
 

 

 

 

TIME VARYING MAGNETIC FIELDS AND MAXWELL’S EQUATIONS 
 

 

Introduction 
 

 

Electrostatic fields are usually produced by static electric charges whereas 

magnetostatic fields are due to motion of electric charges with uniform velocity 

(direct current) or static magnetic charges (magnetic poles); time-varying fields 

or waves are usually due to accelerated charges or time-varying current. 

 

 Stationary charges  Electrostatic fields 



 Steady current  Magnetostatic fields 



 Time-varying current  Electromagnetic fields (or waves) 
 
 

 

Faraday discovered that the induced emf, Vemf (in volts), in any closed circuit is 

equal to the time rate of change of the magnetic flux linkage by the circuit 

 

This is called Faraday’s Law, and it can be expressed as 
 

 

V
emf  

d 

N 

d  
 

dt dt 1.1  
   

 

 

 

where N is the number of turns in the circuit and  is the flux through each 

turn. The negative sign shows that the induced voltage acts in such a way as to 

oppose the flux producing it. This is known as Lenz’s Law, and it emphasizes 

the fact that the direction of current flow in the circuit is such that the induced 

magnetic filed produced by the induced current will oppose the original 

magnetic field. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 1 A circuit showing emf-producing field Ef and electrostatic field Ee 



TRANSFORMER AND MOTIONAL EMFS 
 

 

Having considered the connection between emf and electric field, we may 

examine how Faraday's law links electric and magnetic fields. For a circuit with 

a single (N = 1), eq. (1.1) becomes 

V
emf N 

d 
1.2 

 

dt  

     
In terms of E and B, eq. (1.2) can be written as 

V
emf  E dl  

d 
B dS 1.3 

 

dt  

 L S  
 

    

where,  has been replaced by B dS  and S is the surface area of the circuit 
S 

 
bounded by the closed path L. It is clear from eq. (1.3) that in a time-varying 

situation, both electric and magnetic fields are present and are interrelated. 

Note that dl and dS in eq. (1.3) are in accordance with the right-hand rule as 

well as Stokes's theorem. This should be observed in Figure 2. The variation of 

flux with time as in eq. (1.1) or eq. (1.3) may be caused in three ways: 

 
1. By having a stationary loop in a time-varying B field  

 
2. By having a time-varying loop area in a static B field  

 
3. By having a time-varying loop area in a time-varying B field.  

 

 

A. STATIONARY LOOP IN TIME-VARYING B FIELD (TRANSFORMER EMF)  
 

 

This is the case portrayed in Figure 2 where a stationary conducting loop is in 

a time varying magnetic B field. Equation (1.3) becomes 
 

V
emf  E dl  

B
 dS 1.4 

 

  L S t  
 

     

      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2: Induced emf due to a stationary loop in a time varying B field. 



This emf induced by the time-varying current (producing the time-varying B 

field) in a stationary loop is often referred to as transformer emf in power 

analysis since it is due to transformer action. By applying Stokes's theorem to 

the middle term in eq. (1.4), we obtain 

E dS  
B

 dS 1.5 
 

S S t  
 

   

 

 

For the two integrals to be equal, their integrands must be equal; that is, 
 

 

 E  B 1.6 

 t  
 

 

This is one of the Maxwell's equations for time-varying fields. It shows that the 

time varying E field is not conservative ( x E  0). This does not imply that the 

principles of energy conservation are violated. The work done in taking a 

charge about a closed path in a time-varying electric field, for example, is due 

to the energy from the time-varying magnetic field. 

 

B. MOVING LOOP IN STATIC B FIELD (MOTIONAL EMF) 
 

 

When a conducting loop is moving in a static B 

loop. We recall from eq. (1.7) that the force on 

velocity u in a magnetic field B is 

 

 

field, an emf is induced in the 

a charge moving with uniform 

 

Fm = Qu x B 1.7 
 

 

We define the motional electric field Em as 
 

 

Em  
Fm 

 u B 1.8  
Q  

    
 

 

 

If we consider a conducting loop, moving with uniform velocity u as consisting 

of a large number of free electrons, the emf induced in the loop is 

Vemf    Em  dl u Bdl 1.9  
L L 



This type of emf is called motional emf or flux-cutting emf because it is due to 

motional action. It is the kind of emf found in electrical machines such as 

motors, generators, and alternators. 

