
S J P N Trust's

Hirasugar Institute of Technology, Nidasoshi.
Inculcating Values, Promoting Prosperity

Approved by AICTE, Recognized by Govt. of Karnataka and Affiliated to VTU Belagavi

ECE Dept.

MP

IV Sem

2017-18

Department of Electronics & Communication Engg.

Course :Microprocessor-15EC42. Sem.: 4th (2017-18)

Course Coordinator:

Prof. P. V. Patil

MODULE I

INTRODUCTION TO MICROPROCESSOR

HISTORICAL BACKGROUND

• 80X86, Pentium, Pentium Pro, Pentium III, Pentium 4,

and Core2 microprocessors.

• Mechanical Age

– Abacus(first mechanical calculator)

– Mechanical Calculator(Gear & wheel enabled)(1642

Blaise Pascal)

– Analytical Engine(Steam-powered mechanical

computer)(stores 1000 -20 decimal numbers)

• The Electrical Age

– electric motor

– Bomar Brain(handheld electronic calculator 1970)

History Of MP

• The first processor was a 4 bit processor and

was called 4004

• The microprocessor was invented in the year

1971 in the Intel labs

• Intel, Motorola, Zylog Corporation, Fairchild and

National (Hitachi, Japan) are the microprocessor

manufacturers.

Microprocessor revolution

Microprocessor

“Single Chip Integrated Circuit Computer

Architecture”

• What is Microprocessor

• What is Microcontroller

• Difference Between MP & MC

• Applications Of MP

Difference between MP and MC

• What is a Microprocessor?

• is an electronic computers central processing unit (CPU)

made from miniaturized transistors and other circuit

elements on a single semiconductor integrated circuit

(IC).

• It performs arithmetic, logic and control operations. It

contains a control unit, an arithmetic & logic unit,

registers and links to store data and connect to

peripherals.

• What is a Microcontroller?

Dedicated to performing one task. Integrates the memory

and other features of a microprocessor.

About M.Processor

• CPU is also known as microprocessor

• It includes (CPU, ALU, Registers)

• Control logic of almost all digital devices

(fuel industry, automobile application)

• In its life period it has to handle many

different tasks and programs given to it.

• may not handle a real time task at all times

About M.controller

• Designed specifically for specific tasks

• self‐sufficient and cost‐effective

• microcontroller is part of an embedded system

• controls the operation of a machine using fixed

programs stored in ROM.

• micro controllers are from 8051 family or PIC family or

any other

Applications of microprocessors

1. computer applications

2. Control application (MC,embedded controllers)

3. Communication (DSP processors,Cell phones)

Register Organization of 8086

General Registers

Data Registers file
AX - the Accumulator
BX - the Base Register
CX - the Count Register
DX - the Data Register

Pointer & Index Registers file
SP - the Stack Pointer
BP - the Base Pointer
SI - the Source Index Register
DI - the Destination Register

Registers and their operations

Flag Register 0f 8086

CPU Architecture

8086 Features

• 16-bit Arithmetic Logic Unit

• 16-bit data bus

• 20-bit address bus - 220 = 1,048,576 = 1 meg

• Even location byte-((A0-A7)-Lower half),

• Odd location byte-((A8-A15)-higher half)

Block diagram of 8086 can be subdivided into two

parts

• 1. Bus Interface Unit

• 2. Execution Unit

1. Bus Interface Unit

• consists of segment registers, adder to

generate 20 bit address and instruction

prefetch queue.

• instruction and data bytes are fetched from

memory and they fill a First In First Out 6

byte queue

2.Execution Unit:

• consists of scratch pad registers such as 16-

bit AX, BX, CX and DX

• and pointers like SP (Stack Pointer), BP

(Base Pointer) and

• finally index registers such as source index

and destination index registers

• The 16-bit scratch pad registers can be split

into two 8-bit registers ex(AX-AH & AL)

Working of EU & BIU

• The EU and BIU work asynchronously.

• Any External from m/m or i/o needed to

the execution EU informs it to BIU and BIU

will perform that operation.

• BIU performs its operations and hand

over's the Bus service for EU Even though

requests comes from the EU unit

Memory Segmentation

Signal Description of 8086

Pin Description

• 8086 Microprocessor is a 16-bit CPU available

in 3 clock rates(5, 8 ,10MHz) packaged in a 40

DIP IC.

• Pins work in 2 modes {Minimum(single

processor mode) & Maximum(multi processor

mode)}

• Signals can be characterized in 3 parts

1. special function in min mode

2. special function in max mode

3. common function in both min and max mode.

Pins for both Min mode and

Max Mode
• AD15-AD0- Bidirectional multiplexed memory

I/O address(T1) and data lines(T2,T3,Tw,T4),

these pins will be in tri-state during Local Bus

and Interrupt ACK.

• (A16/S3-A19/S6) -Time multiplexed address(T1)

and status lines(T2,T3,Tw,T4) ALE is used to

demultiplex the Address and status.

• S5- Interrupt enable flag bit.

