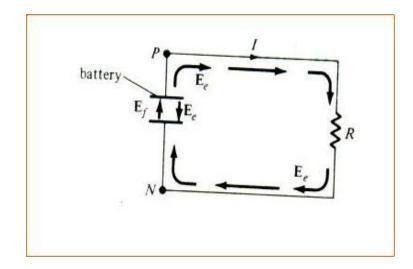
TIME VARYING MAGNETIC FIELDS AND MAXWELL'S EQUATIONS

Faraday's Law, and it can be expressed as

emf induced= -N d ψ /dt



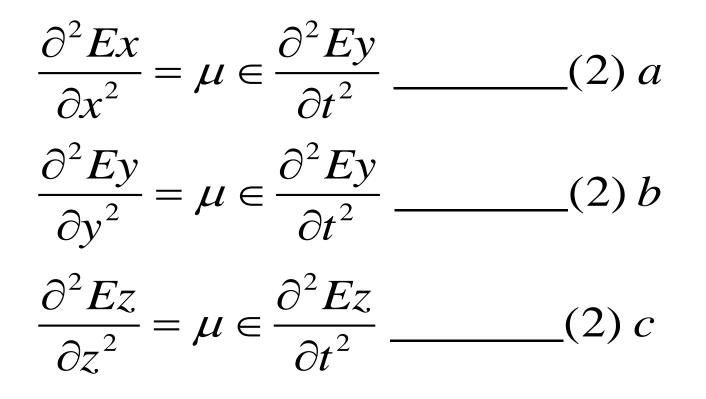
MAXWELL'S EQUATIONS FOR STATIC EM FIELDS

Differential (or Point) Form	Integral Form	Remarks
$\nabla \cdot \mathbf{D} = \rho_{\mathbf{v}}$	$\int_{S} D \times dS = \int_{v} \rho_{v} dv$	Gauss's law
		Nonexistence of magnetic
∇.B=0	$\int_{S} B \times dS = 0$	monopole
<u>∂B</u>	$\int_{L} E \times dl = \frac{\partial}{\partial t}$ $- \frac{\partial}{\partial t} \int_{C} B \times dS$	
$\nabla \mathbf{x} \mathbf{E} = -\partial t$	$- \partial t \int_{s}^{B} \times dS$	Faraday's Law
$\nabla \mathbf{x} \mathbf{H} = \mathbf{J} + \frac{\partial D}{\partial t}$	$\int_{L} H \times dl = \int_{S} J \times dS$	Ampere's circuit law

UNIFORM PLANE WAVES

$$\nabla^2 \vec{E} = \mu \in \frac{\partial^2 \vec{E}}{\partial t^2}$$
 (2)

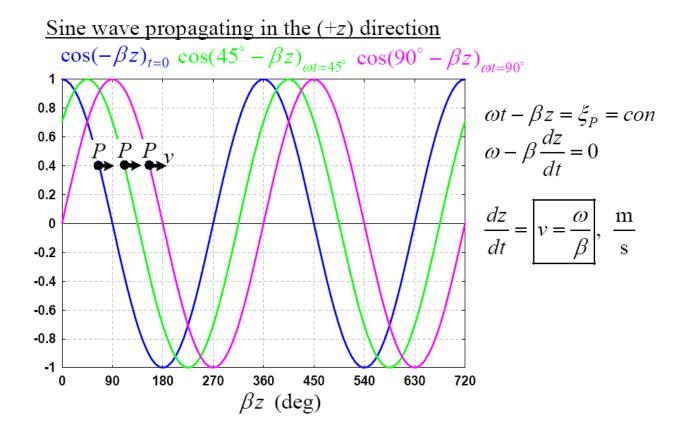
The wave equation (2) is a composition of these equations, one each component wise, ie,



Wave equations for a conducting medium

$$\nabla \times \vec{H} = \vec{J} + \in \frac{\partial E}{\partial t}$$
(1)
$$\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$$
(2)
$$\vec{J} = \sigma \vec{E} \qquad \sigma : Conductivity (\Omega/m)$$

$$\nabla \times \vec{H} = \sigma \vec{E} + \in \frac{\partial \vec{E}}{\partial t}$$
(3)



Poynting's theorem

• The flow of power in the direction of wave propagation. P gives power density of the wave

P = EXH

Thank you