Department of Electronics \& Communication Engg.

Course : Engineering Electromagnetics -17EC36.

Course Coordinator:

Prof. S. S. KAMATE

Vector Analysis

Scalars and Vectors

$$
\begin{aligned}
& \text { Scalar Fields (temperature) } \\
& \text { Vector Fields (gravitational, magnetic) }
\end{aligned}
$$

Vector Algebra

There are three co-ordinate systems

1. Cartesian or rectangular co-ordinate system
2. Cylindrical co-ordinate System
3. Spherical co-ordinate System

The Cartesian Coordinate System : vertices are $\mathbf{x , y , z}$

(a)

Vector Components and Unit Vectors

Constant planes

(a)

(b)

(c)

Contd...

Distance vector - dl Differential surfaces $d v=$

The Dot product

$$
\mathrm{A} \cdot \mathrm{~B}=|\mathrm{A}||\mathrm{B}| \cos \theta_{\mathrm{AB}}
$$

B in the direction of A You need to normalize a

The Cross Product
$A \times B=a_{N}|A||B| \sin \theta_{A B}$

$$
A \times B=\left(\begin{array}{ccc}
a x & a y & a z \\
A x & A y & A z \\
B x & B y & B z
\end{array}\right)
$$

Example

$$
\begin{aligned}
& A:=\left(\begin{array}{c}
2 \\
-3 \\
1
\end{array}\right) \quad B:=\left(\begin{array}{c}
-4 \\
-2 \\
5
\end{array}\right) \\
& A \times B=\left(\begin{array}{c}
-13 \\
-14 \\
-16
\end{array}\right)
\end{aligned}
$$

Circular Cylindrical Coordinate System

Differential volume

$\overline{\mathrm{dS}}_{\mathrm{r}}=$ Differential vector surface area normal to r direction $=r d \phi d z \bar{a}_{r}$
$\overline{\mathrm{d}}_{\phi}=$ Differential vector surface area normal to ϕ direction
$=d r d z \bar{a}_{\phi}$
$\overline{\mathrm{d}}_{z}=$ Differential vector surface area normal to z direction
$=r d r d \phi \bar{a}_{i}$

$$
x=r \cos \phi \quad y=r \sin \phi \text { and } z=z
$$

It can be seen that, r can be expressed interms of x and y as,

$$
r=\sqrt{x^{2}+y^{2}}
$$

Circular Cylindrical Coordinate System

$$
\begin{array}{ll}
x=\rho \cdot \cos (\phi) & \rho=\sqrt{x^{2}+y^{2}} \\
y=\rho \cdot \sin (\phi) & \rho \geq 0 \\
z=z & \phi=\operatorname{atan}\left(\frac{y}{x}\right) \\
z=z
\end{array}
$$

Dot
Product

$$
\begin{aligned}
& A=A x \cdot a x+A y \cdot a y+A z \cdot a z \\
& A=A \rho \cdot a \rho+A \phi a \phi+A z \cdot a z \\
& A \rho=A \cdot a \rho \quad A \phi=A \cdot a \phi \quad A z=A z \\
& A \rho=(A x \cdot a x+A y \cdot a y+A z \cdot a z) \cdot a \rho=A x \cdot a x \cdot a \rho+A y \cdot a y \cdot a \rho \\
& A \phi=(A x \cdot a x+A y \cdot a y+A z \cdot a z) \cdot a \phi=A x \cdot a x \cdot a \phi+A y \cdot a y \cdot a \phi \\
& A z=(A x \cdot a x+A y \cdot a y+A z \cdot a z) \cdot a z=A z \cdot a z \cdot a z=A z \\
& a z \cdot a \rho=a z \cdot \phi=0
\end{aligned}
$$

Spherical co-ordinate system

(a) Sphere of radius r with centre as origin

(b) Right circular cone with apex at origin

(c) Half plane perpendicular to xy plane

The Spherical Coordinate System

(a)

(b)

$$
x=r \cdot \sin (\theta) \cdot \cos (\phi)
$$

$$
y=r \cdot \sin (\theta \cdot \sin (\phi))
$$

$$
\mathrm{z}=\mathrm{r} \cdot \cos (\theta)
$$

$\theta=\operatorname{acos}\left(\frac{\mathrm{z}}{\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}}}\right) \quad 0 \leq \theta \leq 180$ $\phi=\operatorname{atan}\left(\frac{\mathrm{y}}{\mathrm{x}}\right)$
(d)

