
 

 

Fourier representation for signals  
 

 Introduction: 
 

Fourier series has long provided one of the principal methods of analysis for mathematical 

physics, engineering, and signal processing. It has spurred generalizations and applications that 

continue to develop right up to the present. While the original theory of Fourier series applies to 

periodic functions occurring in wave motion, such as with light and sound, its generalizations often 

relate to wider settings, such as the time-frequency analysis underlying the recent theories of wavelet 

analysis and local trigonometric analysis. 

 

• In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent 

“any” periodic signal. 

 

• But Lagrange rejected it! 

 

• In 1822, Fourier published a book “The Analytical Theory of Heat” Fourier‟s main  contributions: 

Studied vibration, heat diffusion, etc. and found  that  a  series  of  harmonically related sinusoids is 

useful in representing the temperature distribution through a body. 

 

• He also claimed that “any” periodic signal could be represented by Fourier series. These arguments 

were still imprecise and it remained for P. L. Dirichlet in 1829 to provide precise conditions under 

which a periodic signal could be represented by a FS. 

 

• He however obtained a representation for aperiodic signals i.e., Fourier integral or transform 

 

• Fourier did not actually contribute to the mathematical theory of Fourier series. 

 

• Hence out of this long history what emerged is a powerful and cohesive framework for the analysis 

of continuous- time and discrete-time signals and systems and an extraordinarily broad array of 

existing and potential application. 

 
The Response of LTI Systems to Complex Exponentials: 

 

We have seen in previous chapters how advantageous it is in LTI systems to represent signals as a 

linear combinations of basic signals having the following properties. 

 

Key Properties: for Input to LTI System 

 

1. To represent signals as linear combinations of basic signals. 

2. Set of basic signals used to construct a broad class of signals. 

3. The response of an LTI system to each signal should be simple enough in structure. 

4. It then provides us with a convenient representation for the response of the system. 

5. Response is then a linear combination of basic signal. 

 

Eigenfunctions and Values : 

• One of the reasons the Fourier series is so important is that it represents a signal in terms of eigen 

functions of LTI systems. 



  
 

 
 

• When I put a complex exponential function like x(t) = ejωt through a linear time-invariant system, 

the output is y(t) = H(s)x(t) = H(s) ejωt where H(s) is a complex constant (it does not depend on 

time). 

 
• The LTI system scales the complex exponential ejωt . 

 
Historical background 

 
There are antecedents to the notion of Fourier series in the work of Euler and D. Bernoulli on 

vibrating strings, but the theory of Fourier series truly began with the profound work of Fourier on 

heat conduction at the beginning of the century. In [5], Fourier deals with the problem of describing 

the evolution of the temperature of a thin wire of length X. He proposed that the initial temperature 

could be expanded in a series of sine functions: 

 
 

 

 

 

 

 

 

The following relationships can be readily established, and will be used in subsequent sections for 

derivation of useful formulas for the unknown Fourier coefficients, in both time and frequency 

domains. 
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where f and T represents the frequency (in cycles/time) and period (in seconds) respectively. Also, 

k and g are integers. 

A periodic function f (t) with a period T should satisfy the following equation 

f (t  T )  f (t) 
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Example 2 

Prove that 
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Example 3 

Prove that 


 sin(gw0t) cos(kw0t)  0 
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w0  2f 
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and k and g are integers. 

Solution 
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Hence, 

sin(   )  sin( ) cos( )  sin( ) cos( ) 
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2C  0 , since the right side of the above equation is zero (see Equation 1). Thus, 
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Example 4 

Prove that 
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 cos(k  g)w0tdt  0 
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D   cos(kw0t) cos(gw0t)dt  0 
0 

Adding Equations (23), (26) 
T T 

2D   sin(kw0t) sin(gw0t)   cos(kw0t) cos(gw0t)dt 
0 0 

 

 

  coskw0t  gw0tdt 
0 

 

 

  cos(k  g)w0tdt 
0 

2D = 0, since the right side of the above equation is zero (see Equation 1). Thus, 
T 

D   sin(kw0t) sin(gw0t)dt  0 

Recommended Questions 
 

1. Find x(t) if the Fourier series coefficients are shown in 

fig. The phase spectrum is a null spectrum. 

 

 

 

2. Prove the following properties of Fourier series. i) 

Convolution property ii) Parsevals relationship. 

 

3. Find the DTFS harmonic function of x(n) = A Cos (2πn/No). 

Plot the magnitude and phase spectra. 

 

4. Determine the complex Fourier coefficients for the signal. 

X(t)= {t+1 for -1 < t< 0; 1-t for 0 < t < 1 which repeats 

periodically with T=2 units. Plot the amplitude and phase 

spectra of the signal. 

 

5. State and prove the following of Fourier transform. i) 

Time shifting property ii) Time differentiation property 

iii) Parseval's theorem. 
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