
Electric Flux Density, Gauss’s 

Law, and Divergence 



3.1 Electric Flux Density 

• Faraday’s Experiment 



Electric Flux Density, D 

• Units:  C/m2 

• Magnitude:  Number of flux lines (coulombs) 

crossing a surface normal to the lines divided by 

the surface area. 

• Direction:  Direction of flux lines (same direction 

as E). 

• For a point charge:  
 

• For a general charge distribution,  

 



D3.1 

Given a 60-uC point charge located at the origin, find the 

total electric flux passing through: 

(a) That portion of the sphere r = 26 cm bounded by 

 0 < theta < Pi/2 and 0 < phi < Pi/2 



D3.2 

Calculate D in rectangular coordinates at point P(2,-3,6) 

produced by : (a) a point charge QA = 55mC at Q(-2,3,-6) 
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(b)  a uniform line charge pLB = 20 mC/m on the x axis 



(c) a uniform surface charge density pSC = 120 uC/m2 on 

the plane z = -5 m. 



Gauss’s Law 

• “The electric flux passing through any 

closed surface is equal to the total charge 

enclosed by that surface.” 



• The integration is performed over a closed 

surface, i.e. gaussian surface. 



• We can check Gauss’s law with a point 

charge example. 



Symmetrical Charge Distributions 

• Gauss’s law is useful under two 
conditions. 

1.  DS is everywhere either normal or 
tangential to the closed surface, so that 
DS

.dS becomes either DS dS or zero, 
respectively. 

2. On that portion of the closed surface for 
which DS

.dS is not zero, DS = constant. 



Gauss’s law simplifies the task of finding D near an 

infinite line charge. 



Infinite coaxial cable: 



Differential Volume Element 

• If we take a small enough closed surface, 

then D is almost constant over the surface. 
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D3.6a 



D x y z( )
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Divergence 

Divergence is the outflow of flux from a small 
closed surface area (per unit volume) as 
volume shrinks to zero. 

 



-Water leaving a bathtub 

-Closed surface (water itself) is essentially incompressible 

-Net outflow is zero 

-Air leaving a punctured tire 

-Divergence is positive, as closed surface (tire) exhibits net 

outflow 



Mathematical definition of divergence 
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Surface integral as the volume element (v) approaches zero 

 

D is the vector flux density 



Cylindrical 

Spherical 

div D  1






  D 

1



D




Dz

z


div D  1

r
2

 D r r
2







r


1

r sin  

 D  sin   



1

r sin  

D 




Divergence in Other Coordinate Systems 
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3-6: Maxwell’s First Equation 
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Electric flux per unit volume is equal to the volume charge density 



Maxwell’s First Equation 
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Sometimes called the point form of Gauss’ Law 

 

Enclosed surface is reduced to a single point 



3-7:  and the Divergence Theorem  

  del operator 
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What is del? 

http://www.mccallie.org/dailynews/1200/curtis99.jpg


’s Relationship to Divergence 

div D   V D

True for all coordinate systems 



Other  Relationships  

Gradient – results from  operating on a function  

Represents direction of greatest change 



Curl – cross product of  and  

Relates to work in a field 

 

If curl is zero, so is work 



Examination of  and flux  

Cube defined by 1 < x,y,z < 1.2 
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 total x1 x2 y1 y2

 total 0.103

Evaluation of       at center of cube  V D
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Non-Cartesian Example 



Equipotential Surfaces – Free Software 











Semiconductor Application - Device Charge Field Potential 

http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html
http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html
http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html
http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html


Vector Fields 

http://www.falstad.com/vector/


Potential Field 

http://webphysics.davidson.edu/Applets/EField/Dynamics.html


Applications of Gauss’s Law 


