SJP N Trust's
ECE Dept.

Hirasugar Institute of Technology, Nidasoshi. =

— . — g=) THY: IV.-Sem
Approved by AICTE, Recognized by Govt. of Karnatakaand Affiliated to VTU Belagavi 2017-18

Department of Electronics & Communication Engg.

Course :Microprocessor-15EC42. Sem.: 4t (2017-18)

Course Coordinator:
Prof. P. V. Patil

MODULE |

INTRODUCTION TO MICROPROCESSOR

HISTORICAL BACKGROUND

80X86, Pentium, Pentium Pro, Pentium Ill, Pentium 4,
and Core2 microprocessors.

Mechanical Age
— Abacus(first mechanical calculator)

— Mechanical Calculator(Gear & wheel enabled)(1642
Blaise Pascal)

— Analytical Engine(Steam-powered mechanical
computer)(stores 1000 -20 decimal numbers)

The Electrical Age
— electric motor
— Bomar Brain(handheld electronic calculator 1970)

History Of MP

* The first processor was a 4 bit processor and
was called 4004

« The microprocessor was invented in the year
1971 in the Intel labs

* Intel, Motorola, Zylog Corporation, Fairchild and

National (Hitachi, Japan) are the microprocessor
manufacturers.

Microprocessor revolution

Microprocess | Year of Word Memory | Pins | Clock Remarks
ors Introduct | Length | Addressi
ion ng
4004 1971 4 bits IKB 16 750KHz | Intel’s 1st pP
8008 1972 8 bits 16KB 18 800KHz | Mark-8 used this:
1st computer for
the home.
8080 1973 8 bits 64KB 40 2 MHz 6000trs, Altair-1st
PC
8085 1976 8 bits 64KB 40 3-6 MHz | Popular
8086 1978 16 bits 1 MB 40 5-10 MHz | IBM PC, Intel
became one of
fortune 500
companies.
8088 1980 8/16 bits | IMB 40 5-8MHz PC/XT

Microprocessor

“Single Chip Integrated Circuit Computer
Architecture”

What is Microprocessor

What is Microcontroller
Difference Between MP & MC
Applications Of MP

Difference between MP and MC

« What is a Microprocessor?

IS an electronic computers central processing unit (CPU)
made from miniaturized transistors and other circuit
elements on a single semiconductor integrated circuit
(1C).

« It performs arithmetic, logic and control operations. It
contains a control unit, an arithmetic & logic unit,

registers and links to store data and connect to
peripherals.

« What is a Microcontroller?

Dedicated to performing one task. Integrates the memory
and other features of a microprocessor.

About M.Processor

 CPU Is also known as microprocessor
* |tincludes (CPU, ALU, Registers)

« Control logic of almost all digital devices
(fuel iIndustry, automobile application)

* In its life period it has to handle many
different tasks and programs given to It.

* may not handle a real time task at all times

About M.controller

Designed specifically for specific tasks
self-sufficient and cost-effective
microcontroller is part of an embedded system

controls the operation of a machine using fixed
programs stored in ROM.

micro controllers are from 8051 family or PIC family or
any other

Applications of microprocessors

1. computer applications
2. Control application (MC,embedded controllers)
3. Communication (DSP processors,Cell phones)

Register Organization of 8086

onc -~
seneral aata registers

SP

CS BP

SS FLAGS/PSW Si

: DS DI
S = IP

Segment registers Pointers and index registers

General Registers

Data Registers file

AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register

Pointer & Index Registers file
P - the Stack Pointer
P - the Base Pointer

- the Source Index Register
- the Destination Register

WACPRVENT)

Registers and their operations

Different registers and their operations are listed below:

Register | Operations

AX | Word multiply, Word divide, word I/O

AL Byte Multiply, Byte Divide, Byte I/O. translate, Decimal Arithmetic

AH | Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX | Word Multiply, word Divide, Indirect /O

s
on

&2 &

-
~
—
~
A~
-
~
-
-~
-/

e

Flag Register Of 8086

] n
1 b
N &
B e Sle o
VETTION al
o
MNira~
action flao
UL ald
S
Y Pap— ar
e 2
CHTUL al
3
- .
rearn San
ay ay
Qinn flan
iIJ aJ
-y
——y g
e a
LS1T0 lial
A - ~~
- rrny
A 2
JANal "GW
o
Pa an
- - -
pn
ArW -
- a0
wd ay
~
5 -~ ':‘f!
Ji USCU

4=2C MO»1IM4Z- 0Cw

20=4cOmxm

el 4

CPU Architecture

\ Address/data

Address/status \
1 ‘ ADg AD, s

AL6/Sa — A19/Se

I s X
| Memory address and data ‘
| bus interface “

-

Internal data bus
-

Address conversion

mecQanism (aq?er)
R e ok GRS SO
= cs Pt [
i SRt v
e N TS T T
. ES el

||

//'
. Internal data bus B
**** 2l TR = < — |

== = = —— E
J ’ \ Decoding X
15 J U o | circuit
ocprt i | A = ¥ b
BH Bl |
et \

e xBat 7 bt WO
 DH DL
b~ et o410 ALU (16)
BP
— s =
DI &1
Y

Register bank LFIags & 6)‘\<H “
|

- - |

\

|

Timing and control
circuit

P i RS e

Clock and control
signals

3086 Features

16-bit Arithmetic Logic Unit

16-bit data bus

20-bit address bus - 22 = 1,048,576 = 1 meg
Even location byte-((AO-A7)-Lower half),
Odd location byte-((A8-A15)-higher half)

Block diagram of 8086 can be subdivided into two

parts

1. Bus Interface Unit
e 2. Execution Unit

1. Bus Interface Unit

* consists of segment registers, adder to
generate 20 bit address and instruction
prefetch queue.

* Instruction and data bytes are fetched from
memory and they fill a First In First Out 6
byte queue

2.Execution Unit;

 consists of scratch pad registers such as 16-
bit AX, BX, CX and DX

« and pointers like SP (Stack Pointer), BP
(Base Pointer) and

 finally index registers such as source index
and destination index registers

* The 16-bit scratch pad registers can be split
Into two 8-bit registers ex(AX-AH & AL)

Working of EU & BIU

 The EU and BIU work asynchronously.

* Any External from m/m or i/o needed to
the execution EU informs it to BIU and BIU
will perform that operation.

* BIU performs its operations and hand
over's the Bus service for EU Even though
requests comes from the EU unit

Memory Segmentation

Physical memiory 4
0000 800 Physical memory
1000 I —< CS1 1000 | CS,
0000 o I
—<— Offset IP, Offset IP,
Segment 1 64 KB
L v Y 1A00 64 KB CS,
Segpentd 0000,1A01 | Offset IP,
‘ Segment 2
| 64 KB
200L | ocs, Aof FEEE | G
e ~— Offset IP, ‘
Segment 2 64 KB Overlap
FFFF v IREFFF '

Fig. 1.3 (a) Non-overlapping Segments Fig. 1.3 (b) Overlapping Segments

Signal Description of 8086

Ground ——— GND C

Address/data <

f

-

Control {

Ground ——— GND :

INTR [

Clock ——————»— CLK [:

Ap14 [
AD13 []
Ap12 [
AD11 (:
Ap10 [|
Ap9 []
Apos [|

AD1 |:
ADO [
NMI [:

1 N a0
2 39
3 3s
4 37
5 36
6 35
7 34
8 33
9 32
10 8086 31
il CcPU o
12 29
13 28
14 27
15 26
16 25
T 24
18 23
9 22
20

21

OoooooUioooiuguududud

Vee Supply voltage, +5 v

AD1B ~a—— Addresi/dice

A16/S3
A17/S4

A18/S5

A19/S6

BHE/S7
MN/MX
RD

Address/control

RQ/GTO (HOLD)
RQ/GT1 (HLDA)

9]
-

(WR)
(M/I0)
(DT/R)
(DEN)
(ALE)
(INTA)

> Control

Pin Description

« 8086 Microprocessor is a 16-bit CPU available
In 3 clock rates(5, 8 ,10MHz) packaged in a 40
DIP IC.

