Electric Flux Density, Gauss's Law, and Divergence

3.1 Electric Flux Density

• Faraday's Experiment

 Ψ is responsible for creating -Q on outer sphere

Electric Flux Density, D

- Units: C/m²
- Magnitude: Number of flux lines (coulombs) crossing a surface normal to the lines divided by the surface area.
- Direction: Direction of flux lines (same direction as **E**).
- For a point charge: $\mathbf{D} = \frac{Q}{4 \pi r^2} \mathbf{a}_r$
- For a general charge distribution,

$$\mathbf{D} = \epsilon_0 \mathbf{E} = \int_{\text{vol}} \frac{\rho_v \, d v}{4 \, \pi \, R^2} \, \mathbf{a}_r$$

D3.1

Given a 60-uC point charge located at the origin, find the total electric flux passing through:

(a) That portion of the sphere r = 26 cm bounded by 0 < theta < Pi/2 and 0 < phi < Pi/2

D3.2

Calculate D in rectangular coordinates at point P(2,-3,6) produced by : (a) a point charge QA = 55mC at Q(-2,3,-6)

$$P := \begin{pmatrix} 2 \\ -3 \\ 6 \end{pmatrix} \qquad Q := \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix} \qquad QA := 55 \cdot 10^{-3}$$

$$\varepsilon_0 := 8.85410^{-12} \qquad R := P - Q \qquad r := \frac{P - Q}{|P - Q|}$$

$$D := \frac{QA}{4 \cdot \pi \cdot (|R|)^2} \cdot r \qquad D = \begin{pmatrix} 6.38 \times 10^{-6} \\ -9.57 \times 10^{-6} \\ 1.914 \times 10^{-5} \end{pmatrix}$$

(b) a uniform line charge $p_{LB} = 20 \text{ mC/m}$ on the *x* axis

(c) a uniform surface charge density $p_{SC} = 120 \text{ uC/m}^2$ on the plane z = -5 m.

Gauss's Law

• "The electric flux passing through any closed surface is equal to the total charge enclosed by that surface."

$$\Psi = \oint_{S} \mathbf{D}_{S} \cdot d\mathbf{S} = \text{charge enclosed} = Q$$

• The integration is performed over a *closed* surface, i.e. *gaussian surface*.

• We can check Gauss's law with a point charge example.

$$\int_0^{2\pi} \int_0^{\pi} \frac{q}{4\pi a^2} a^2 \sin[\theta] d\theta d\phi$$

q

Symmetrical Charge Distributions

- Gauss's law is useful under two conditions.
- 1. \mathbf{D}_{S} is everywhere either normal or tangential to the closed surface, so that $\mathbf{D}_{S} \cdot d\mathbf{S}$ becomes either $D_{S} dS$ or zero, respectively.
- 2. On that portion of the closed surface for which $\mathbf{D}_{S} \cdot dS$ is not zero, $D_{S} = \text{constant}$.

Gauss's law simplifies the task of finding **D** near an infinite line charge.

Infinite coaxial cable:

$$D = \frac{\rho_L}{2\pi\rho} \mathbf{a}_{\rho} \quad (a < \rho < b)$$
$$D = 0 \quad (\rho > b)$$

Differential Volume Element

• If we take a small enough closed surface, then **D** is almost constant over the surface.

$$\int_{\text{front}} \doteq \left(D_{x0} + \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} \right) \Delta y \Delta z$$
$$\int_{\text{back}} \doteq \left(-D_{x0} + \frac{\Delta x}{2} \frac{\partial D_x}{\partial x} \right) \Delta y \Delta z$$
$$\int_{\text{front}} + \int_{\text{back}} \doteq \frac{\partial D_x}{\partial x} \Delta x \Delta y \Delta z$$
$$\vdots$$

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} \doteq \left(\frac{\partial D_{x}}{\partial x} + \frac{\partial D_{y}}{\partial y} + \frac{\partial D_{z}}{\partial z}\right) \Delta x \Delta y \Delta z$$