Sperical Co-ordinate System

The Spherical Coordinate System

$$
\begin{aligned}
& x=r \cdot \sin (\theta) \cdot \cos (\phi) \\
& y=r \cdot \sin (\theta \cdot \sin (\phi)) \\
& z=r \cdot \cos (\theta)
\end{aligned}
$$

$$
\begin{aligned}
& r \cdot d r \cdot d \theta \\
& r \cdot \sin (\theta) \cdot d r \cdot d \phi
\end{aligned}
$$

$$
\mathrm{r}^{2} \cdot \sin (\theta) \cdot \mathrm{d} \theta \cdot \mathrm{~d} \phi
$$

$$
\mathbf{r}^{2} \cdot \sin (\theta) \cdot d r \cdot d \theta \cdot d d
$$

(d)

$\overline{\mathrm{dS}}_{\mathbf{r}}=$ Differential vector surface area normal to r direction
$=r^{2} \sin \theta d \theta d \phi$
$\overline{\mathrm{dS}}_{\boldsymbol{\theta}}=$ Differential vector surface area normal to θ direction

$$
=r \sin \theta d r d \phi
$$

$\overline{\mathbf{d S}}_{\phi}=$ Differential vector surface area normal to ϕ direction
$=r d r d \theta$

$x=r \sin \theta \cos \phi$ and $y=r \sin \theta \sin \phi$
$z=r \cos \theta$
$x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi$ and $z=r \cos \theta$

The Experimental Law of Coulomb

$$
\mathrm{F}=\mathrm{k} \cdot \frac{\mathrm{Q} 1 \cdot \mathrm{Q} 2}{\mathrm{R}^{2}} \quad \mathrm{k}=\frac{1}{4 \cdot \pi \cdot \varepsilon_{0}} \quad \varepsilon_{0}=8.85410^{-12}=\frac{1}{36 \cdot \pi} \cdot 10^{-9} \frac{\mathrm{~F}}{\mathrm{~m}} \quad \longrightarrow \quad \mathrm{~F}=\frac{\mathrm{Q} 1 \cdot \mathrm{Q} 2}{4 \cdot \pi \cdot \varepsilon_{0} \cdot \mathrm{R}^{2}}
$$

$$
\mathrm{F}=\frac{\mathrm{Q} 1 \cdot \mathrm{Q} 2}{4 \cdot \pi \cdot \varepsilon_{0} \cdot \mathrm{R}^{2}} \cdot \mathrm{a}_{12} \quad \mathrm{a}_{12}=\frac{\mathrm{r} 2-\mathrm{r} 1}{|\mathrm{r} 2-\mathrm{r} 1|}
$$

Electric Field Intensity

$$
\mathrm{F}_{\mathrm{t}}=\frac{\mathrm{Q} 1 \cdot \mathrm{Qt}}{4 \cdot \pi \cdot \varepsilon_{0} \cdot\left(\mathrm{R}_{1 \mathrm{t}}\right)^{2}} \cdot \mathrm{a}_{1 \mathrm{t}}
$$

Electric Field Intensity

Field of a Line Charge

Field of a Line Charge (neglect symmetry)

$$
\left(0,0, \mathrm{z}^{\prime}\right)
$$

$$
\begin{aligned}
& \mathrm{E}=\iiint \frac{\rho \mathrm{vq}}{4 \cdot \pi \cdot \varepsilon 0} \cdot \frac{(\mathrm{r}-\mathrm{rl})}{(|\mathrm{r}-\mathrm{rl}|)^{3}} \mathrm{dxl} \mathrm{dy} 1 \mathrm{dzl} \\
& \rho \mathrm{v} 1=\rho \mathrm{L} \cdot \mathrm{dzl} \\
& \mathrm{r}=\rho \cdot \mathrm{a} \rho+\mathrm{z} \cdot \mathrm{az} \quad \mathrm{rl}=\mathrm{zl} \cdot \mathrm{az} \\
& \mathrm{R}=\mathrm{r}-\mathrm{rl}=\rho \cdot \mathrm{a} \rho+(\mathrm{z}-\mathrm{zl}) \cdot \mathrm{az} \\
& R=\sqrt{\rho^{2}+(z-z l)^{2}} \\
& a R=\frac{\rho \cdot a \rho+(z-z 1) \cdot a z}{\sqrt{\rho^{2}+(z-z 1)^{2}}} \\
& E=\int_{-\Omega}^{\Omega} \frac{(\rho L \cdot d z 1) \cdot[\rho \cdot a \rho+(z-z 1) \cdot a z]}{} d z 1
\end{aligned}
$$