• S6- always low

BHE*/S7-Bus High Enable/Status- Transfer of data

over higher order bus(D15-D8)(T1). (0-odd addr m/m

(Upper bank), 1-Even addr m/m(Lower bank)).{U-od-0,L-

Ev-1}

• RD*-Read--

• memory or I/O read operation

• RD* is active low and shows the state for

T2,T3, TW of any read cycle

• READY—

• Signal is active high

• acknowledgement from the slow devices or

memory

INTR-lnterrupt Request

• This is a level triggered input

• Activated at Last clock cycle of each

instruction to determine the availability of the

request.

• TEST- idle state-1, continue execution-0

• The “wait” state examines the Test pin.

• on leading edge of clock states changes

• NMI-Non-maskable Interrupt---

• edge-triggered input

• not maskable internally by software

• RESET—

• terminate the current activity and start

execution from FFFF0H.

• Active high input

• must be active for at least four clock cycles.

• CLK—

• provides the basic timing for processor operation

• Its an asymmetric square wave with 33% duty

cycle

• Range is 5MHz to 10MHz.

• VCC : +5V power supply for the operation

• MN/MX*---

• weather the processor is in min mode or max

mode.

• Min-1

• Max-0

minimum mode operation of

8086.
• M/IO* -Memory/IO

• m/m-1, i/o-0

• equivalent to S2 in maximum mode

• INTA* -Interrupt Acknowledge

• processor has accepted the interrupt when

its 0.

• ALE-Address latch Enable—

• output signal indicates the availability of

the valid address on the address/data

lines.

• active high and is never tristated.

• DT /R* -Data Transmit/Receive—

• direction of data flow

• Transmission-1

• Reception-0

• DEN*-Data Enable—

• This signal indicates the availability of

valid data over the address/data lines.

• HOLD, HLDA-Hold/Hold Acknowledge—

• another master is requesting the bus

access

• When HOLD is 1, HLDA is made 1

• When HOLD is 0, HLDA is made 0

• S2, S1, S0 -Status Lines

• status lines reflect the type of operation,

being carried out by the processor

LOCK*--

• other system bus masters will be

prevented from gaining the system bus,

• When LOCK is „0‟ it is activated using

LOCK prefix instruction.

• During critical instruction execution this

instruction activated.

• QS1, QS0-Queue Status

• status of the code prefetch queue can be

observed with these lines

• RQ*/GT0*, RQ*/GT1*-ReQuest/Grant

• used by other local bus masters, in

maximum mode, to force the processor to

release the local bus at the end of the

processor's current bus cycle.

• RQ*/GT0*-Highest priority

Addressing Modes

• The way in which the operand is specified

is called as the AM(Addressing modes)

• 2 Categories are provided

• 1.Data 2.Branch

• 1.Immediate 9.Intrasegment Direct

• 2.Direct 10.Intrasegment

Indirect

• 3.Register 11.Intersegment

Direct

• 4.Register Indirect 12. Intersegment

Indirect

• 5.Indexed

• 6.Register Relative

• 7.Based Indexed

• 1.Immediate AM

- Immediate data is part of instruction

- Ex- MOV AX,1234h

- 2. Direct AM

- 16bit address is directly specified in the

instruction

- Ex-MOV AX,[1234h]

3.Register AM

-Data's are stored in the register

- All the register except IP is used for

storage.

- Ex- MOV AX,BX

4.Register Indirect AM

-Registers are used to hold the Address of the

data in indirect way using Offset

register(BX,SI,DI)

-Default segment is DS or ES

• 5 Indexed AM

-Offset is stored on the index register

-DS,ES are default segments for SI & DI

-Ex-MOV AX,[SI]

6.Register Relative AM

-EA is obtained by adding 8 or 16bit relative

value with content of any

register(BX,BP,SI,DI)

- Ex-MOV AX,50h[BX]

• 7.Based Indexed AM

- EA is calculated by adding content of base

register(BX or BP) to the content of Index

register (SI or DI). Default segments

are(ES/DS)

- EX- MOV AX,[BX][SI]

• 8 Relative Based Indexed

- EA is formed by adding 8 or 16bit

displacement with the sum of contents of

base register(BX or BP) & any of the Index

register(SI or DI).

- Ex- MOV AX,50h[BX][SI]

• 9 Intrasegment Direct mode

- The address for which control has to be

transferred lies in the segment & address

appears as immediate value.

- EA= 16/8b Displacement+ IP content

Ex- Short jump or long jump instructions

• 10 Intrasegment Indirect mode

• - Displacement address where the control

has to be transferred will be found in some

register

-11 Intersegment Direct

- The address for which control has to be

transferred lies in some other segment &

the address specified directly as part of

instruction.

• 12 Intersegment Indirect

-The address to which control has to be

passed will be stored on the memory

location from there it will be read to CS &

IP

Machine Language Instruction

Format :
• The instructions in 8086 varies from 1 to 6

bytes.

• 1. Opecode field-type of operation by the

processor.

• 2. Operand field- Consists of

source/destination registers/addresses.

• Register Direct bit (D) occupies one bit. It

defines whether the register source or

destination operand.

• D=1 register operand is the destination

operand.

• D=0 register is a source operand.