* Pins work in 2 modes {Minimum(single
processor mode) & Maximum(multi processor
mode)}

« Signals can be characterized in 3 parts

1. special function in min mode

2. special function in max mode

3. common function in both min and max mode.

Pins for both Min mode and
Max Mode

AD15-ADO0- Bidirectional multiplexed memory
/O address(T1) and data lines(T2,T3,Tw,T4),
these pins will be in tri-state during Local Bus
and Interrupt ACK.

(A16/S3-A19/S6) -Time multiplexed address(T1)
and status lines(T2,T3,Tw,T4) ALE is used to
demultiplex the Address and status.

S5- Interrupt enable flag bit.
S6- always low

5 53 Indication

() () Alternate Data
0 l Stack

1 () Code or nong

1 1 Data

Table 1.1 Bus High Enable/Status

BHE*/S7-Bus High Enable/Status- Transfer of data
over higher order bus(D15-D8)(T1). (0-odd addr m/m
(Upper bank), 1-Even addr m/m(Lower bank)).{U-od-0,L-
Ev-1}

BHE Ay Indication

0 0 Whole Word

0 1 Upper byte from or to odd address
] 0 Upper byte from or to even address

|] None

RD*-Read--
memory or |/O read operation

RD* Is active low and shows the state for
T2,T3, TW of any read cycle

READY—
Signal Is active high

acknowledgement from the slow devices or
memory

INTR-Interrupt Request

This is a level triggered input

Activated at Last clock cycle of each
Instruction to determine the availabllity of the
reguest.

TEST- idle state-1, continue execution-0
The “wait” state examines the Test pin.
on leading edge of clock states changes

NMI-Non-maskable Interrupt---
edge-triggered input
not maskable internally by software

RESET—

« terminate the current activity and start
execution from FFFFOH.

 Active high input

* must be active for at least four clock cycles.

CLK—
provides the basic timing for processor operation

Its an asymmetric square wave with 33% duty
cycle

Range is 5MHz to 10MHz.
VCC : +5V power supply for the operation

MN/MX*---

weather the processor is in min mode or max
mode.

Min-1
Max-0

minimum mode operation of
8086.

M/IO* -Memory/IO
m/m-1, i/0-0
equivalent to S2 in maximum mode

NTA* -Interrupt Acknowledge

orocessor has accepted the interrupt when
its 0.

ALE-Address latch Enable—

output signal indicates the availability of
the valid address on the address/data
lines.

active high and Is never tristated.
DT /R* -Data Transmit/Recelve—
direction of data flow
Transmission-1

Reception-0

DEN*-Data Enable—

This signal indicates the availability of
valid data over the address/data lines.

HOLD, HLDA-Hold/Hold Acknowledge—

another master Is requesting the bus
access

When HOLD is 1, HLDA Is made 1
When HOLD i1s 0, HLDA Is made O

e S2,S1, SO -Status Lines

» status lines reflect the type of operation,
being carried out by the processor

W

2

s

wn
=

Indication

Interrupt Acknowledge

Read I/O Port

Write /O Port

Halt

Code Access

Read memory

Write memory

| = == O oD D O

| = O D] = = D O

—_] Q| =] S| =] < —| <

Passive

Table 1.3

L OCK*--

» other system bus masters will be
prevented from gaining the system bus,

 When LOCK is 0’ it is activated using
LOCK prefix instruction.

* During critical instruction execution this
Instruction activated.

e QS1, QS0-Queue Status

* status of the code prefetch queue can be
observed with these lines

QS,, QS Indication

0 0 No operation

0 1 First byte of opcode from the queue
1 0 Empty queue

1 1 Subsequent byte from the queue

« RQ*/GTO*, RQ*/GT1*-ReQuest/Grant

» used by other local bus masters, In
maximum mode, to force the processor to
release the local bus at the end of the
processor's current bus cycle.

 RQ*/GTO*-Highest priority

Addressing Modes

* The way In which the operand Is specified
Is called as the AM(Addressing modes)

« 2 Categories are provided
- 1.Data 2.Branch

1.Immediate 9.Intrasegment Direct

2.Direct 10.Intrasegment
Indirect

3.Register 11.Intersegment
Direct

4.Register Indirect 12. Intersegment
Indirect

5.Indexed
6.Register Relative

7 Df\f\f\ﬁl IIF\I'\II\\IAINI

1.Immediate AM

Immediate data Is part of instruction
Ex- MOV AX,1234h

2. Direct AM

16bit address Is directly specified in the
Instruction

Ex-MOV AX,[1234h]

3.Register AM
-Data’s are stored In the register

- All the register except IP Is used for
storage.

- Ex- MOV AX,BX
4.Register Indirect AM

-Registers are used to hold the Address of the
data in indirect way using Offset
register(BX,SlI,DI)

NNAfalilf cA~raraAnt 1o DC A CC

* 5Indexed AM

-Offset Is stored on the index register
-DS,ES are default segments for Sl & DI
-Ex-MQOV AX,[SI]

6.Register Relative AM

-EA Is obtained by adding 8 or 16bit relative
value with content of any
register(BX,BP,SI,DI)

- EX-MOV AX,50h[BX

« 7/.Based Indexed AM

- EA Is calculated by adding content of base
register(BX or BP) to the content of Index
register (Sl or DI). Default segments
are(ES/DS)

- EX- MOV AX,[BX][SI]

8 Relative Based Indexed

- EA Is formed by adding 8 or 16bit
displacement with the sum of contents of
base register(BX or BP) & any of the Index
register(Sl or DI).

- Ex- MOV AX,50h[BX][SI]

* 9 Intrasegment Direct mode

- The address for which control has to be
transferred lies in the segment & address
appears as immediate value.

- EA= 16/8b Displacement+ IP content
Ex- Short jJump or long jump Iinstructions

* 10 Intrasegment Indirect mode

- Displacement address where the control
has to be transferred will be found in some
register

-11 Intersegment Direct

- The address for which control has to be
transferred lies in some other segment &

the address specified directly as part of
Instruction.

« 12 Intersegment Indirect

-The address to which control has to be
passed will be stored on the memory
ocation from there it will be read to CS &
P

Machine Language Instruction
Format :

 The Instructions In 8086 varies from 1 to 6
bytes.

* 1. Opecode field-type of operation by the
Processor.

« 2. Operand field- Consists of
source/destination registers/addresses.

7 2 1 5 4 3 2 1 0/ Byed —»| «— Byes —p |
i . Low Disp/ | High Disp/
Opcod g
pcode § D W MOD REG R/M DATA DATA
+—— Bytel >| < Byte 2————» OR
+ 4 4 4 4 DIRECT DIRECT
ADDRESS LOW | ADDRESS HIGH
BYTE BYTE

Register Operand/Register to use EA

Calculation

Register Operand/Extension of opcode

Register mode/Memory mode with
displacement length

Word/byte operation

Direction is to register/from register

Operation code

* Register Direct bit (D) occupies one bit. It
defines whether the register source or
destination operand.

* D=1 register operand is the destination
operand.

* D=0 register is a source operand.