 

C. MOVING LOOP IN TIME-VARYING FIELD 
 

 

This is the general case in which a moving conducting loop is in a time-varying 

magnetic field. Both transformer emf and motional emf are present. Combining 

equation 1.4 and 1.9 gives the total emf as 
 

Vemf    E dl 
B

 dS u Bdl 1.10 
 

L S t L  
 

   

 Em  u  B 1.11 
 

or from equations 1.6 and 1.11.     
 

 E  
B

 u  B 1.12 
 

 t   
 

 
 

DISPLACEMENT CURRENT 
 

 

For static EM fields, we recall that 
 

 

 x H = J 1.13 
 

 

But the divergence of the curl of any vector field is identically zero. 
 

 

Hence, 
 

 

 . ( x H) = 0 =  . J 1.14 
 

 

The continuity of current requires that 
 

 

 J  v  0 1.15 

 t   



Thus eqs. 1.14 and 1.15 are obviously incompatible for time-varying 

conditions. We must modify eq. 1.13 to agree with eq. 1.15. To do this, we add 

a term to eq. 1.13, so that it becomes 

 

 x H = J + Jd 1.16 
 

 

where Jd is to be determined and defined. Again, the divergence of the curl of 

any vector is zero. Hence: 

 

 . ( x H) = 0 =  . J +  . Jd 1.17 
 

 

In order for eq. 1.17 to agree with eq. 1.15, 
 

 

 J d  J  
v 

 
 
D 

D 
1.18  

t t t  

      
 

or         
 

J d   

D       

1.19 

 

t       
 

Substituting eq. 1.19 into eq. 1.15 results in  
 

 H  J  D      1.20 
 

  t       
  

This is Maxwell's equation (based on Ampere's circuit law) for a time-varying 

field. The term Jd = D/t is known as displacement current density and J is the 

conduction current density (J = E)3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3 Two surfaces of integration showing the need for Jd in Ampere’s circuit 
law 

 

 

The insertion of Jd into eq. 1.13 was one of the major contribution of Maxwell. 

Without the term Jd, electromagnetic wave propagation (radio or TV waves, for 

example) would be impossible. At low frequencies, Jd is usually neglected 



compared with J. however, at radio frequencies, the two terms are comparable. 

At the time of Maxwell, high-frequency sources were not available and eq. 1.20 

could not be verified experimentally. 

 

Based on displacement current density, we define the displacement current as 
 

I d 


 
J

 d dS   D 
dS 1.21   

 

   t  
 

 

 

We must bear in mind that displacement current is a result of time-varying 

electric field. A typical example of such current is that through a capacitor 

when an alternating voltage source is applied to its plates. 

 

PROBLEM: A parallel-plate capacitor with plate area of 5 cm2 and plate 

separation of 3 mm has a voltage 50 sin 103 t V applied to its plates. Calculate 

the displacement current assuming  = 2 0. 

 

Solution:  

D  E   
V

 

     d   
 

J   D    dV    
 

d d  dt 
   

  t    
 

Hence,            
 

I d  J d S  
S

 dV 
 C 

dV 
 

 

dt 
 

       d  dt  
 

 
 

which is the same as the conduction current, given by 

 

I c  
dQ 

 S 
ds  S 

dD 
 S 

dE 
 S dV 

 C 
dV 

 

dt dt dt 
  

dt 
 

     dtd  dt  
 

 

 

I 
 
 2  

10 9 
 

5 10 4 
10

3
 50 cos10

3
 t  

d 
      

 

36 3 10
3

 
 

      