• Data size bit (W) defines whether the

operation to be performed is an 8 bit or 16

bit data

• W=0 indicates 8 bit operation

• W=1 indicates 16 bit operation

Effective Address Calculation

Mode 11

EX:MOV CH, BL

This instruction transfers 8 bit

content of BL
• 6 bit Opcode for this instruction is 100010

• D=0 indicates BL is a source operand

• D=1 indicates CH is a destn operand

• W=0 indicates 8 bit data transfer

• MOD=11 reg to reg transfer.

• REG=101 for CH from table.

• R/M = 011

• machine code for MOV CH, BL is

• 10001000 11 011 101

• Example 2 : SUB Bx, (DI)

• This instruction subtracts the 16 bit content of memory

location addressed by DI and DS from Bx.

• The 6 bit Opcode for SUB is 001010.

• D=1 so that REG field of byte 2 is the destination

operand. W=1 indicates 16 bit operation.

• MOD = 00

• REG = 011

• R/M = 101

• The machine code is 0010 1011 0001 1101

• 2 B 1 D

• 2B1D16

Example 3 : Code for MOV

1234 (BP), DX
• Opecode-100010

• D-0 cause DX register is source

• W-1

• MOD-10

• Reg-010

• R/M-110

• 1000 1001 1001 0110 (34 12)

• 89963412

Code for MOV DS : 2345 [BP],

DX
• Opcode-1000 10

• D-0

• W-1

• MOD-10

• Reg-010

• R/M-110

• displacement = 2345 H.

• SOP byte is 001 SR 110

6 General Machine Language

Instruction formats.
1. One Byte Instruction-

One byte long instruction, & data is available in the

instruction itself. Least 3 bit of opcode maybe

used specify for register else all 8bits are

implied.

2. Register to Register- 2 byte long instruction

1st byte opcode & width ,2nd byte Reg & R/M field

3. Register to/from memory with no

displacement- 2 byte long

4. Register to/from memory with

displacement- 1 or 2 byte additional for

displacement.

5.Immediate Operand to register- 1 or 2

byte additional bytes meant for data.

• 6.Immediate Operand to memory with

16bit Displacement- 2 bytes contain

OPCODE,MOD & R/M field remaining 4

bytes contains 2 byte displacement 2 byte

data.

The 8086 instructions are

categorized into the following

main types.
• i. Data Copy / Transfer Instructions

• ii. Arithmetic and Logical Instructions

• iii. Branch Instructions

• iv. Loop Instructions

• v. Machine Control Instructions

• vi. Flag Manipulation Instructions

• vii. Shift and Rotate Instructions

• viii. String Instructions

• i. Data Copy / Transfer Instructions

1.MOV :data from some source to a destination

• EX-MOV AX,5000H,MOV AX,50H[BX]

2. PUSH: Push the contents of specified register to stack

memory

3.POP : Pop from Stack

• stack pointer is incremented by 2

• POP AX

4.XCHG : Exchange byte or word

• exchange the contents of the specified

source and destination operands

• Eg. XCHG [5000H], AX

• XCHG BX, AX

5.IN : Reading the content from address

specified in the instruction

• Ex- IN AL,0300h;

• IN AX;// Read from default address stored

on DX.

6.OUT: Copy a byte or word from

accumulator specified port.

• Eg. OUT 03H, AL

• OUT DX, AX

7.XLAT :

• Translate byte using look-up table.

• Eg. LEA BX, TABLE1

• MOV AL, 04H

• XLAT

• Simple input and output port transfer

Instructions:

8.LEA :

• Load effective address of operand in

specified register.

• [reg] offset portion of address in DS

• Eg. LEA reg, offset

9.LDS: Load DS register and other specified

register from memory(32bit).

• [reg] [mem]

• [DS] [mem + 2]

• Eg. LDS reg, mem

10 LES:

• Load ES register and other specified

register from memory.

• [reg] [mem]

• [ES] [mem + 2]

• Eg. LES reg, mem

Flag transfer instructions:

11.LAHF: Load (copy to) AH with the lower

byte of flag register.

• [AH] [Flags low byte]

• Eg. LAHF

12.SAHF:

• Store (copy) AH register to low byte of flag

register.

• [Flags low byte] [AH]

• Eg. SAHF

13.PUSHF:Copy flag register to top of stack.

• [SP] [SP] – 2

• [[SP]] [Flags]

• Eg. PUSHF

14.POPF :Copy word at top of stack to flag

register.

• [Flags] [[SP]]

• [SP] [SP] + 2

Arithmetic Instructions:

1.ADD :instruction adds contents of the

source to destination.

• Eg. ADD AX, 0100H

• ADD 0100H

2.ADC : Add with Carry

3.SUB : Subtract

• subtracts the source &destn content

• Eg. SUB AX, 0100H

4.SBB : Subtract with Borrow

• Eg. SBB AX, 0100H

• SBB AX, BX

5.INC : Increment

• This instruction increases the contents of

the specified Register or memory location

by 1

• Immediate data cannot be operand of this

instruction.

• Eg. INC AX

• INC [BX]

• INC [5000H]

6.DEC : Decrement

• The decrement instruction subtracts 1

from the contents of the specified register

or memory location.