« Data size bit (W) defines whether the
operation to be performed is an 8 bit or 16

bit data
* W=0 indicates 8 bit operation
« W=1 Indicates 16 bit operation

REG W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH S1
111 BH DI

MOD (2 bits)

Interpretation

00 Memory mode with no displacement follows except for 16 bit
displacement when R/M=110

01 Memory mode with 8 bit displacement

10 Memory mode with 16 bit displacement

11 Register mode (no displacement)

Effective Address Calculation

R/M MOD=00 MOD 01 MOD 10

000 (BX) + (SI) (BX)+(ST)+DS8 (BX)+(ST)+D16
001 (BX)+(DI) (BX)+(DI)+D8 (BXO)+(DD+D16
010 (BP)+(SI) (BP)+(SI)+DS8 (BP)+(SI)+D16
011 (BP)+(DI) (BP)+(DI)+D8 (BP)+(DI)+D10
100 (ST) (SI) + D8 (SI) + D16

101 (DI) (DI) + D8 (DI) + D16

110 Direct address (BP) + DS (BP)+ DI16

111 (BX) (BX) + D8 (BX)+DI16

Mode 11

R/M W=(W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH SI
111 BH DI

EX: MOV CH, BL
This instruction transfers 8 bit

| content of BL
6 bit Opcode for this instruction is 100010

D=0 indicates BL Is a source operand
D=1 indicates CH is a destn operand
W=0 indicates 8 bit data transfer

MOD=11 reg to reg transfer.
REG=101 for CH from table.

RIM =011
machine code for MOV CH, BL Is

A s arcsaAA~A 1”1 /N1 4 4 A A

Example 2 : SUB Bx, (DI)

This instruction subtracts the 16 bit content of memory
location addressed by DI and DS from BXx.

The 6 bit Opcode for SUB is 001010.

D=1 so that REG field of byte 2 is the destination
operand. W=1 indicates 16 bit operation.

MOD = 00

REG =011

R/M =101

The machine code is 0010 1011 0001 1101
2B1D

2B1D16

« W-1

« MOD-10
 Reg-010
 R/M-110

Example 3 : Code for MOV
1234 (BP), DX

* Opecode-100010
« D-0 cause DX register Is source

- 1000 1001 1001 0110 (34 12)

¢ 89963412

Opcode

D

W

MOD

REG

R/M

LB displacement

HB displacement

100010

0

l

10

010

110

34H

12H

Code for MOV DS : 2345 [BP],
DX

Opcode-1000 10

D-0

W-1

MOD-10

Reg-010

R/M-110

displacement = 2345 H.
SOP byte i1s 001 SR 110

6 General Machine Language
Instruction formats.

1. One Byte Instruction-

One byte long instruction, & data is available in the
Instruction itself. Least 3 bit of opcode maybe
used specify for register else all 8bits are
implied.

2. Register to Register- 2 byte long instruction

15t byte opcode & width ,2"d byte Reg & R/M field

D- 3 i D7D6 D5D4D3 Doy \
OP CODE W 11 REG }@

3. Register to/from memory with no
displacement- 2 byte long

p7D6 D5D4D3 D2DID0

D,

D

Dy

OP CODE

W | [MOD | REG

RM

4. Register to/from memory with
displacement- 1 or 2 byte additional for
displacement.

D,

Do

D7D6 D5D4D3 D2D1DO0

OP CODE

MOD

REG

R/M

D,

Do

s

D

Low Byte of
Disp.

' —
Higher Byte o
Disp.

5.Immediate Operand to register- 1 or 2
byte additional bytes meant for data.

* 6.Immediate Operand to memory with
16bit Displacement- 2 bytes contain

OPCODE,MOD & R/M field remaining 4
bytes contains 2 byte displacement 2 byte

data.

D Dy DTD6 DADADS DUDLDy

00 JOPCODE]_ B

D7 DO D7 DO

Lower Byteof

DAT

\

D D,
Higher Byte of

DATA

i

The 80386 Instructions are
categorized into the following

| main types.
I. Data Copy / Transfér Instructions

II. Arithmetic and Logical Instructions
lll. Branch Instructions

Iv. Loop Instructions

v. Machine Control Instructions

vi. Flag Manipulation Instructions

vil. Shift and Rotate Instructions

viil. String Instructions

« |. Data Copy / Transfer Instructions
1.MQV :data from some source to a destination
« EX-MOV AX,5000H,MOV AX,50H[BX]

2. PUSH: Push the contents of specified register to stack
memory

Physical SS = 2000H
Address SP
PUSH AX l l
Al
Ans 22 T 22 H 2 FFFD FFFD
55 g 55 H 2 FFFE FFFE
X X 2 FFFF FFFF

3.POP : Pop from Stack

 stack pointer is incremented by 2
« POP AX

AH

55

22 H

95 H

Physical SS = 2000H
Address SP

} }

2FFFD FFFDH
2FFFE FFFEH

4.XCHG : Exchange byte or word

* exchange the contents of the specified
source and destination operands

. Eg. XCHG [5000H], AX
. XCHG BX, AX

5.IN : Reading the content from address
specified In the instruction

* Ex- IN AL,0300h;

 |IN AX:// Read from default address stored
on DX.

6.0UT: Copy a byte or word from
accumulator specified port.

. Eg. OUT 03H, AL
. OUT DX, AX

(. XLAT :

Translate byte using look-up table.

Eg. LEA BX, TABLE1
MOV AL, O4H
XLAT

Simple input and output port transfer
Instructions:

8.LEA :

» Load effective address of operand In
specified register.

* [reg] offset portion of address in DS
* Eg. LEA reqg, offset

9.LDS: Load DS register and other specified
register from memory(32bit).

 [reg] [mem]
« [DS] [mem + 2]
 Eg. LDS reg, mem

10 LES:

* Load ES register and other specified
register from memory.

* [reg] [mem]
* [ES] [mem + 2]
* Eg. LES reg, mem

Flag transfer instructions:

11.LAHF: Load (copy to) AH with the lower
oyte of flag register.

* [AH] [Flags low byte]
 Eg. LAHF
12.SAHF:

« Store (copy) AH register to low byte of flag
register.

 [Flags low byte] [AH]
 Eg. SAHF

13.PUSHF:Copy flag reqister to top of stack.
« [SP][SP] -2
* [[SP]] [Flags]
 Eg. PUSHF

14.POPF :Copy word at top of stack to flag
register.

* [Flags] [[SP]]
» [SP] [SP] + 2

Arithmetic Instructions:

1.ADD :Instruction adds contents of the
source to destination.

 Eg. ADD AX, 0100H
 ADD 0100H

2.ADC : Add with Carry

3.SUB : Subtract
e subtracts the source &destn content
 Eg. SUB AX, 0100H

4.SBB : Subtract with Borrow
 Eg. SBB AX, 0100H
e SBB AX, BX

5.INC : Increment

This instruction increases the contents of
the specified Register or memory location
by 1

Immediate data cannot be operand of this
Instruction.

Eg. INC AX
INC [BX]
INC [5000H]

6.DEC : Decrement

* The decrement instruction subtracts 1
from the contents of the specified register
or memory location.