Field of a Line Charge (neglect symmetry)

$$
\begin{aligned}
& \mathrm{E}=\frac{\rho \mathrm{L}}{(4 \cdot \pi \cdot \varepsilon 0)} \cdot\left[\mathrm{a} \mathrm{\rho} \cdot \int_{-\Omega}^{\Omega} \frac{(\rho \cdot d z 1)}{\left[\left[\rho^{2}+(z-z 1)^{2}\right]\right]^{\frac{3}{2}}} d z 1+a z \cdot \int_{-\Omega}^{\Omega} \frac{((z-z 1))}{\left[\left[\rho^{2}+(z-z 1)^{2}\right]\right]^{\frac{3}{2}}} d z 1\right] \\
& -\Omega \operatorname{to} \Omega \quad-\Omega \operatorname{to} \Omega \\
& E=\frac{\rho L}{(4 \cdot \pi \cdot \varepsilon 0)} \cdot\left[a \rho \cdot \rho \cdot \frac{1}{\rho^{2}} \cdot \frac{-(z-z 1)}{\sqrt{\rho^{2}+(z-z 1)^{2}}}+a z \cdot \frac{1}{\sqrt{\rho^{2}+(z-z 1)^{2}}}\right] \\
& E=\frac{\rho L}{(4 \cdot \pi \cdot \varepsilon 0)} \cdot\left(a \rho \cdot \frac{2}{\rho}+a z \cdot 0\right)=\frac{\rho L}{(2 \cdot \pi \cdot \varepsilon 0) \cdot \rho} \cdot a \rho
\end{aligned}
$$

Field of a Sheet of Charge

This is a very interesting result. The field is constant in magnitude and direction. It is as strong a million miles away from the sheet as it is right of the surface.

Streamlines and Sketches of Fields

Streamlines and Sketches of Fields

$$
\xrightarrow{\frac{E y}{E x}=\frac{d y}{d z}} \begin{aligned}
& \frac{d y}{d x}=\frac{E y}{E x}=\frac{1}{\rho} \cdot a \rho \quad E=\frac{x}{x^{2}+y^{2}} \cdot a x+\frac{y}{x^{2}+y^{2}} \cdot a y \\
& \ln (y)=\ln (x)+C 1 \\
& \ln (y)=\ln (x)+\ln (c)
\end{aligned}
$$

3.1 Electric Flux Density

- Faraday's Experiment

Flux $=\Psi$, same units as Q

Ψ is responsible for creating $-Q$ on outer sphere

Electric Flux Density, D

- Units: C/m²
- Magnitude: Number of flux lines (coulombs) crossing a surface normal to the lines divided by the surface area.
- Direction: Direction of flux lines (same direction as E).
- For a point charge: $\mathbf{D}=\frac{Q}{4 \pi r^{2}} \mathbf{a}_{r}$
- For a general charge distribution,

$$
\mathbf{D}=\epsilon_{0} \mathbf{E}=\int_{\mathrm{vol}} \frac{\rho_{\nu} d v}{4 \pi R^{2}} \mathbf{a}_{r}
$$

D3.1

Given a 60-uC point charge located at the origin, find the total electric flux passing through:
(a) That portion of the sphere $r=26 \mathrm{~cm}$ bounded by $0<$ theta $<\mathrm{Pi} / 2$ and $0<\mathrm{phi}<\mathrm{Pi} / 2$

Gauss's Law

- "The electric flux passing through any closed surface is equal to the total charge enclosed by that surface."

$$
\Psi=\oint_{S} \mathbf{D}_{S} \cdot d \mathbf{S}=\text { charge enclosed }=Q
$$

- The integration is performed over a closed surface, i.e. gaussian surface.

- We can check Gauss's law with a point charge example.