• Eg. DEC AX

• DEC [5000H]

7.CMP : Compare

• Eg. CMP BX, 0100H

• CMP AX, 0100H

• CMP [5000H], 0100H

• CMP BX, [SI]

• CMP BX, CX

8.AAA-ASCII Adjust After

Addition
• Executed after ADD instruction, which

adds two ASCII coded operands to give

byte in AL

• EX.1--- If AL =58--- before AAA

AL =08--- after AAA

• EX.2--- If AL =5A--- before AAA

AL =00--- after AAA

AH =01--- after AAA

AX=0100h-- after AAA

9.AAS-ASCII Adjust After

Subtraction
• Executed after SUB instruction, which

subtract two ASCII coded operands to give

byte in AL

• EX.1--- If AL =58--- before AAS

AL =08--- after AAS

• EX.2--- If AX =050A--- before AAS

AL =04--- after AAS(AL=AL-6)

AH =05--- Before AAS

AX=0404h-- after AAS

10.AAM-ASCII adjust for Multiplication

• Packed BCD of AL converted to Unpacked in AH &AL

Ex. Suppose AL =5D after multiplication

After AAM AH=06 and AL=03

11.AAD-ASCII adjust After Division

- Unpacked BCD of AH & AL converted into Packed BCD

in AL

• Suppose AH =05 & AL=06 before AAD

• After AAD AL=38H(equivalent hex of 56d)

11.NEG : Negate

• forms 2‟s complement of the specified

destination

• Eg. NEG AL

• AL = 0011 0101 35H Replace number in

AL with its 2‟s complement

• AL = 1100 1011 = CBH

12.MUL :Unsigned

Multiplication Byte or Word
• This instruction multiplies an unsigned

byte or word by the contents of AL.

• Eg. MUL BH ; (AX) (AL) x (BH)

• MUL CX ; (DX)(AX) (AX) x (CX)

13.IMUL :Signed

Multiplication
• multiplies a signed byte in source operand

by a signed byte in AL or a signed word in

source operand by a signed word in AX.

• Eg. IMUL BH

• IMUL CX

• IMUL [SI]

14.CBW : Convert Signed

Byte to Word
• Instruction copies the sign of a byte in AL

to all the bits in AH. AH is then said to be

sign extension of AL

• Eg. CBW

• AX= 0000 0000 1001 1000 Convert signed

byte in AL signed word in AX.

• Result in AX = 1111 1111 1001 1000

15.CWD : Convert Signed

Word to Double Word
• This instruction copies the sign of a byte in

AL to all the bits in AH. AH is then said to

be sign extension of AL.

• Eg. CWD

• Convert signed word in AX to signed

double word in (DX : AX)

• DX= 1111 1111 1111 1111

• Result in AX = 1111 0000 1100 0001

16.DIV : Unsigned division

• This instruction is used to divide an unsigned word by

a byte or to divide an unsigned double word by a word.

• DIV CL ; Word in AX / byte in CL

; Quotient in AL, remainder in AH

• DIV CX ; Double word in DX and AX / word

; in CX, and Quotient in AX,

; remainder in DX

17.IDIV : Signed division

2. Control Transfer Or

Branching Instructions

• 1. Unconditional Control Transfer(Branch)

Instruction

• 2. Conditional Control Transfer(Branch)

Instruction

1.CALL : Unconditional Call

Instruction is used to call sub program from a main

program.

• Address of procedure may be specified directly or

indirectly.

• Two types of procedure depending upon whether it is

available in the same segment or in another segment.

i. Near CALL i.e., ±32K displacement.

ii. For CALL i.e., anywhere outside the segment.

• On execution this instruction stores the incremented IP

& CS onto the stack and loads the CS & IP registers

with segment and offset addresses of the procedure to

be called.

2.RET: Return from the

Procedure.
• At the end of the procedure, the RET

instruction must be executed.

• The previously stored content of IP and

CS along with Flags are retrieved into the

CS, IP and Flag registers from the stack

and execution of the main program

continues further.

3.INT N: Interrupt Type N.

• 256 interrupts are defined corresponding

to the types from 00H to FFH

• When INT N instruction is executed, the

type byte N is multiplied by 4 and the

contents of IP and CS of the interrupt

service routine will be taken from memory

block in 0000 segment

4.INTO: Interrupt on Overflow

• This instruction is executed, when the

overflow flag OF is set. This is equivalent

to a Type 4 Interrupt instruction.

5.IRET: Return from ISR

• When it is executed, the values of IP, CS

and Flags are retrieved from the stack to

continue the execution of the main

program.

6.LOOP Unconditionally

• This instruction executes the part of the

program from the Label or address

• LOOP instruction CX indicates number of

times the loop has to be performed

7.JMP: Unconditional Jump

• This instruction unconditionally transfers

the control of execution to the specified

address

• using an 8-bit or 16-bit displacement.

• No Flags are affected by this instruction.

• 2 types

1.Far JMP(CS,DS,ES,SS) (Inter segment)

2.Near JMP(+/- 32K) (Intra segment)

3. Short JMP(127- -128)(Intra segment)

2.Conditional Branch

Instructions
• JZ/JE Label-

Transfer execution control to address „Label‟, if ZF=1.