. Eg. DEC AX
- DEC [5000H]

/.CMP : Compare

Eg. CMP BX, 0100H
CMP AX, 0100H
CMP [5000H], 0100H
CMP BX, [SI]

CMP BX, CX

8.AAA-ASCII Adjust After
Addition

« Executed after ADD instruction, which
adds two ASCII coded operands to give
byte in AL

« EX.1--- If AL =58--- before AAA
AL =08--- after AAA
« EX.2--- If AL =5A--- before AAA
AL =00--- after AAA
AH =01--- after AAA
AX=0100h-- after AAA

9.AAS-ASCII Adjust After

Subtraction

« Executed after SUB instruction, which
subtract two ASCII coded operands to give
byte in AL

« EX.1--- If AL =58--- before AAS
AL =08--- after AAS
o EX.2--- If AX =050A--- before AAS
AL =04--- after AAS(AL=AL-6)
AH =05--- Before AAS
AX=0404h-- after AAS

10.AAM-ASCII adjust for Multiplication

« Packed BCD of AL converted to Unpacked in AH &AL
Ex. Suppose AL =5D after multiplication

After AAM AH=06 and AL=03

11.AAD-ASCII adjust After Division

- Unpacked BCD of AH & AL converted into Packed BCD
iIn AL

« Suppose AH =05 & AL=06 before AAD

« After AAD AL=38H(equivalent hex of 56d)

11.NEG : Negate

forms 2's complement of the specified
destination

Eg. NEG AL

AL = 0011 0101 35H Replace number in
AL with its 2's complement

AL =1100 1011 = CBH

12.MUL :Unsigned
Multiplication Byte or Word

* This instruction multiplies an unsigned
byte or word by the contents of AL.

. Eg. MUL BH ; (AX) (AL) X (BH)
« MUL CX ; (DX)(AX) (AX) X (CX)

13.IMUL :Signed
Multiplication

multiplies a sighed byte In source operand
by a signed byte in AL or a signed word In
source operand by a signed word in AX.

Eg. IMUL BH
IMUL CX
IMUL [SI]

14.CBW : Convert Signed
Byte to Word

Instruction copies the sign of a byte in AL
to all the bits in AH. AH Is then said to be
sign extension of AL

Eg. CBW

AX= 0000 0000 1001 1000 Convert signed
byte in AL signed word in AX.

Resultin AX=1111 1111 1001 1000

15.CWD : Convert Signed
Word to Double Word

This instruction copies the sign of a byte In
AL to all the bits in AH. AH Is then said to
be sign extension of AL.

Eg. CWD

Convert signed word in AX to signed
double word in (DX : AX)

DX=11111111 1111 1111
Resultin AX =1111 0000 1100 0001

16.DIV : Unsigned division

* This instruction is used to divide an unsigned word by
a byte or to divide an unsigned double word by a word.

« DIVCL ;Wordin AX/ byte in CL
; Quotient in AL, remainder in AH

« DIVCX ; Double wordin DX and AX / word
; In CX, and Quotient in AX,
; remainder in DX

17.IDIV : Signed division

2. Control Transfer Or
Branching Instructions

1. Unconditional Control Transfer(Branch)
Instruction

« 2. Conditional Control Transfer(Branch)
Instruction

1.CALL : Unconditional Call
Instruction is used to call sub program from a main
program.

Address of procedure may be specified directly or
indirectly.

« Two types of procedure depending upon whether it is
available in the same segment or in another segment.

. Near CALL i.e., £32K displacement.
Ii. For CALL i.e., anywhere outside the segment.

* On execution this instruction stores the incremented IP
& CS onto the stack and loads the CS & IP registers
with segment and offset addresses of the procedure to
be called.

2.RET: Return from the

Procedure.

* At the end of the procedure, the RET
Instruction must be executed.

* The previously stored content of IP and
CS along with Flags are retrieved into the
CS, IP and Flag registers from the stack
and execution of the main program
continues further.

3.INT N: Interrupt Type N.

« 256 Interrupts are defined corresponding
to the types from OOH to FFH

 When INT N Instruction is executed, the
type byte N i1s multiplied by 4 and the
contents of IP and CS of the interrupt
service routine will be taken from memory
block in 0000 segment

4.INTO: Interrupt on Overflow

* This instruction Is executed, when the
overflow flag OF Is set. This Is equivalent
to a Type 4 Interrupt instruction.

5.IRET: Return from ISR

 When it Is executed, the values of IP, CS
and Flags are retrieved from the stack to

continue the execution of the main
program.

6.LOOP Unconditionally

* This Instruction executes the part of the
program from the Label or address

* LOOP Instruction CX indicates number of
times the loop has to be performed

/.JMP: Unconditional Jump

This instruction unconditionally transfers

the

control of execution to the specified

address
using an 8-bit or 16-bit displacement.

No
2ty

~lags are affected by this instruction.

DES

1.Far IMP(CS,DS,ES,SS) (Inter segment)
2.Near IMP(+/- 32K) (Intra segment)
3. Short IMP(127- -128)(Intra segment)

2.Conditional Branch

Instructions

« JZ/JE Label-

Transfer execution control to address ‘Label’, if ZF=1.
 JNZ/INE Label-

Transfer execution control to address ‘Label’, if ZF=0

« JS Label

Transfer execution control to address ‘Label’, if SF=1.
 JNS Label

Transfer execution control to address ‘Label’, if SF=0.
 JO Label

Transfer execution control to address ‘Label’, if OF=1.

« JNO Label
Transfer execution control to address ‘Label’, if OF=0.
« JNP Label

Transfer execution control to address ‘Label’, if PF=0.
 JP Label

Transfer execution control to address ‘Label’, if PF=1.
 JB Label

Transfer execution control to address ‘Label’, if CF=1.
« JNB Label

Transfer execution control to address ‘Label’, if CF=0.
« JCXZ Label

Transfer execution control to address ‘Label’, if CX=0

Conditional LOOP

Instructions

e LOOPZ/LOOPE Label

Loop through a sequence of instructions
from label while ZF=1 and CX=0.

LOOPNZ / LOOPNE Label

Loop through a sequence of instructions
from label while ZF=0 and CX=0.

Conditional JMP instruction based on more than one

flag.
Name/Alt Meaning Flag setting
JL/INGE Jump less than/not greater than or = (SF xor OF) =1
JNL/JGE Jump not less than/greater than or = (SF xor OF) =0

JG/IJNLE Jump greater than/not less than or =((SF xor OF) or ZF) =
0

JNG/JLE Jump not greater than/ less than or =((SF xor OF) or ZF) =
1

JB/JNAE Jump below/not above or equal CF=1
JNB/JAE Jump not below/above or equal CF =0
JA/JNBE Jump above/not below or equal (CFor ZF) =0

JNA/JBE Jump not above/ below or equal (CF or ZF) =1

MODULE 2
Instructions Sets

 Logical Instructions
1. AND
EX- AND AX,BX

2. OR
EX- OR AX,0098h

3. NOT
EX- NOT AX

4. XOR
EX- XOR AX,BX

5.TEST-Logical compare

-It is bit by bit AND of
operands result will be 1
or O

Ex- TEST AX,BX

6 SHL/SAL: Shift Logical/Arithmetical

shift the operand to the left by number of
positions specified through carry & replace
its bits by 0.

Ex.1- SAL AL,01
Before SAL/SHL AL=10101011 CF=0
After SAL/SHL AL= 01010110 CF=1

6 SHR: Shift Logically Right
 Ex.1- SHR AL,01

* Before SHR AL=10101011 CF=0
« After SHR AL=01010101 CF=1

/ SAR: Shift Arithmetically Right
 Ex.1- SAR AL,01

» Before SAR AL=10101011 CF=0
» After SAR AL= 11010101 CF=1

8. ROR:Rotate Right without Carry

Ex- ROR BL,01

Before ROR BL= 00001111 CF= not affected
After ROR BL= 10000111 CF= not affected
9. ROL:Rotate Left without Carry

Ex- ROL BL,01

10. RCR:Rotate Right Through Carry
Ex- RCR BL,01

Before RCR BL= 00001111 CF=0
After RCR BL=00011110 CF=1

11. RCL:Rotate Left Through Carry
Ex- RCL BL,01

String Manipulation Instructions

1.REP-Repeat Instruction Prefix-Repeatedly Executes
the mentioned instruction until CX becomes. Types-
REPE,REPZ,REPNE,REPNZ

2.MOVSB/MOVSW-Move String Byte or Word-

Moves a Byte or word from source m/m (SI+(10*DS) to
destination location(DI+(10*ES)

& DF will access in ascending or in descending order
EX- REP MOVSB

3.CMPS:Compare 2 strings
EX-REPE CMPSW(compare two strings held by S| & DI)
4,.SCAS:Scan String byte or string word

Scans the ES:DI location by the string stored in AX
register ,length is specified in CX register controls
direction.