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{0}^{\pi} \frac{q}{4 \pi a^{2}} a^{2} \sin [\theta] d \theta d l \phi \\
& q
\end{aligned}
$$

Symmetrical Charge Distributions

- Gauss's law is useful under two conditions.

1. \mathbf{D}_{S} is everywhere either normal or tangential to the closed surface, so that $\mathbf{D}_{\mathrm{S}} \cdot d \mathbf{S}$ becomes either D_{S} $d S$ or zero, respectively.
2. On that portion of the closed surface for which $\mathrm{D}_{\mathrm{S}} \cdot d S$ is not zero, $D_{S}=$ constant.

Gauss's law simplifies the task of finding \mathbf{D} near an infinite line charge.

Infinite coaxial cable:

Differential Volume Element

- If we take a small enough closed surface, then \mathbf{D} is almost constant over the surface.

$$
\oint_{\mathbf{S}} \mathbf{D} \cdot d \mathbf{S}=\int_{\text {troot }}+\int_{\text {back }}+\int_{\text {leet }}+\int_{\text {rigith }}+\int_{\text {topp }}+\int_{\text {bottom }}
$$

$$
\begin{aligned}
& \int_{\text {front }} \doteq\left(D_{\mathrm{x} 0}+\frac{\Delta x}{2} \frac{\partial D_{x}}{\partial x}\right) \Delta y \Delta z \\
& \int_{\text {back }} \doteq\left(-D_{\mathrm{x} 0}+\frac{\Delta x}{2} \frac{\partial D_{x}}{\partial x}\right) \Delta y \Delta z \\
& \int_{\text {front }}+\int_{\text {back }} \doteq \frac{\partial D_{x}}{\partial x} \Delta x \Delta y \Delta z \\
& \vdots
\end{aligned}
$$

$$
\oint_{S} \mathbf{D} \cdot d \mathbf{S} \doteq\left(\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right) \Delta x \Delta y \Delta z
$$

Charge enclosed in volume $\Delta v \doteq\left(\frac{\partial D_{x}}{\partial x}+\frac{\partial D_{y}}{\partial y}+\frac{\partial D_{z}}{\partial z}\right) \times$ volume Δv

Divergence

Divergence is the outflow of flux from a small closed surface area (per unit volume) as volume shrinks to zero.

-Water leaving a bathtub

-Closed surface (water itself) is essentially incompressible -Net outflow is zero

-Air leaving a punctured tire

-Divergence is positive, as closed surface (tire) exhibits net outflow

Mathematical definition of divergence

$$
\operatorname{div}(\mathbf{D})=\lim _{\Delta \mathrm{v} \rightarrow 0} \int \frac{\mathbf{D}}{\Delta \mathrm{v}} \mathrm{~d} \mathbf{S}
$$

Surface integral as the volume element ($\Delta \mathrm{v}$) approaches zero
D is the vector flux density

$$
\operatorname{div}(\mathbf{D})=\left(\frac{\delta \mathrm{D}_{\mathrm{x}}}{\delta \mathrm{x}}+\frac{\delta \mathrm{D}_{\mathrm{y}}}{\delta \mathrm{y}}+\frac{\delta \mathrm{D}_{\mathrm{z}}}{\delta \mathrm{z}}\right)
$$

- Cartesian

Divergence in Other Coordinate Systems

Cylindrical

$$
\operatorname{div}(\mathbf{D})=\frac{1}{\rho} \cdot \frac{\delta}{\delta \rho}\left(\rho \cdot \mathrm{D}_{\rho}\right)+\frac{1}{\rho} \cdot \frac{\delta \mathrm{D}_{\phi}}{\delta \phi}+\frac{\delta \mathrm{D}_{\mathrm{z}}}{\delta \mathrm{z}}
$$

Spherical

$$
\operatorname{div}(\mathrm{D})=\frac{1}{\mathrm{r}^{2}} \cdot \frac{\delta\left(\mathrm{D}_{\mathrm{r}^{2}}{ }^{2}\right)}{\delta \mathrm{r}}+\frac{1}{\mathrm{r} \cdot \sin (\theta)} \cdot \frac{\delta\left(\mathrm{D}_{\theta} \cdot \sin (\theta)\right)}{\delta \theta}+\frac{1}{\mathrm{r} \cdot \sin (\theta)} \cdot \frac{\delta \mathrm{D}_{\phi}}{\delta \phi}
$$