• JNZ/JNE Label-

Transfer execution control to address „Label‟, if ZF=0

• JS Label

Transfer execution control to address „Label‟, if SF=1.

• JNS Label

Transfer execution control to address „Label‟, if SF=0.

• JO Label

Transfer execution control to address „Label‟, if OF=1.

• JNO Label

Transfer execution control to address „Label‟, if OF=0.

• JNP Label

Transfer execution control to address „Label‟, if PF=0.

• JP Label

Transfer execution control to address „Label‟, if PF=1.

• JB Label

Transfer execution control to address „Label‟, if CF=1.

• JNB Label

Transfer execution control to address „Label‟, if CF=0.

• JCXZ Label

Transfer execution control to address „Label‟, if CX=0

Conditional LOOP

Instructions
• LOOPZ / LOOPE Label

Loop through a sequence of instructions

from label while ZF=1 and CX=0.

LOOPNZ / LOOPNE Label

Loop through a sequence of instructions

from label while ZF=0 and CX=0.

Conditional JMP instruction based on more than one

flag.

Name/Alt Meaning Flag setting

JL/JNGE Jump less than/not greater than or = (SF xor OF) = 1

JNL/JGE Jump not less than/greater than or = (SF xor OF) = 0

JG/JNLE Jump greater than/not less than or =((SF xor OF) or ZF) =
0

JNG/JLE Jump not greater than/ less than or =((SF xor OF) or ZF) =
1

JB/JNAE Jump below/not above or equal CF = 1

JNB/JAE Jump not below/above or equal CF = 0

JA/JNBE Jump above/not below or equal (CF or ZF) = 0

JNA/JBE Jump not above/ below or equal (CF or ZF) = 1

MODULE 2

Instructions Sets

• Logical Instructions

1. AND

EX- AND AX,BX

2. OR

EX- OR AX,0098h

3. NOT

EX- NOT AX

4. XOR

EX- XOR AX,BX

5.TEST-Logical compare

-It is bit by bit AND of

operands result will be 1

or 0

Ex- TEST AX,BX

• 6 SHL/SAL: Shift Logical/Arithmetical

• shift the operand to the left by number of

positions specified through carry & replace

its bits by 0.

• Ex.1- SAL AL,01

• Before SAL/SHL AL=10101011 CF=0

• After SAL/SHL AL= 01010110 CF=1

6 SHR: Shift Logically Right

• Ex.1- SHR AL,01

• Before SHR AL=10101011 CF=0

• After SHR AL= 01010101 CF=1

7 SAR: Shift Arithmetically Right

• Ex.1- SAR AL,01

• Before SAR AL=10101011 CF=0

• After SAR AL= 11010101 CF=1

8. ROR:Rotate Right without Carry

Ex- ROR BL,01

Before ROR BL= 00001111 CF= not affected

After ROR BL= 10000111 CF= not affected

9. ROL:Rotate Left without Carry

Ex- ROL BL,01

10. RCR:Rotate Right Through Carry

Ex- RCR BL,01

Before RCR BL= 00001111 CF=0

After RCR BL= 00011110 CF=1

11. RCL:Rotate Left Through Carry

Ex- RCL BL,01

String Manipulation Instructions

1.REP-Repeat Instruction Prefix-Repeatedly Executes

the mentioned instruction until CX becomes. Types-

REPE,REPZ,REPNE,REPNZ

2.MOVSB/MOVSW-Move String Byte or Word-

Moves a Byte or word from source m/m (SI+(10*DS) to

destination location(DI+(10*ES)

& DF will access in ascending or in descending order

EX- REP MOVSB

3.CMPS:Compare 2 strings

EX-REPE CMPSW(compare two strings held by SI & DI)

4.SCAS:Scan String byte or string word

Scans the ES:DI location by the string stored in AX

register ,length is specified in CX register controls

direction.

EX- REPNE SCASB

5.LODS:Load String Byte or Word

-Lods the content of AL/AX by the data specified by

DS:SI, SI is modified depending on DF

• EX-LODSB

• 6.STOS: Store String Byte or String

Word:

- It will store the AL/AX content to location

specified by ES:DI, DF will be 0 or 1

- EX-STOSB,STOSW

Flag Manipulation

instructions
• The Flag manipulation instructions directly

modify some of the Flags of 8086.

• i. CLC – Clear Carry Flag.

• ii. CMC – Complement Carry Flag.

• iii. STC – Set Carry Flag.

• iv. CLD – Clear Direction Flag.

• v. STD – Set Direction Flag.

• vi. CLI – Clear Interrupt Flag.

• vii. STI – Set Interrupt Flag.

Machine Control instructions

• The Machine control instructions control the bus usage

and execution(E).

1.HLT – Halt the process- NO F &E

• HLT state is revoked when INTR is activated or

NMI pin is asserted, or a RESET signal on RESET

pin.

2.WAIT –Wait for Test input. (NO PROCESSING) ,

• The processor stay in this condition until TEST pin is

asserted.(TEST*=0wait state)Or INTR ,or NMI is

activated

3 NOP – No operation

• for Delay generation, NO E, only F & D

• It takes 3 clock cycles for execution

• Doesn‟t affect any flags.

