬂ) = X(efﬂfq) — a scaled DTFT version




Recommended Questions

1. Find the frequency response of the RLC circuit shown in the figure. Also
find the impulse response of the circuit

-lls\:'] rpiuf} (- _

— P

Fig.Q6(b)

The input and output of causal LTI system are described by the differential equation.
dy 0 +3dy® 12y =x(1)
dt’ dt
1) Find the frequency response of the system
i) Find impulse response of the system
iil) What is the response of the system if x (t) = te™ u (¢). (10 Marks)

3. If x(t)e>X(f). Show that x(t)Coswot«> 1/2[ X(f-fo)+X(f-fo)] where w0=2xf,

The input x (t) = ™' u(t) when applied to a system, results in an output y (t) = ™ u(t). Find
the frequency response and impulse response of the system. (07 Marks)

Find the DTFS co-efficients of the signal shown in figure Q4 (b),

Ly $o . s\ "i"?
qlJmL“;

Y T -e e hh

6. State sampling theorem. Explain sampling of continuous time
signals with relevant expressions and figures.

7. Find the Nyquist rate for each of the following signals:
i) X (t) = sinc(200t) ii) x (t) =sinc? (500t)