4.1 Energy to move a point charge through a Field

- Force on Q due to an electric field

$$
\mathrm{F}_{\mathrm{E}}=\mathrm{QE}
$$

- Differential work done by an external source moving Q

$$
\mathrm{dW}=-\mathrm{QE} \cdot \mathrm{dL}
$$

- Work required to move a charge a finite distance

$$
W=-Q \int_{\text {init }}^{\text {final }} \mathbf{E} \cdot d \mathbf{L}
$$

Line Integral

- Work expression without using vectors
$E L$ is the component of E in the dL direction

$$
W=-Q \cdot \int_{\text {initial }}^{\text {final }} E_{L} d L
$$

$$
\begin{array}{ll}
d \mathbf{L}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z} & \text { (cartesian) } \\
d \mathbf{L}=d \rho \mathbf{a} \rho+\rho d \phi \mathbf{a}_{\phi}+d z \mathbf{a}_{z} & \text { (cylindrical) } \\
d \mathbf{L}=d r \mathbf{a}_{z}+r d \theta \mathbf{a}_{\theta}+r \sin \theta d \phi \mathbf{a}_{\phi} & \text { (spherical) }
\end{array}
$$

- Uniform electric field density

$$
\mathrm{W}=-\mathrm{QE} \cdot \mathrm{~L}_{\mathrm{BA}}
$$

Potential

- Measure potential difference between a point and something which has zero potential "ground"

$$
v_{A B}=v_{A}-v_{E}
$$

Potential Field of a Point Charge

- Let $\mathrm{V}=0$ at infinity

$$
W=\frac{Q}{4 \pi \varepsilon_{\square} \mathrm{T}}
$$

- Equipotential surface:
- A surface composed of all points having the same potential

Potential due to n point charges

Continue adding charges

$$
\mathrm{V}(\mathrm{r})=\frac{\mathrm{Q} 1}{4 \cdot \pi \cdot \varepsilon_{0} \cdot|\mathrm{r}-\mathrm{r} 1|}+\frac{\mathrm{Q} 2}{4 \cdot \pi \cdot \varepsilon_{0} \cdot|\mathrm{r}-\mathrm{r} 2|}+\ldots .+\frac{\mathrm{Qn}}{4 \cdot \pi \cdot \varepsilon_{0} \cdot|\mathrm{r}-\mathrm{r} \mathrm{n}|}
$$

$$
\mathrm{V}(\mathrm{r})=\sum_{\mathrm{m}=1}^{\mathrm{n}} \frac{\mathrm{Qm}}{4 \cdot \pi \cdot \varepsilon_{0} \cdot|\mathrm{r}-\mathrm{r} \mathrm{~m}|}
$$

Potential as point charges become infinite

Volume of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho_{\mathrm{v}}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot\left|\mathrm{r}-\mathrm{r}_{\text {prime }}\right|} \mathrm{dv} \text { prime }
$$

Line of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho L_{L}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot \mid \mathrm{r}^{-r_{\text {prime }} \mid}} \mathrm{dL} \mathrm{p}_{\text {prime }}
$$

Surface of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho \mathrm{S}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot\left|\mathrm{r}-\mathrm{r}_{\text {prime }}\right|} \mathrm{dS} \text { prime }
$$

Potential as point charges become infinite

Volume of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho_{\mathrm{v}}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot\left|\mathrm{r}-\mathrm{r}_{\text {prime }}\right|} \mathrm{dv} \text { prime }
$$

Line of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho L_{L}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot \mid \mathrm{r}^{-r_{\text {prime }} \mid}} \mathrm{dL} \mathrm{p}_{\text {prime }}
$$

Surface of charge

$$
\mathrm{V}(\mathrm{r})=\int \frac{\rho \mathrm{S}\left(\mathrm{r}_{\text {prime }}\right)}{4 \cdot \pi \cdot \varepsilon_{0} \cdot\left|\mathrm{r}-\mathrm{r}_{\text {prime }}\right|} \mathrm{dS} \text { prime }
$$

Gradients in different coordinate systems

The following equations are found on page 104 and inside the back cover of the text:

$$
\operatorname{grad} \mathrm{V}=\frac{\delta \mathrm{V}}{\delta \mathrm{x}} \cdot \mathrm{a}_{\mathrm{x}}+\frac{\delta \mathrm{V}}{\delta \mathrm{y}} \cdot \mathrm{a}_{\mathrm{y}}+\frac{\delta \mathrm{V}}{\delta \mathrm{z}} \cdot \mathrm{a}
$$