4. ESC – Escape to external device

• Passing the instruction to the co-processor which

shares the address and data bus.

• Represented by 6 bit code

• Most of the time ESC is treated as NOP instruction.

5. LOCK – lock instruction

prefix.

• It is 1 byte prefix,Does not affect any flag

• Used during accessing the data between

register and memory

• LOCK XCHG sem,AL

Assembler Directives and

Operators.
1.DB: Define Byte,

2.DW: Define Word

3. DQ: Define Quad word(4 words)

4. DT: Define Ten Bytes

5. DD: Define Double Word

Ex1. LIST DB 0lH

Ex2. LIST DW 0001H

Ex3. MESSAGE DW 'GOOD MORNING„

Ex4. WDATA DW 5 DUP (6666H)

EX5. Array DB 100 DUP(0,2,3 DUP(1,2),0,3)

• Array DB 2 DUP(0,1,2,?)

• Mes DB „HELLO‟

• Mes DB „H‟,‟E‟,‟L‟,‟L‟,‟O‟

• Array DB 100 DUP(0,2,3 DUP(1,2),0,3)

• Parameter DW p1

DW p2

DW p3

Offset of P1,P2,P3 are stored.

ASSUME: Assume Logical

Segment Name
• Used to inform the names of the different

logical segments in the design

environment.

Ex:1.ASSUME CS : CODE

2. ASSUME DS : DATA

• END: END of Program

• Marks the end of an assembly language program.

• Ignores all the lines after this instruction.

• ENDS: END of Segment

• This directive marks the end of a logical segment

DATA SEGMENT

DATA ENDS

• ENDP: END of Procedure

EVEN: Align on Even Memory

Address
• Directive updates the location counter to

the next even address if the current

location counter contents are not even, if

even then continues with the address

• EVEN

• PROCEDURE ROOT

• .

• .

• ROOT ENDP

• EQU: Equate

• The directive EQU is used to assign a

label with a value or a symbol

• Example

• LABEL EQU 0500H

• ADDITION EQU ADD

EXTRN: External and PUBLIC

• EXTRN informs the assembler that the

names, procedures and labels declared

after this directive have already been

defined

• The other module, where the names,

procedures and labels actually appear,

they must be declared public, using the

PUBLIC directive

Example

MODULE1 SEGMENT

PUBLIC FACTORIAL FAR

Module1 ENDS

MODULE2 SEGMENT

EXTRN FACTORIAL FAR

MODULE2 ENDS

GROUP: Group the Related

segment
• The directive is used to form logical groups of

segments with similar purpose or type

• Linker/Loader take care that group declared segments

or operands must lie within a 64Kbyte memory

segment

• PROGRAM GROUP CODE, DATA, STACK

• ASSUME CS: PROGRAM, DS: PROGRAM, SS:

PROGRAM

• LABEL: used to assign the data

segment with data type

• DATA-LAST LABEL BYTE FAR

• LENGTH:length of sstring

• NAME: Logical Name of a Module

• Used to declare the module names.

OFFSET: Offset of a Label

Directive replaces the string 'OFFSET

LABEL' by the computed 16bit

displacement

• Example:

CODE SEGMENT

MOV SI, OFFSET LIST

CODE ENDS

DATA SEGMENT

LIST DB 10H

DATA ENDS

ORG: Origin

• The ORG directive directs the assembler

to start the memory allotment for the

particular segment

• By default the location counter is initialised

to 0000

• If ORG 0200H --- Initialized with 0200

location, It can be also used with the data

segment.

PROC

• Calling a procedure

• NEAR (<64K)& FAR(>64K) PROCs

• Example

• RESULT PROC NEAR

• ROUTINE PROC FAR

PTR: Pointer

• PTR operator is used to specify the data

type -byte or word

• Example:

• MOV AL, BYTE PTR [SI]

• INC BYTE PTR [BX]

• MOV BX, WORD PTR [2000H]

SEG: Segment of a Label

• The SEG operator is used to decide the

segment address of the label, variable, or

procedure and substitutes

• MOV AX, SEG ARRAY

• ------ Moves segment address of ARRAY

into AX

GLOBAL

• The variable declared here can be used

by any module in the program

• ROUTINE PROC GLOBAL

SHORT

• displacement is within -128 to +127 bytes

• JMP SHORT LABEL

TYPE

• for byte type, the data type is 1.

• word type variable, the data type is 2,

• for double word type, it is 4

• EX-

Suppose, the STRING is a word array

MOV AX, TYPE STRING

the value 0002H in AX.

Module 3

Stack & Interrupts
• Stack is temporary memory storage used

to store intermediate values, It uses SP &

SS registers.

• Stack is operated using PUSH & POP

STACK STRUCTURE OF

8086/88

Effect of PUSH and POP SP

Interrupt & Interrupt Service

Routines
• Interrupt-It breaks normal sequence of execution.

• Interrupt Service Routine(ISR): It is the program

written for interrupt.

• Control is transferred to main program after interrupt

execution.

• INTR & NMI

• 255 types of INTR (00 to FFh)

• Interrupt handler handles if more than one interrupt

comes at a time

Interrupt cycle of 8086

• 2 types interrupts

1.External Interrupts- Generated by external

devices.