EX- REPNE SCASB
5.LODS:Load String Byte or Word

-Lods the content of AL/AX by the data specified by
DS:Sl, Sl is modified depending on DF

« EX-LODSB

 6.S5TOS: Store String Byte or String
Word:

- It will store the AL/AX content to location
specified by ES:DI, DF will be O or 1

- EX-STOSB,STOSW

Flag Manipulation
Instructions

The Flag manipulation instructions directly
modify some of the Flags of 8086.

I. CLC — Clear Carry Flag.

IIl. CMC — Complement Carry Flag.
. STC — Set Carry Flag.

Iv. CLD — Clear Direction Flag.

v. STD — Set Direction Flag.

vi. CLI — Clear Interrupt Flag.

vil. STI — Set Interrupt Flag.

Machine Control instructions

« The Machine control instructions control the bus usage
and execution(E).

1.HLT — Halt the process- NO F &E

« HLT state is revoked when INTR is activated or
NMI pin is asserted, or a RESET signal on RESET

pin.
2. WAIT —Wait for Test input. (NO PROCESSING) ,

* The processor stay in this condition until TEST pin is
asserted.(TEST*=0->wait state)Or INTR ,or NMI Is
activated

3 NOP — No operation

4.

for Delay generation, NO E, only F & D
It takes 3 clock cycles for execution
Doesn’t affect any flags.

ESC — Escape to external device

Passing the instruction to the co-processor which
shares the address and data bus.

Represented by 6 bit code
Most of the time ESC is treated as NOP instruction.

0. LOCK = lock Instruction
prefix.

* Itis 1 byte prefix,Does not affect any flag

» Used during accessing the data between
register and memory

e LOCK XCHG sem, AL

Assembler Directives and

Operators.

1.DB: Define Byte,

2.DW: Define Word

3. DQ: Define Quad word(4 words)

4. DT. Define Ten Bytes

5. DD: Define Double Word

Ex1. LIST DB OIH

Ex2. LIST DW 0001H

Ex3. MESSAGE DW 'GOOD MORNING
Ex4. WDATA DW 5 DUP (6666H)

EX5. Array DB 100 DUP(0,2,3 DUP(1,2),0,3)

« Array DB 2 DUP(0,1,2,?)
« Mes DB 'HELLO’
- Mes DB 'H',’E’,’L’,'L’,’O’
« Array DB 100 DUP(0,2,3 DUP(1,2),0,3)
 Parameter DW pl
DW p2
DW p3
Offset of P1,P2,P3 are stored.

ASSUME: Assume Logical
Segment Name

 Used to inform the names of the different
logical segments In the design
environment.

ExX:1.ASSUME CS : CODE
2. ASSUME DS : DATA

« END: END of Program

« Marks the end of an assembly language program.
 Ignores all the lines after this instruction.

« ENDS: END of Segment

« This directive marks the end of a logical segment
DATA SEGMENT

DATA ENDS

« ENDP: END of Procedure

EVEN: Align on Even Memory
Address

Directive updates the location counter to
the next even address If the current
location counter contents are not even, If
even then continues with the address

EVEN
PROCEDURE ROOT

ROOT ENDP

EQU: Equate

The directive EQU Is used to assign a
label with a value or a symbol

Example
LABEL EQU 0500H
ADDITION EQU ADD

EXTRN: External and PUBLIC

 EXTRN Informs the assembler that the
names, procedures and labels declared
after this directive have already been
defined

* The other module, where the names,
procedures and labels actually appear,
they must be declared public, using the
PUBLIC directive

Example

MODULE1 SEGMENT

PUBLIC FACTORIAL FAR

Modulel ENDS

MODULE2 SEGMENT
EXTRN FACTORIAL FAR

MODULEZ2 ENDS

GROUP: Group the Related
segment

The directive is used to form logical groups of
segments with similar purpose or type

Linker/Loader take care that group declared segments
or operands must lie within a 64Kbyte memory
segment

PROGRAM GROUP CODE, DATA, STACK

ASSUME CS: PROGRAM, DS: PROGRAM, SS:
PROGRAM

LABEL: used to assign the data
segment with data type

DATA-LAST LABEL BYTE FAR
LENGTH:length of sstring

NAME: Logical Name of a Module
Used to declare the module names.

OFFSET: Offset of a Label

Directive replaces the string 'OFFSET
LABEL' by the computed 16bit
displacement

« Example:

CODE SEGMENT
MOV SI, OFFSET LIST
CODE ENDS

DATA SEGMENT

_IST DB 10H

DATA ENDS

ORG: Origin

 The ORG directive directs the assembler
to start the memory allotment for the
particular segment

* By default the location counter is Initialised
to 0000

* |f ORG 0200H --- Initialized with 0200

location, It can be also used with the data
segment.

PROC

Calling a procedure
NEAR (<64K)& FAR(>64K) PROCs

Example
RESULT PROC NEAR
ROUTINE PROC FAR

PTR: Pointer

PTR operator is used to specify the data
type -byte or word

Example:

MOV AL, BYTE PTR [SI]

INC BYTE PTR [BX]

MOV BX, WORD PTR [2000H]

SEG: Segment of a Label

 The SEG operator Is used to decide the
segment address of the label, variable, or
procedure and substitutes

« MOV AX, SEG ARRAY

¢ - Moves segment address of ARRAY
Into AX

GLOBAL

 The variable declared here can be used
by any module in the program

* ROUTINE PROC GLOBAL

SHORT

 displacement is within -128 to +127 bytes

« JMP SHORT LABEL

TYPE

* for byte type, the data type is 1.

« word type variable, the data type Is 2,
 for double word type, it is 4

o X-

Suppose, the STRING Is a word array
MOV AX, TYPE STRING

the value 0002H in AX.

Module 3
Stack & Interrupts

Stack Is temporary memory storage used
to store intermediate values, It uses SP &
SS registers.

Stack Is operated using PUSH & POP

STACK STRUCTURE OF
8086/88

Effect of PUSH and POP SP

Result SP after

Instructions Hecist exeaLtion of
egister i 0
50000H : g instruction
SS 5000H
SP | 3500H
AX 3557H
> BL |57H| | 3500H
BH [35H
A I
* | POP BX 34FEH
534FEH 57H
534FFH 35H 5 PP
= PUSH AX 3500H
> 53500H o

Fig. 4.3 Effect of PUSH and POP on SP

Interrupt & Interrupt Service
Routines

Interrupt-It breaks normal sequence of execution.

Interrupt Service Routine(ISR): It is the program
written for interrupt.

Control is transferred to main program after interrupt
execution.

INTR & NMI
255 types of INTR (00 to FFh)

Interrupt handler handles if more than one interrupt
comes at a time

Interrupt cycle of 8086

« 2 types interrupts

1.External Interrupts- Generated by external
devices.

2.Internal Interrupts- generated internally by
INTR Instructions,devide by zero,
overflow.

When NMI, TRAP,devide by zero,INTR occurs
then INTA occurs in response.

‘IF’ is set when interrupt occurs, if ‘IF’ is not set
then interrupt is ignored.

Current content of IP & CS stored on stack and
the new content of IP & CS Is loaded with new
address of ISR which is obtained by IVT.