Charge enclosed in volume $\Delta v \doteq \left(\frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}\right) \times \text{volume } \Delta v$

D3.6a

$$D(x, y, z) := \begin{pmatrix} 8 \cdot x \cdot y \cdot z^{4} \\ 4 \cdot x \cdot z^{4} \\ 16 x^{2} \cdot y \cdot z^{3} \end{pmatrix}$$

$$\int_{1}^{3} \int_{0}^{2} D(x, y, 2)_{2} \cdot 10^{-12} dx dy = 1.365 \times 10^{-9}$$

D3.6b

$$D(x, y, z) := \begin{pmatrix} 8 \cdot x \cdot y \cdot z^{4} \\ 4 \cdot x^{2} \cdot z^{4} \\ 16 \cdot x^{2} \cdot y \cdot z^{3} \end{pmatrix} \cdot 10^{-12}$$

$$\varepsilon_0 := 8.85410^{-12}$$

$$P := \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \qquad E := \frac{D(2, -1, 3)}{\varepsilon_0} \qquad E = \begin{pmatrix} -146.375 \\ 146.375 \\ -195.166 \end{pmatrix}$$

Divergence

Divergence is the outflow of flux from a small closed surface area (per unit volume) as volume shrinks to zero.

-Water leaving a bathtub

-Closed surface (water itself) is essentially incompressible

-Net outflow is zero

-Air leaving a punctured tire

-Divergence is positive, as closed surface (tire) exhibits net outflow

Mathematical definition of divergence

$$\operatorname{div}(\mathbf{D}) = \lim_{\Delta v \to 0} \int \frac{\mathbf{D}}{\Delta v} \, \mathrm{d}\mathbf{S}$$

Surface integral as the volume element (Δv) approaches zero

D is the vector flux density

$$\operatorname{div}(\mathbf{D}) = \left(\frac{\delta D_{x}}{\delta x} + \frac{\delta D_{y}}{\delta y} + \frac{\delta D_{z}}{\delta z}\right)$$

- Cartesian

Divergence in Other Coordinate Systems

Cylindrical $\operatorname{div}(\mathbf{D}) = \frac{1}{\rho} \cdot \frac{\delta}{\delta\rho} \left(\rho \cdot D_{\rho}\right) + \frac{1}{\rho} \cdot \frac{\delta D_{\phi}}{\delta\phi} + \frac{\delta D_{z}}{\delta z}$

Spherical

$$\operatorname{div}(\mathbf{D}) = \frac{1}{r^{2}} \cdot \frac{\delta\left(\operatorname{D}_{r} \cdot r^{2}\right)}{\delta r} + \frac{1}{r \cdot \sin(\theta)} \cdot \frac{\delta\left(\operatorname{D}_{\theta} \cdot \sin(\theta)\right)}{\delta \theta} + \frac{1}{r \cdot \sin(\theta)} \cdot \frac{\delta\operatorname{D}_{\phi}}{\delta \phi}$$

Divergence at origin for given *vector flux density* **A**

$$\mathbf{A} = \begin{pmatrix} e^{-x} \cdot \sin(y) \\ -e^{-x} \cdot \cos(y) \\ 2 \cdot z \end{pmatrix}$$

$$\operatorname{div}(\mathbf{A}) = \frac{\delta}{\delta x} \left(e^{-x} \cdot \sin(y) \right) + \frac{\delta}{\delta y} \cdot \left(-e^{-x} \cdot \cos(y) \right) + \frac{\delta}{\delta z} \cdot (2 \cdot z)$$

 $\operatorname{div}(\mathbf{A}) = -e^{-x} \cdot \sin(y) + e^{-x} \cdot \sin(y) + 2$

3-6: Maxwell's First Equation $\int_{S}^{\cdot} \mathbf{A} d\mathbf{S} = Q \qquad \text{Gauss' Law...}$