2.Internal Interrupts- generated internally by

INTR instructions,devide by zero,

overflow.

• When NMI,TRAP,devide by zero,INTR occurs

then INTA occurs in response.

• „IF‟ is set when interrupt occurs, if „IF‟ is not set

then interrupt is ignored.

• Current content of IP & CS stored on stack and

the new content of IP & CS is loaded with new

address of ISR which is obtained by IVT.

• The content of Stack are reloaded into IP& CS

when IRET instruction obtained in ISR.

• 1 interrupt requires 4 bytes (2 B CS & 2 B IP)Total

256 interrupts requires 1024 bytes(0000:03FFh)

Interrupt Response sequence

Structure of IVT

MACROS

• Macro is a segment of code that needs to

be written only once.

• whose basic structure can be repeated

several times

• no memory is saved

• no linkage is required

• the assembler replaces the call with the

macro code

• macro expansion Insertion of the macro

code by the assembler for a macro call is

referred to as a macro expansion

• The macro definition is constructed as

follows

%*DEFINE(Macro name(Dummy parameter

list))

(

Prototype code

)

• Macro name has to begin with a letter and

can contain letters, numbers and

underscore characters

Passing Parameter to MACROS
-Replacing MSG by MSG1&MSG2

NON Maskable Interrupt

• NMI is non maskable,It has highest priority

in External Interrupts(activated from 0 to 1

transation held for 2 clk cycles), level 2

type of interrupt.

• TRAP is at Highest priority in internal

interrupts

Maskable Interrupt(INTR)

• INTR will be at lowest priority compared to

NMI

• INTR is level triggered, & can be masked

by resetting “IF” flag.

• Based on “IF” flag INTR is executed.

Interrupt Programming

• Before writing program for interrupt the

IVT has to set by either internally or

externally.

• ISR will be written in same manner for s/

Interrupt Programming

Nested Interrupts

Write a program to generate a delay of 100ms using

8086 system that runs on 100Mhz frequency

• Number of clk for execution of the loop

once=2+3+16=21

• Time required for execution of loop

once=21*0.1micro sec=2.1micro sec

• Td(exact)=

0.1*4+4(2+3)*47619*0.1+16*47618*0.1+8*0.

1

=0.4+23809.5+76188.8+0.4+0.8

=100ms

MODULE 4

8086 BUS CONFIGURATION & TIMINGS

• Physical memory Organization

• General Bus operation cycle

• I/O addressing capability

• Special processor activities

• Minimum mode 8086 system and Timing

diagrams

• Maximum Mode 8086 system and Timing

diagrams.

Physical memory Organization

• 1 MB of m/m organized as ODD & EVEN

Bank

• Addressed in parallel way

• Even address is transferred through D0-

D7

• Odd address is transferred through D8-

D15

• BHE & A0 lines are meant for Even or Odd

addr line selection

BHE*/S7-Bus High Enable/Status-

Transfer of data over higher order

bus(D15-D8)(T1). (0-odd addr m/m

(Upper bank), 1-Even addr m/m(Lower

bank)).{U-od-0,L-Ev-1}

• When Data is fetched 3 possibilities

1.both bytes may be data operands

2. both bytes may contain opcode bits.

3. one byte may be opcode other may be operand

• Opcodes & operands are identified by internal

decoder circuit.

• Timing & control unit derives all the signals which

are required for the execution of instruction.

• It is always preferred to store the data from even

m/m location(Even m/m-1cycle,Odd m/m-(2 cycle(to

lower & upper byte)))

• Locations FFFF0h TO FFFFFh reserved

for JUMP & I/O Processor Initializations.

• Locations 00000h TO 003FFh

(1KB)reserved for IVT.

General Bus operation in

Maximum mode

• There are 4 clock cycles,T1,T2,T3,&T4

• Address is transferred during T1

• During T2 it is in Tristate mode

• Data transfer takes place during T3 & T4

• Tw state is inserted to cope up with slower device.

• ALE is activated by processor or the bus controller

based upon weather it is Min Or Max mode.

• In Maximum mode s0,s1,s2 are used to indicate type

of operation.

• S3 to s7(T2 state) multiplexed with higher order

address bus (BHE)(T1 state)

I/O Addressing Capability

• I/O Address appears on the line A0-A15

for one clock cycle T1

• 16 bit register DX is used as I/O address

pointer

Special Processor Activities

1.Processor Reset & Initialization:-

• When 1 is applied it will be there in Reset mode until 0

is applied(Positive Edge of Signal)

• It will be there for minimum 10 cycles.

• During this Period all the internal reg content are set to

0000H except CS(F000h)&IP(FFF0h).

• To activate Reset signal must be there for at least 4

clk cycles.

• RESET cannot applied just after power on

2.HALT:-

• It enters into Halt state

• To enter halt state in Min mode It activates

ALE signal.

• To enter halt state in Max mode It

indicates on S2,S1,S0 lines and then ALE

will be asserted

• Only INTR & RESET will make processor

to come out of HLT state.