The content of Stack are reloaded into IP& CS
when IRET instruction obtained Iin ISR.

1 interrupt requires 4 bytes (2 B CS & 2 B IP)Total
256 interrupts requires 1024 bytes(0000:03FFh)

Interrupt Response sequence

Interrupt 1
TYPE N SS:SP |
| ' u
V (> MAINPSW |
| = = SS:(SP-2) "
i e i » MAINCS |
' psw | |MAINCS| | | | SSi(SP-4) |
Rag 1B i ‘MA|NIP\‘ kK MAIN IP \
j A A ‘ i
by , it 8
Status while executing MAIN ISR CS:ISR IP ISR \
Programme — ‘
| : |
| \: 0000:03FFH ‘y s
“[i ”*“‘ Interrupt
e L 0000: (4N+2) 4— SR CS | vector
\ k’—» | table
“—— 0000:(4N) SR IP , 1
0000:0000 | =]
Memory Bank

Fig. 4.4 Interrupt Responce Sequence

Structure of IVT

Interrupt Type Content (16-bit) Address Comments
r‘SR P J 0000:0000 Reserved for dlvid‘e by Zero
Type O
i | 1smrcs 0000:0002 — Interrupt
E=it = Type ISR IP 0000:0004 Reserved for sin
| gle step
i T =] { ISR CS 0000:0006 interrupt
e 4 , ISR IP 0000:0008
i : Reserved for NMI
T et Type 2 __E. ISR CS OOOO:OOOA]
= . = ISR IP 0000:000C
ot 5 (- Reserved for INT single byte
o @9’3 { ISR CS : oooo:oooej instruction
e ;;z SRR :00103 Reserved for INTO instruction
‘ = £ _ | 1IsSRCS 1 0000:0012
. e 0000:0014
e e R 0000:0016
gt 4 §
P | 0000:004N ‘Rmrvad f?% A
o):(004N+2)
B) R

i =g

MACROS

Macro is a segment of code that needs to
be written only once.

whose basic structure can be repeated
several times

no memory Is saved
no linkage Is required

the assembler replaces the call with the
macro code

* macro expansion Insertion of the macro
code by the assembler for a macro call is
referred to as a macro expansion

* The macro definition is constructed as
follows

%*DEFINE(Macro name(Dummy parameter
list))

(
Prototype code

\

 Macro name has to begin with a letter and
can contain letters, numbers and
underscore characters

DISPLAY MACRO

ENDM

MOV AX, SEG MSG
MOV DS, AX

MOV DX, OFFSET MSG
MOV AH, 09 H

ST 41 o

\

Passing Parameter to MACROS
-Replacing MSG by MSG1&MSG2

NON Maskable Interrupt

* NMI is non maskable,lt has highest priority
In External Interrupts(activated from 0 to 1
transation held for 2 clk cycles), level 2

type of interrupt.

 TRAP Is at Highest priority in internal
Interrupts

Maskable Interrupt(INTR)

* INTR will be at lowest priority compared to
NM

* INTR Is level triggered, & can be masked
by resetting “IF” flag.

 Based on “IF” flag INTR Is executed.

Interrupt Programming

» Before writing program for interrupt the
IVT has to set by either internally or
externally.

e ISR will be written In same manner for s/

Interrupt Programming

ASSUME CS : CODE, DS : DATA

DATA

DATA
CODE

INT

After executing
INT 09H

ISRO9H

ISRO9H
CODE

SEGMET

ENDS
SEGMENT

1
1
1
i
i
|

-

| After executing
ISRO9H

e i bk o

ISRO9H -interrupt service routine
for TYPE 09H

|
\

|

|

|

|

|
|
g

|

=

Nested Interrupts

Write a program to generate a delay of 100ms using
8086 system that runs on 100Mhz frequency

The required delay Ty, = 100 ms

Instructions selected States for execution
MY €X, Count 4
DEC CX 2
NOP 3
JNZ label 16

 Number of clk for execution of the loop
once=2+3+16=21

* Time required for execution of loop
once=21*0.1micro sec=2.1micro sec

» Td(exact)=

0.1*4+4(2+3)*47619*0.1+16*47618*0.1+8*0.
1

=0.4+23809.5+76188.8+0.4+0.8
=100ms

MODULE 4
8086 BUS CONFIGURATION & TIMINGS

Physical memory Organization
General Bus operation cycle
/O addressing capability
Special processor activities

Minimum mode 8086 system and Timing
diagrams

Maximum Mode 8086 system and Timing
diagrams.

Physical memory Organization

1 MB of m/m organized as ODD & EVEN
Bank

Addressed In parallel way

Even address Is transferred through DO-
D7

Odd address is transferred through D8-
D15

BHE & AO lines are meant for Even or Odd
addr line selection

BHE*/S7-Bus High Enable/Status-
Transfer of data over higher order
bus(D15-D8)(T1). (0-odd addr m/m
(Upper bank), 1-Even addr m/m(Lower
bank)).{U-od-0,L-Ev-1}

BHE Ay Indication

0 0 Whole Word
0 I Upper byte from or to odd address
l 0 Upper byte from or to even address

| I None

 When Data is fetched 3 possibilities

1.both bytes may be data operands

2. both bytes may contain opcode bits.

3. one byte may be opcode other may be operand

* Opcodes & operands are identified by internal
decoder circuit.

« Timing & control unit derives all the signals which
are required for the execution of instruction.

 Itis always preferred to store the data from even
m/m location(Even m/m-1cycle,Odd m/m-(2 cycle(to
lower & upper byte)))

 Locations FFFFOh TO FFFFFh reserved
for JUMP & I/O Processor Initializations.

* Locations 00000h TO 003FFh
(1KB)reserved for IVT.

General Bus operation In
Maximum mode

- Memoryv read cvcle - Memory write cycle >
Ty To Ts Tw T4 Ty T T Tw
=4 b1 z [1 [] |
CLK === - \ | l
B
ALE B
Eele. —
Aqg— Aqe S N
¢ X
BHE
Add/data X -
— / S—
A A D D
RD/INTA — - 5
o Ready
READY e — - - >
AN \g E -
Wait W
DT/R X
\
DEN o / \
- Memory :;;,l,lr')', time 2
WR .

X

Fig. 1.7 General Bus Operation Cycle in Maximum Mode

There are 4 clock cycles, T1,T2,T3,&T4

Address is transferred during T1

During T2 it is in Tristate mode

Data transfer takes place during T3 & T4

Tw state Is inserted to cope up with slower device.

ALE is activated by processor or the bus controller
based upon weather it is Min Or Max mode.

In Maximum mode s0,s1,s2 are used to indicate type
of operation.

S3 to s7(T2 state) multiplexed with higher order
address bus (BHE)(T1 state)

/O Addressing Capability

 |/O Address appears on the line A0-A15
for one clock cycle T1

« 16 bit register DX Is used as I/O address
pointer

Special Processor Activities

1.Processor Reset & Initialization:-

When 1 is applied it will be there in Reset mode until O
Is applied(Positive Edge of Signal)

It will be there for minimum 10 cycles.

During this Period all the internal reg content are set to
O000H except CS(FO00h)&IP(FFFOh).

To activate Reset signal must be there for at least 4
clk cycles.

RESET cannot applied just after power on

2.HALT:-

It enters Into Halt state

To enter halt state iIn Min mode It activates
ALE signal.

To enter halt state In Max mode It
Indicates on S2,51,S0 lines and then ALE
will be asserted

Only INTR & RESET will make processor
to come out of HLT state.

3.TEST & Synchronization with external
Signals

 TEST will make processor to go into WAIT
state.

* To activate TEST clk pulse must be
activate for at least 5 cycles.