Electric flux per unit volume is equal to the volume charge density

Maxwell's First Equation

$$\lim_{\Delta v \to 0} \frac{\int_{S}^{\cdot} \mathbf{A} d\mathbf{S}}{\Delta v} = \lim_{\Delta v \to 0} \frac{Q}{\Delta v}$$

$$div(\mathbf{D}) = \rho_{V}$$

Sometimes called the point form of Gauss' Law

Enclosed surface is reduced to a single point

3-7: ∇ and the Divergence Theorem

 $\nabla \rightarrow del$ operator

What is **del**?

$$\nabla = \frac{\delta(\mathbf{a}_{\mathbf{X}})}{\delta \mathbf{x}} + \frac{\delta(\mathbf{a}_{\mathbf{Y}})}{\delta \mathbf{y}} + \frac{\delta(\mathbf{a}_{\mathbf{Z}})}{\delta \mathbf{z}}$$

∇ 's Relationship to Divergence

$$\operatorname{div}(\mathbf{D}) = \nabla \cdot \mathbf{D}$$

True for all coordinate systems

 $\nabla \bullet \mathbf{A} = \left[\frac{\partial}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial}{\partial \mathbf{y}} \mathbf{y} + \frac{\partial}{\partial \mathbf{z}} \mathbf{z}\right] \bullet \left[\mathbf{A}_{\mathbf{x}} \mathbf{x} + \mathbf{A}_{\mathbf{y}} \mathbf{y} + \mathbf{A}_{\mathbf{z}} \mathbf{z}\right]$ $= \left(\frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{x}}\right) + \left(\frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{y}}\right) + \left(\frac{\partial \mathbf{A}_{\mathbf{z}}}{\partial \mathbf{z}}\right);$

Other ∇ Relationships

Gradient – results from ∇ operating on a function

 $\nabla \mathbf{f} = (\partial \mathbf{f}/\partial \mathbf{x}) \mathbf{x} + (\partial \mathbf{f}/\partial \mathbf{y}) \mathbf{y} + (\partial \mathbf{f}/\partial \mathbf{z}) \mathbf{z}$.

Represents direction of greatest change

Curl – cross product of ∇ and

 $\nabla \times \mathbf{A} = \left[\frac{\partial}{\partial \mathbf{x}} \mathbf{x} + \frac{\partial}{\partial \mathbf{y}} \mathbf{y} + \frac{\partial}{\partial \mathbf{z}} \mathbf{z}\right] \times \left[\mathbf{A}_{\mathbf{x}} \mathbf{x} + \mathbf{A}_{\mathbf{y}} \mathbf{y} + \mathbf{A}_{\mathbf{z}} \mathbf{z}\right] =$ $\left(\frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{x}}\right)(\mathbf{z}) + \left(\frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{x}}\right)(-\mathbf{y}) + \left(\frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{y}}\right)(-\mathbf{z}) + \left(\frac{\partial \mathbf{A}_{\mathbf{z}}}{\partial \mathbf{y}}\right)(\mathbf{x}) + \left(\frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{z}}\right)(\mathbf{y}) + \left(\frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{z}}\right)(-\mathbf{x})$ $= \left(\frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{y}} - \frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{z}}\right)\mathbf{x} + \left(\frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{z}} - \frac{\partial \mathbf{A}_{\mathbf{z}}}{\partial \mathbf{x}}\right)\mathbf{y} + \left(\frac{\partial \mathbf{A}_{\mathbf{y}}}{\partial \mathbf{x}} - \frac{\partial \mathbf{A}_{\mathbf{x}}}{\partial \mathbf{y}}\right)\mathbf{z}$

Relates to work in a field

If curl is zero, so is work

Examination of ∇ and flux

Cube defined by
$$1 < x,y,z < 1.2$$

D = $2 \cdot x^2 \cdot y \cdot \mathbf{a}_{\mathbf{X}} + 3 \cdot x^2 \cdot y^2 \cdot \mathbf{a}_{\mathbf{Y}}$

Calculation of total flux

$$Q = \int_{S}^{\cdot} \mathbf{D} d\mathbf{S} = \int_{vol}^{\cdot} \rho_{v} dv = \Phi$$