      
 

 
 



= 147.4 cos 103 t nA 



EQUATION OF CONTINUITY FOR TIME VARYING FIELDS 
 

 

Equation of continuity in point form is 
 

 

 . J = -v 
 

 

where, 
 

J = conduction current density (A/M2)   

P = volume charge density (C/M3), v  v 

  t 

 = vector differential operator (1/m)   
 

 

  a 
  

 a 
  

 a 
  

 

x
  x 

y
  y 

z
  z 

 

   
 

 

 

Proof: Consider a closed surface enclosing a charge Q. There exists an outward 

flow of current given by 

I JdS 
 

S 
 

 

This is equation of continuity in integral form. 
 

 

From the principle of conservation of charge, we have 

 

I JdS
dQ

 
dt 

S 
 

 

From the divergence theorem, we have  

I JdSJd 
 

S v 
 

Thus,  J d  


 
dQ

 
 

  dt 
 

   



By definition,   Q   d 
 

 
 

 

where,  = volume charge density (C/m3) 
 

 

 J d    
. 

 

So, d    d 
 

t  

      
 

       

where 
.     

 


  

     

t   
 

      

 

 

The volume integrals are equal only if their integrands are equal. 
 
 
 
 
 

Thus,  . J = - 
.
 

 
 
 

MAXWELL'S EQUATIONS FOR STATIC EM FIELDS 
 

 

Differential (or 
Integral Form Remarks 

 

Point) Form 
 

     
 

       
 

 . D = v   S 

D
 

dS
 


 


v 

dv
  Gauss's law 

 

   v    
 

        
 

 . B = 0 

  

SB dS  0 
  Nonexistence of magnetic 

 

    monopole  

       
 

        
 

B   

L E dl  
 

B

 
  

 

 x E =- t 
   

dS Faraday’s Law 
 

  t 
 

     s   
 

      
 

 x H = J + 


D  

L H dl  J dS  
Ampere's circuit law  

t 
 

 

 s    
 

        
 

 

MAXWELL’S EQUATIONS FOR TIME VARYING FIELDS 
 

 

These are basically four in number. 
 
Maxwell's equations in differential form are given by 

 x H = 
D

  + J 

t 

 x E = - 
B

 



t 



.D = 

.B = 0 

Here, 
 

H = magnetic field strength (A/m) 

D = electric flux density, (C/m2) 

(D/t) = displacement electric current density 

(A/m2) J = conduction current density (A/m 2) 
 

E = electric field (V/m) 
 

B = magnetic flux density wb/m2 or Tesla 
 

(B/t) = time-derivative of magnetic flux density (wb/m2 -

sec) B is called magnetic current density (V/m2) or Tesla/sec 
 

P = volume charge density (C/m3)  
Maxwell's equations for time varying fields in integral form are given by 
 

 
.
  

dS  

H dL  D J  
 

L S 


   

 

E dL B dS   
 

L S   
 

D dS   d   
 

S    
 

BdS0 
S 

 
MEANING OF MAXWELL'S EQUATIONS 
 

 

1. The first Maxwell's equation states that the magnetomotive force around 

a closed path is equal to the sum of electric displacement and, 

conduction currents through any surface bounded by the path.  

 

2. The second law states that the electromotive force around a closed path 

is equal to the inflow of magnetic current through any surface bounded 

by the path.  

 

3. The third law states that the total electric displacement flux passing 

through a closed surface (Gaussian surface) is equal to the total charge 

inside the surface.  

 

4. The fourth law states that the total magnetic flux passing through any 

closed surface is zero.  