INimum mode 8086 system
and Timings

DY » Clk MN/MX ~C
—R Loas ~ VCC
CLOCK » Rese M/I10
__GEN e
RES -, INTA
- p eaaqy RD > *
k= WR ’ *
8086 DEN
ALE >
A/D P ADDR
LB
DT/R BHE)
DIR
BHE
Y Y Y Y Y Y Y Y Y
RD WR CS; CE, CEL,OE| |ICS RD WR
RAM CS EPROM /0
DATA BUS

Fig.1.8 Minimum Mode 8086 System

Types of Data Transfer

Table 1.5
M/I0 RD WR Transfer Type
0 0 1 I/0 read
0 1 0 [/O write
1 0 1 Memory read
1 1 0 Memory write

Figure 1.9(a) shows the read cycle while the Fig. 1.9(b) shows the write cycle.

Read Cycle timing diagram for
Min mode

 pagliglgligs

T4 To T3 Tw Ts

ADD/STATUS

>< SR, A19_A16>< S;-S3 ‘><
Bus reserved
ADD/DATA Ais—Ag for data In Dy5-Dpg

RD \
BEN \
DT/R \

Fig.1.9(a) Read Cycle Timing Diagram for Minimum Mode

o

Write cycle timing diagram for
Min mode

Fig.1.9(b) Write Cycle Timing Diagram for Minimum Operation

Maximum mode 8086 system

™ Clk
Sa 5 DEN >
N / S, S
Sty g DIM CONTROL BUS S0 2152
. S, 2 IORC
‘ 8 5
—- Reset > R — S jowrC
o eset So _ e : .
Generator +—>» Clk S, 0B MWTC
> i Read § R0 MRDC ?
_RPY Y ‘? CEN ALE
+5V
Y
8086
ADG'ADH» CLK
Aqe-A A/D Latches ADDRESS BUS
16~ 19 & S
or3
BHE A
D
D
ADg — AD;s DT/R Y =
DIR B
U
d:—;’..up S
DEN - & G bufliers /'\,,
B
VR Y Y Y Y
CSO0, CS0, RD CS WR RD
WR =<
Memory Peripheral
~ \\ .

\
\

DATA BUS

Memory Read In Max mode

| Ts | To [s T T,

o e S O O

One bus cycle e

ALE ——————/__—_—\ /
S, - Sp Active > Inactive < Active

AljD/STATUS > <BHE. A1g — A](; x S/ S'; >

AD,s— ADg

MRDC _—\ /
X

DT/R

|/
DEN i :

Fig. 1.11(a) Memory Read Timing in Maximum Mode

Memory Write In Max mode

o
S \ ;

S72 =¥ §o Active > : 7 Ing(;tive = 4
ADD/STATUS >< >< BHE >< ab & m
ADD/DATA >—< A1s— Ao KDATA e Bypiorr DF
ADL. — ADg
AIOWC \

e /

1owcC \ /\
DT/R high
DEN

- /

Fig 1.11(b)

Memory Write Timing in Maximum Mode.

Static RAM Interfacing

« 2 types of RAM
a.Static RAM b.Dynamic RAM

 Memories are arranged in two dimensional
arrays(4K X 8-4096 bytes with each 8bit)

« 4K bytes location requires 12 address
lines.

Procedure for static memory
Interfacing with 8086

1.Arrange m/m so as to obtain 16bit data bus
width,Upper 8bit bank called ‘'odd addr m/m bank’ and
lower is called as ‘Even addr m/m bank’.

2.Connect available m/m addr lines of m/m RD’ & WR’
Inputs to the corresponding processor control signals.
Connect the 16 bit data bus of the m/m bank with that
of the MP.

3.Remaining addr lines of the MP ,BHE & AO are used
for decoding the required chip select s/g for the odd &
even m/m banks. The CS’ is arrived from decoding
ckt.

Interface two 4k X 8 EPROMS & two 4K X 8 RAM chips
with 8086 select suitable maps

o After reset IP & CS are Initialized to form
address FFFFOh hence this addr must lie
In the EPROM

« Addr of RAM may be selected any where
In the 1MB addr space of 8086

* For 8K bytes of EPROM need 13 addr
lines

AO-A12

 A13-A19 are used for decoding to
generate CS’ signal

« BHE’ will be low when transfer is from
odd(higher) addr byte.

 |f addr ,BHE’, & data lines availbe for
Interfacing

Table 5.1 Memory Map for Problem 5.1

A19 A18 AI7 A16 A15 Ay Ay Ay Ary Ay Ay Ay Ay Ay A Ay A03A02A01 Aw
B 1 1 11 1111111 11 .
EPROM 8K x 8
11 0 0000 00 0 (0 S,
e] 1 1 I 1111 1 15 .

1
0
i | RAM 8K x 8

B—

NN 1
1

&t 5 =
= ey
‘,

¥

,:'~:.¢f1'-:

s

Table 5.2 Memory Chip Selection for Problem 5.1

 Decoder I/P — A, A, A Selection/
Address/ BHE - e e P
transfer on Dy— D5 0 0 0 Even and odd addresses in RAM
eron D;- D, 0 0 1 Only even address in RAM
on Dg—- D, 0 1 0 Only odd address in RAM
r on Dy- D5 1 0 0 Even and odd addresses in ROM
.-,.,Do‘ o D7 1 0 1 Only even address in ROM
. o 1 o

Only odd address in ROM |

2evyiad

bz dee iy
< AR

* Design an interface between 8086 CPU
and two chips of 16K X 8 EPROMS and
two chips of 32K X 8 RAM. Select the
starting address of EPROM suitably.The
RAM address must start at 00000H.

Table 5.5

LE O/P
Cl C2 C —_S/ CTS
0 0 0 0 0
1 0 0 1 0
i 1 0 1 1
0 1 0 0 1
0 1 0 0 1
Table 5.5 shows that

€S,-C+C,=C+BHEand CS;=C+C,=C +A
Similarly we can find out CS3 and CS; 0

* |t Is required to interface two chips of 32K
X 8 ROM and four chips of 32K X 8 RAM
with 8086 according to the following map

ROM 1 and 2 FOOOOH-FFFFFH,
RAM 1 and 2 DOOOOH-DFFFFH,
RAM 3 and 4 EOOOOH-EFFFFH

Show the implementation of this m/m
system.

Table 5.6 Address Map for Problem 5.3

Interfacing 1O Ports

* Microprocessor is interfaced to External
/O devices

Steps in Interfacing I/O Devices

1.Connect data bus of the mp s/m with data
bus of the I/O port

2.Device address and decoding address to
generate the cs Is derived

3.Suitable control signals IORD /IOWR are
used.

&
© 0O N O a0 » O N =

7415245
A, — 15 —Bg
g === 14 B, =
P 13 — Bs
o 12 —Bg
GND —{ 10 T

(b)
rt)

> port) (b) Buffer (I/P po

Methods of Interfacing I/O

Devices

 Two Methods
1. 1/O Mapped —

* The devices are treated as distinct I/O devices only &
addressed accordingly.

 All the available addressed may not be used.
(AO-A15 16 address lines/AO-A7 8 address lines)
« Uses IN & OUT instructions.

* Requires less Hardware for decoding

 |[ORD & IOWR signals are used.

2.Memory Mapped-

The devices are treated as distinct
Memory locations & addressed
accordingly.

MRDC & MRTC control signals are used.
MOV,LEA kind of instrn are used.

m/m operations are faster.

They require complex H/W.