Cartesian

$$
\operatorname{grad} \mathrm{V}=\frac{\delta \mathrm{V}}{\delta \rho} \cdot \mathrm{a}_{\rho}+\frac{1}{\rho} \cdot \frac{\delta \mathrm{~V}}{\delta \phi} \cdot \mathrm{a}_{\phi}+\frac{\delta \mathrm{V}}{\delta \mathrm{z}} \cdot \mathrm{a}_{2}
$$

Cylindrical

$$
\operatorname{grad} \mathrm{V}=\frac{\delta \mathrm{V}}{\delta \mathrm{r}} \cdot \mathrm{a}_{\mathrm{r}}+\frac{1}{\mathrm{r}} \cdot \frac{\delta \mathrm{~V}}{\delta \theta} \cdot \mathrm{a}_{\theta}+\frac{1}{\mathrm{r} \cdot \sin (\theta)} \cdot \frac{\delta \mathrm{V}}{\delta \phi} \cdot \mathrm{a}_{\mathrm{t}}
$$

Spherical

Chapter 7 - Poisson's and Laplace Equations

A useful approach to the calculation of electric potentials Relates potential to the charge density.
The electric field is related to the charge density by the divergence ralatinnchin

$$
\nabla \cdot E=\frac{\rho}{\varepsilon_{0}} \quad \begin{array}{ll}
E & =\text { electric field } \\
\rho & =\text { charge density } \\
\varepsilon_{0} & =\text { permittivity }
\end{array}
$$

The electric field is related to the electric potential by a gradient relationship

$$
E=-\nabla V
$$

Therefore the potential is related to the charge density by Poisson's equation

$$
\nabla \cdot \nabla V=\nabla^{2} V=\frac{-\rho}{\varepsilon_{0}}
$$

In a charge-free region of space, this becomes Laplace's equation
$\nabla^{2} V=0$

Magnetic Field Sources

Magnetic fields are produced by electric currents, which can be macroscopic currents in wires, or microscopic currents associated with electrons in atomic orbits.

Magnetic Field Sources

Maxwell's equations

$$
\begin{aligned}
& \nabla \times \underline{E}=-\frac{\partial \underline{B}}{\partial t}-\underline{K}_{c}-\underline{K}_{i} \\
& \nabla \times \underline{H}=\frac{\partial \underline{D}}{\partial t}+\underline{J}_{c}+\underline{J}_{i} \\
& \nabla \cdot \underline{D}=q_{e v} \\
& \nabla \cdot \underline{B}=q_{m v}
\end{aligned}
$$

Maxwell's equations for TVF

Differential form	Controlling principle	Integral form	
$\nabla \times \overrightarrow{\mathbf{H}}=\overrightarrow{\mathrm{D}}+\overrightarrow{\mathrm{J}}$	Ampere's Circuital Law	$\oint \overrightarrow{\mathbf{H}} \cdot \mathrm{d} \overrightarrow{\mathbf{L}}=\int \dot{\mathrm{D}}+\overrightarrow{\mathbf{J}} \cdot \mathrm{d} \overrightarrow{\mathbf{S}}$	(I)
$\nabla \times \overrightarrow{\mathrm{E}}=-\dot{\bar{B}}$	Potential around a closed path is zero	$\oint \overrightarrow{\mathbf{E}} \cdot \mathrm{d} \overrightarrow{\mathbf{L}}=-\int \dot{\overrightarrow{\mathbf{B}} \cdot \mathrm{d}} \mathbf{\mathrm { S }}$	(II)
$\nabla \cdot \overrightarrow{\mathrm{D}}=\boldsymbol{\rho}$	Gauss's Law	$\oint \overrightarrow{\mathrm{D}} \cdot \mathrm{d} \overrightarrow{\mathbf{S}}=\int \rho \mathrm{dv}$	(III)
$\nabla \cdot \stackrel{\mathrm{B}}{ }$	Non-existence of isolated magnetic poles	$\oint \overrightarrow{\mathbf{B}} \cdot \mathrm{d} \mathbf{S}=0$	(IV)