MAXWELL’S EQUATIONS FOR STATIC FIELDS 
 

 

Maxwell’s Equations for static fields are:  

 H  J  HdLJdS 
 

L S  

E  0  EdL0 
 

L  

D     DdS d 
 

S  
 

 B  0  BdS0
 

S 
 

 

As the fields are static, all the field terms which have time derivatives are zero, 

that is, D = 0, 
B

  = 0. 

 t  t 
 

 

PROOF OF MAXWELLS EQUATIONS 
 

 

1. From Ampere's circuital law, we have 
 

 

 x H = J 
 

 

Take dot product on both sides 
 

 

 .  x H =  . J 
 

 

As the divergence of curl of a vector is zero, 
 

 

RHS =  . J = 0 
 

 

But the equation of continuity in point form is 
 

 

 J  
 

  

t  

  
  



This means that if  x H = J is true, it is resulting in  . J = 0. 
 

 

As the equation of continuity is more fundamental, Ampere's circuital 

law should be modified. Hence we can write 

 

 x H = J + F Take 

dot product on both sides 


 .  x H =  . J +  . F 

that is,  .  x H = 0 =  . J +  . F 

 
Substituting the value of .J from the equation of continuity in the 

above expression, we get 

 

 . F + (-) = 0 
 

 

or,  . F = - 
 

 

The point form of Gauss's law is 
 

 

 . D =  
 

 

or,  . D =  
 

 

From the above expressions, we get 
 

 

 . F =  . D 
 

 

The divergence of two vectors are equal only if the vectors are identical, 
 

 

that is,   F = D 
 

 

So,  x H = D + J 
 
Hence proved. 



2. According to Faraday's law, 
 
 
 
 
 

emf  


 
d

 
dt 

 

 

 = magnetic flux, (wb) 
 

 

and by definition,  

 emf  E dL  
 

 L    
 

 E dL  
d

  
 

 L dt  
 

     

But   B dS    
 

 S    
 

 E dL 
B

 dS 
 

 L S t  
 

    

 B dS,  B  B 
 

 S   t 
 

     

 
Applying Stoke's theorem to LHS, we get  

EdLEdS 
 

L S  

 E dS   B dS 
 

S S 
 

 

Two surface integrals are equal only if their integrands are equal, 
 

 

that is,    x E = - B 
 

 

Hence proved. 



3. From Gauss's law in electric field, we have 
 

DdSQd 
 

S  
 

 

Applying divergence theorem to LHS, we get  

DdSDdd 
 

S   
 

 

Two volume integrals are equal if their integrands are equal, 
 

 

that is,       . D =  
 

 

Hence proved. 
 
 
 

 

4. We have Gauss's law for magnetic fields as 
 

BdS0 
 

S 
 

 

RHS is zero as there are no isolated magnetic charges and the magnetic flux 

lines are closed loops. 

 

Applying divergence theorem to LHS, we get  

B d0 
 

 
 
or, 
 

 . B = 0   Hence proved. 
 

 

PROBLEM 1: 
 

Given E = 10 sin (t - y) ay V/m, in free space, determine D, B and H. 
 

 

Solution: 
 

E = 10 sin (t - y) ay, V/m 



D = 0 E, 0 = 8.854 x 10-12 F/m 
 
 

D = 100 sin (t - y) ay, C/m2 
 
 

Second Maxwell’s equation is 
 

 

 x E = -B 

 

  
a

x 
a

 y  
a

z       
 

That is,  E  
           

 

x y 
 

z 
    

 

       
 

  0  E y 0       
 

           
 

or, E  ax  
  E

 y  0 
 
a

z   E
 y   

z x 
 

          
 

 
 

As  Ey = 10 sin (t - z) V/m 

 

E
 y   0 

x 
 

 

Now,  x E becomes 
 

 

E 
E

 
y
 a 

z 
x
 

 

 

= 10  cos (t - z) ax 

 

 
B

      
 

  t      
 

 B 10 cost  zdt ax 
 

or B   
10 

sint  z az , wb / m 
2
  

  
 

         
 

and H  
  B 

 
10 

sint  zaz , A / m  

     
 

    

0 
   

 

     0  
  



PROBLEM 2: If the electric field strength, E of an electromagnetic wave in free  

  z  V/m, find the magnetic field, H.  