* Problem

* Interface an i/p port 74LS245 to read the
status of switches SW1 to SW8. the
switches when shorted i/p a ‘1" else i/p a0’
to the mp. Store the status in BL register.
The address of the port is 0740H

JVOT

ALP Is as follows

MOV BL,00h
MOV DX,0740h
IN AL,DX

MOV BL,AL
HLT

Module 5

Basic peripherals and interfacing
with 8086

Timer 8254 mode 0,1,2,3 and interfacing
programmer for these modes

NT 21h DOS function calls for handling
Keyboard & display

Other architecture of 0808 & NDP 8087

Von-neuman & harvard CPU architecture ,
CISC & RISC CPU architecture.

Interfacing ADC -0808,DAC-
0800 using stepper motor

* ADC chips are 8 bit successive
approximation converters, Successive
approximation technique is the one of the
fastest method to convert from ana;og to
digital

* These converters internally have 3:8
analog multiplexers so that at a time 8

analog inputs can be connected to the
chip.

Block diagram of ADC
0808/0809

("

;,O { ’;J :\ “, l: f_
w oF | ¢
YL *N‘ - i B
W — - \ | 3
[i R
jf{) \ ‘ ‘ | (Qﬂw" "\\ on l | A 20 C
f{f‘ e \.:‘ o ,j] . \.\ "T ;] \ I em& a‘{_ Co‘hy 6%7)/]
:—J ‘,{1 —“-\f)' x' & I wann P) \ __L .‘_A.-:":"— ~>| i “) \" hl
i, \r O {/
—c-l'fb, >) lr\\\ A QD [{ ° \ 3V

| | & CAR ‘ —l‘

\ T T "

~)‘l‘l \ 'Ak @E| ll Li/:“ _ r\/i i.‘—
Fhe =2 e)
T o ~ | l . 5 —
J "’ W l (> ‘\\!'/ ey] R] 7 l-——-l
5t \ s \

(—
T
e =S
|—__
|
|
|
l
«r__— B
=
I‘_‘_"
[S
_ T/
v Nl
sl S
i <,
| a5
< S
~ {
=)
= =
L1
-
e
WEE
O 18 I
-_—r‘w—'-

7 ¥
S
N) "
s B \ =
\"" t;\'.ﬁ f +_ \'.vl '\,,' — U
f\ |
o) [M I 4] |) M A s PO In@n
'”‘cf“ ; Bl (e aliogham alr HDPCCKEOB/O8E]

Pin Diagram of ADC 0808/0809

g
I
|
]
|

M

l:E;-.
|

W

IS Qf P i > .:--
S P i
o1 [&= X

Tjpu =\ 0 b The

"f:' fg ';? 2 i ol A '9\99 A

H

~ =~

-1 -
o}
iy <
r\(\\o
|

ot —H6 ApoRoE 2
SV ¥

] acol 271
goC —>| | ADLOYOY

0 Tmen
P 2.
. G . m ¢
O3 7 90 [&— OF
OE = 61 & e YO
W ! o P " ',]
rLe. —s| 10 o e
LT i |} 2 : { ' » \!—‘
\ee —>" Pt A
. ! ~— = ot 5
NV 2 Barrd I t* |” £
' |'4‘l"-',£| TS | ‘:.")
Mo o i
.!H-) 8 1 Er . - r
) H

DAC 0800 8bit digital to analog

converter

* It has a setting time around100ms and can
operate on a range of power supply
voltages that Is from 4.5v to 18v usually
the v+ i1s 5V or 12v. The V pin can be kept
at a minimum of -12v

Pin Diagram of DAC 0800

- l \JS)
g , 25 e)
Ve —| nwop BT,
I] l £ | ~N .
-,’-’.‘ ,:. C— i “ /-l f
p— |. g l' ' - REi T:\ l
£Y s LR a2
0. — 0 ol|T =°
l') L _'. ! 1 _
7 "'"l{f 01 l"- 1
l__;% : ‘l;.\’ N -
1,:;-[.1 R -

Interfacing of DAC 0800 with
8086

> & -y - - - '
| \ | :
- ~
’.A‘r ()4 \ » | - \ " " — | “)i v o ¥
\]] N\ | /.| } : 'Y |
] 1 = — A ‘ .
| . —‘l" \ |
| N "‘l l.] 1 f{ !) ! .
‘ = 9.Ck 3 = |
v N ¢ f l 1 \par—r—
' p) .(.1 Y. / ‘-| ' | l"‘/'
J | ol BV ' {4
| - | " J !
. | | M L
.._. :}I | - '\
\ by "-.-.- -~ "_-‘- r ./ f 5
| ‘ -) ! y B ’
I "..-- o \ [& f— ""' ’ t] \ ‘/

Stepper motor Interfacing

« Stepper motor Is a device used to obtain
an accurate position control of the rotating
shafts. It employs rotation of its in terms of
steps rather than continues rotation Iin
case of AC or DC motors

Internals schematic of a four
windings stepper motor

N
1
\ |
._lf."l 2 ™ ! : -~
{ /] N\ ”'0 " =t
| J g 1 »
|) “ lu_) 'j ’ I ,
’ F—-‘—v-vy‘ — < “ r—_f I~A: ‘I" i
. . [=
" l'l,‘ . -'
[y = =
\ " | - !
\ f—— o = NG
\.__ v > v vl
o ‘7 I t
g |
- !], S—
. Y ‘f'l' g
——— ~ 2 A -
[A) 2 g — -} N
YT orgme—aib. B |
; P ot) o
l .’LJL Y "y I |'
.'.,-, - - - —
i { 3 o .-'_,'"';':,' S b ",
f N\ v
4 '] i \ X o A A
'ff | MYANC, AYerrNnd o y [4 L e pfed
AND /s XA LA [~ _) | | - 11, v 1 ;o
A N O ANLE - ol 1 rletdaci ray SHCPPE
et (i /

DOS Functions

DOS services are like Reading the Keyboard,
Writing to Display, Disk access facilities etc

All these services are accessed through INT
21H

Before invoking INT 21H
— Function Code is placed in the register AH.

— Other relevant parameters if any are placed in
appropriate registers

The 8088 Processor

2]
A7

E |
i .

i

!o—-ﬂ—rwv-ag
&

F
5

Al) Voo

ol

"m

L

YA

e S [

LIS]] ™ '

| c et | [
pr 5= CETAL‘,A—Q aton = T

WwOT }— om0 “r aw
u < & it —— .
ALaDY I 'Y 11°0 (4 ST I I
restr G 6§ um &
v RS- S l I | |
Wi -4 ' 1
at ™ j, ‘ 1 |
i | ‘
|
| | !
i g |
21 |
- i
|
! i
l
(5 I_AL
: THANSCHIvER
| |

Architecture of 8088

Architecture of 8087

R o RS o gt rE Moy s
-~ L MNUOMEBERIC EXECUT O 7\“'?\
CoNTERelL VNITT ML

Gacpoiarly a0 bePO 0h
- =S s Pt . x —
[Eocporo i t— “
: SR . [Ecpopant=|_ %
rolroe | vai

4 L
Paoesial 4

ol

o
. .
| | I hooharmreatiy
‘ Crathea
. . ! £

i TS
AR 1
"—.((5.‘ 1
=g |
| . 1
. e
—— " ~) TP AD o) s '
| DI0c~) »f 4 LI
| 1 } e -
=
o Ng l Paka T
U axt |
>

L) AR AT
!
T ==

P'«'.l_!._'!,h\ C)

-

N

> o Aal
B B
- - . = O
| feoyrs PEAS \
~ 3
: _ o LSS e
| . | — — _‘ ¢
.) -t - = ‘.\ "
o | | P
R)) N = %
v AR Aedng L) |
e J \
| ESUNA

R N I‘ “
L\J |-47 v' - . I ¥ o
TR ary~rey | a
—_— - S
~ | Gapeeirn point Rl
ey .
AT