 $x_1 := 1$ $x_2 := 1.2$ $y_1 := 1$ $y_2 := 1.2$ $z_1 := 1$ $z_2 := 1.2$

$$\Phi_{\text{total}} = \Phi_{\text{left}} + \Phi_{\text{right}} + \Phi_{\text{front}} + \Phi_{\text{back}}$$

$$\Phi_{x1} := \int_{z_1}^{z_2} \int_{y_1}^{y_2} -2 \cdot x_1^2 \cdot y \, dy \, dz \qquad \Phi_{y1} := \int_{z_1}^{z_2} \int_{x_1}^{x_2} -3 \cdot x^2 \cdot y_1^2 \, dx \, dz$$

$$\Phi_{x2} := \int_{z_1}^{z_2} \int_{y_1}^{y_2} 2 \cdot x_2^2 \cdot y \, dy \, dz \qquad \Phi_{y2} := \int_{z_1}^{z_2} \int_{x_1}^{x_2} 3 \cdot x^2 \cdot y_2^2 \, dx \, dz$$

$$\Phi_{\text{total}} := \Phi_{x1} + \Phi_{x2} + \Phi_{y1} + \Phi_{y2}$$

 $\Phi_{\text{total}} = 0.103$ Evaluation of ∇ · Dat center of cube

$$div(\mathbf{D}) = \frac{d}{dx} \left(2 \cdot x^2 \cdot y \right) + \frac{d}{dy} \left(3 \cdot x^2 \cdot y^2 \right)$$
$$div(\mathbf{D}) = 4 \cdot x \cdot y + 6 \cdot x^2 \cdot y$$
$$div\mathbf{D} := 4 \cdot (1.1) \cdot (1.1) + 6 \cdot (1.1)^2 \cdot (1.1)$$

divD = 12.826

Non-Cartesian Example

Inside the cylindrical shell, $3 < \rho < 4$ m, the electric flux density is given as

$$\mathbf{D} = 5(\rho - 3)^3 \,\mathbf{a}_{\rho} \,\mathrm{C/m^2}$$

a) What is the volume charge density at $\rho = 4$ m? In this case we have

$$\rho_{\nu} = \nabla \cdot \mathbf{D} = \frac{1}{\rho} \frac{d}{d\rho} (\rho D_{\rho}) = \frac{1}{\rho} \frac{d}{d\rho} [5\rho(\rho - 3)^3] = \frac{5(\rho - 3)^2}{\rho} (4\rho - 3) \,\mathrm{C/m^3}$$

Evaluating this at $\rho = 4$ m, we find $\rho_v(4) = \frac{16.25 \text{ C/m}^3}{16.25 \text{ C/m}^3}$

Equipotential Surfaces – Free Software

🚰 http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html - Microsoft Internet Explorer			<u>_8×</u>
<u>File E</u> dit <u>V</u> iew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp			
🗢 Back 🔹 🤿 🗸 🔯 🖉	🕽 Search 🛛 😹 Favorites 🎯 Media 🏼 🚳 🗌	B- 🗿 🗹 - 🗏 🛈 🜳	
Address 🛃 http://jas2.eng.buffalo.edu/applets/education/mos/mosCap/biasPot10.html			🔽 🧬 Go Links 🐃
MOS Capacitor with Bias Device-Charge-Field-Potential Warning: do not click the reload or refresh button on your browser. It hides part of the applet view.			
Vgb 🛓 Equilibrate Fla	at Band Threshold Charge Band		
Vgb = 0V	Device Schematic		
Qox=1.0E10 1Qch=5.2E11	Charge Profile [q/cm2] Accumulation: Qb = 0, Qch != 0	Introduction Moth Applying	
Qg≠-5.3E11		<u>App.Tutorial</u> <u>Worksheet</u>	
Es =0 V/cm	Electric Field	• <u>Quiz</u> • <u>SPICE/CAD</u> • <u>References</u> • <u>Feedback</u>	
-2.5E5 V/cm	Potential Profile		
			Thread
1967 - Contra Co			

Semiconductor Application - Device Charge Field Potential

Vector Fields

Potential Field

Applications of Gauss's Law