   
space is given by E = 2 cos  t  

0 

a

 y  

   
 

Solution:  We have     
 

B/t = - x E     
 

 

 

 ax  a y  az  
 

 
      

 

       

x 
 

y 
 

z 
 

 

    
 

 0 E y 0  
 

        

 
 
 



a

x 





 

z 

E
 y 


 


 

a
 y 

(0)
 


 

a
z 





x 

E
 y 




 

 
 

 

   E y a                          
 

      

x 

                        

   z                             
 

  2 sin 

 t    z  


 a           

 

        

x          

  

0 
          

0 
             

 

                           
 

    2  
 
          z       

 

 B         sin t         dt a 
x 

 

                

    

0 
       

0 
    

 

                    
 

or, B  
 2       

 
  z   

      
 

                            

0 

 cost        

a
x     

 

                


0        
 

or, H  
   B   

 
   2   

cos 


    z 


  

                  

  

 

         t     

a
x 
 

      0      00            


0   
 

Thus, H  
   2              z  

      
 

                              

  

0 
  cost  

0 
 

a
x      

 

                         
 

       1              z         
 

 H            cos t         a 
x A / m  

                   

      

60 
          

0 
       

 

                        
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
0 
 0   120 

 

          
 

     0      
 

       
1 
  

 

         

0         

     

 
   

0 
 

      0   
 

            
 



PROBLEM 3: If the electric field strength of a radio broadcast signal at a TV 

receiver is given by 

 
E = 5.0 cos (t - y) az, V/m, 

 

determine the displacement current density. If the same field exists in a 

medium whose conductivity is given by 2.0 x 103 (mho)/cm, find the 

conduction current density. 

 
Solution: 
 

E at a TV receiver in free space 

 

= 5.0 cos (t - y) az, V/m 

 

Electric flux density 
 

 

D = 0 E = 5 0 cos (t - y) az, V/m 

 

The displacement current density 
 

 

J d  D  D   
 

    t   
 

   5  cost  ya   

   

  
t 

0 z  
 

     
 

 

 

Jd = -50  sin (t - y) az, V/m2 
 
 

The conduction current density, 

 

Jc =  E 

 

 = 2.0 x 103 (mho) /cm 



= 2 x 105 mho /m  

 

Jc = 2 x 105 x 5 cos (t - y) az 
 

Jc = 10
6
 cos (t - y) az V/m

2
 



 
 
 

 
 

UNIFORM PLANE WAVES 

In free space ( source-less regions where 
0J   

), The wave equation for electric field, in free-space 

is, 

2
2

2
________ (2)

E
E

t



  

  

The wave equation (2) is a composition of these equations, one each component wise, 

ie,   

2 2

2 2

2 2

2 2

2 2

2 2

_______(2)

_______(2)

_______(2)

Ex Ey
a

x t

Ey Ey
b

y t

Ez Ez
c

z t







 
 

 

 
 

 

 
 

   

Further, eqn. (1) may be written as 

0 ________ (1)
Ex Ey Ez

a
x y z

  
  

  
 

For the UPW, E is independent of two coordinate axes; x and y axes, as we have assumed. 

0
x y

 
  

 
 

Therefore eqn. (1) reduces to 

0 ______ (3)zE

z




  

ie., there is no variation of Ez in the z direction. 

Also we find from 2 (a) that 

2

2

Ez

t



 = 0 ____(4) 



These two conditions (3) and (4) require that Ez can be 

(1) Zero 

(2) Constant in time or 

(3) Increasing uniformly with time. 

A field satisfying the last two of the above three conditions cannot be a part of wave motion. Therefore Ez can be put 

equal to zero, (the first condition). 

     

The uniform plane wave (traveling in z direction) does not have any field components of E & H in its direction of 

travel. 

Therefore the UPWs are transverse., having field components (of E & H ) only in directions perpendicular to the 

direction of propagation does not have any field component only the direction of travel. 

RELATION BETWEEN E & H in a uniform plane wave. 