3.TEST & Synchronization with external

Signals

• TEST will make processor to go into WAIT

state.

• To activate TEST clk pulse must be

activate for at least 5 cycles.

Minimum mode 8086 system

and Timings

Types of Data Transfer

Read Cycle timing diagram for

Min mode

Write cycle timing diagram for

Min mode

Maximum mode 8086 system

Memory Read In Max mode

Memory Write In Max mode

Static RAM Interfacing

• 2 types of RAM

a.Static RAM b.Dynamic RAM

• Memories are arranged in two dimensional

arrays(4K X 8-4096 bytes with each 8bit)

• 4K bytes location requires 12 address

lines.

Procedure for static memory

interfacing with 8086
1.Arrange m/m so as to obtain 16bit data bus

width,Upper 8bit bank called „odd addr m/m bank‟ and

lower is called as „Even addr m/m bank‟.

2.Connect available m/m addr lines of m/m RD‟ & WR‟

inputs to the corresponding processor control signals.

Connect the 16 bit data bus of the m/m bank with that

of the MP.

3.Remaining addr lines of the MP ,BHE & A0 are used

for decoding the required chip select s/g for the odd &

even m/m banks. The CS‟ is arrived from decoding

ckt.

Interface two 4k X 8 EPROMS & two 4K X 8 RAM chips

with 8086 select suitable maps

• After reset IP & CS are initialized to form

address FFFFOh hence this addr must lie

in the EPROM

• Addr of RAM may be selected any where

in the 1MB addr space of 8086

• For 8K bytes of EPROM need 13 addr

lines

A0-A12

• A13-A19 are used for decoding to

generate CS‟ signal

• BHE‟ will be low when transfer is from

odd(higher) addr byte.

• If addr ,BHE‟, & data lines availbe for

interfacing

• Design an interface between 8086 CPU

and two chips of 16K X 8 EPROMS and

two chips of 32K X 8 RAM. Select the

starting address of EPROM suitably.The

RAM address must start at 00000H.

• It is required to interface two chips of 32K

X 8 ROM and four chips of 32K X 8 RAM

with 8086 according to the following map

ROM 1 and 2 F0000H-FFFFFH,

RAM 1 and 2 D0000H-DFFFFH,

RAM 3 and 4 E0000H-EFFFFH

Show the implementation of this m/m

system.

Interfacing IO Ports

• Microprocessor is interfaced to External

I/O devices

Steps in Interfacing I/O Devices

1.Connect data bus of the mp s/m with data

bus of the I/O port

2.Device address and decoding address to

generate the cs is derived

3.Suitable control signals IORD /IOWR are

used.

Methods of Interfacing I/O

Devices
• Two Methods

1. I/O Mapped –

• The devices are treated as distinct I/O devices only &

addressed accordingly.

• All the available addressed may not be used.

(A0-A15 16 address lines/A0-A7 8 address lines)

• Uses IN & OUT instructions.

• Requires less Hardware for decoding

• IORD & IOWR signals are used.

2.Memory Mapped-

• The devices are treated as distinct

Memory locations & addressed

accordingly.

• MRDC & MRTC control signals are used.

• MOV,LEA kind of instrn are used.

• m/m operations are faster.

• They require complex H/W.

• Problem

• Interface an i/p port 74LS245 to read the

status of switches SW1 to SW8. the

switches when shorted i/p a „1‟ else i/p a‟0‟

to the mp. Store the status in BL register.

The address of the port is 0740H

ALP is as follows

MOV BL,00h

MOV DX,0740h

IN AL,DX

MOV BL,AL

HLT

Module 5

Basic peripherals and interfacing

with 8086

• Timer 8254 mode 0,1,2,3 and interfacing

programmer for these modes

• INT 21h DOS function calls for handling

keyboard & display

• Other architecture of 0808 & NDP 8087

• Von-neuman & harvard CPU architecture ,

CISC & RISC CPU architecture.

Interfacing ADC -0808,DAC-

0800 using stepper motor
• ADC chips are 8 bit successive

approximation converters, Successive

approximation technique is the one of the

fastest method to convert from ana;og to

digital

• These converters internally have 3:8

analog multiplexers so that at a time 8

analog inputs can be connected to the

chip.

Block diagram of ADC

0808/0809

Pin Diagram of ADC 0808/0809

DAC 0800 8bit digital to analog

converter
• It has a setting time around100ms and can

operate on a range of power supply

voltages that is from 4.5v to 18v usually

the v+ is 5V or 12v. The V pin can be kept

at a minimum of -12v

Pin Diagram of DAC 0800

Interfacing of DAC 0800 with

8086

Stepper motor Interfacing

• Stepper motor is a device used to obtain

an accurate position control of the rotating

shafts. It employs rotation of its in terms of

steps rather than continues rotation in

case of AC or DC motors

Internals schematic of a four

windings stepper motor

DOS Functions

• DOS services are like Reading the Keyboard,

Writing to Display, Disk access facilities etc

• All these services are accessed through INT

21H

• Before invoking INT 21H

• – Function Code is placed in the register AH.

• – Other relevant parameters if any are placed in

appropriate registers

The 8088 Processor

Architecture of 8088

Architecture of 8087