We have, from our previous discussions that, for a UPW traveling in z direction, both E & H are independent of x 

and y; and E & H have no z component. For such a UPW, we have, 

ˆˆ ˆ

ˆ ˆ( 0) ( 0) _____ (5)

( 0)

ˆˆ ˆ

ˆ ˆ( 0) ( 0) _____ (6)

( 0)

y x

z z

y x

z z

i j k

E E
E i j

x y z

Ex Ey Ez

i j k

H H
H i j

x y z

Hx Hy Hz

     
         

       



     
         

       


 

Then Maxwell’s curl equations (1) and (2), using (5) and (6), (2) becomes, 

ˆ ˆ ˆ ˆ ______ (7)

ˆ ˆ ˆ ______ (8)

E Ex Ey Hy Hx
H i j i j

t t t z z

and

H Hx Hy Ey Ex
E i j i j

t t t z z
  

       
          

       

       
          

       

 

   Ez = 0 



Thus, rewriting (7) and (8) we get 

ˆ ˆ ˆ ˆ ______ (7)

ˆ ˆ ˆ ˆ ______ (8)

Hy Hx Ex Ey
i j i j

z z t t

Ey Ex Hx Hy
i j i j

z z t t


    
     

    

    
     
    

 

Equating î th and j th terms, we get 

 

   

1 0 0

1 0 0 0 1

' '0 0
1

0

'

1

0

______ 9 ( )

______ 9 ( )

ˆ ______ 9( )

______ 9 ( )

1
; . ,

. .

. 9( ), ,

Hy Ex
a

z t

Hx Ey
b

z t

Ey Hx
i c

z t

and

Ex Hy
d

z t

Let

Ey f z t Then
E

Ey
f z t f

t

From eqn c we get

Hx
f f

t

Hx f dz





 


  



 



 
  

 

 
 

 

 
 
 

 


 

  


    






   




    .c

 



 '
0' '1

1 1

1
z

Now

z tf
f f

z z

f
H C

z





 
 

 


   


 

 '
0' '1

1 1

1
1

Now

z tf
f f

z z

f
dz c f c

z

Hx Ey c



 



 
 

 

 
     




  



 

The constan C indicates that a field independent of Z could be present. Evidently this is not a part of the wave 

motion and hence is rejected. 

Thus the relation between HX and EY becomes, 

__________ (10)

x y

y

x

H E

E

H






 

  


 

Similarly it can be shown that 

x

y

E

H





_____________ (11) 

 

 

 

 

 

 



In our UPW, 
ˆ ˆ

x yE E i E j 
 

 

2

2
2

2

0

_______ ( )

E
E E

t t

E E
E xi

t t

But E

E

 

 



  
    

  

 
    

 

 


 

 

DERIVATION OF WAVE EQUATION FOR A CONDUCTING MEDIUM: 

 

0 0. Surface charges and hence surface currents exist, static fields or charges 

do not exist. 

For the case of conduction media, the point form of maxwells equations are: 



________ ( )

_________ ( )

0 _________ ( )

0 _________ ( )

( ),

D E
H J E i

t t

B H
E ii

t t

D E E iii

B H H iv

Taking curl on both sides of equation i we get

E
H E

t





 





 
    

 

 
    

 

     

     

 
    

 

 

 

 

2

2

2

2
2

2

________ ( )

. ( ) . ( ),

_________ ( )

_________ ( )

. ( )

_________ (

E E v
t

substituting eqn ii in eqn v we get

H H
H vi

t t

But H H H vii

eqn vi becomes

H H
H H vii

t t

  

 


 



    
       

    

    



 
      

 

2
2

2

)

1 1
0 0

. ( ) ,

0 ________ ( )

i

B
But H B

eqn viii becomes

H H
H ix

t t

  

 

      



 
    

   

 



This is the wave equation for the magnetic field H in a conducting medium. 

Next we consider the second Maxwell’s curl equation (ii) 

________ ( )
H

E ii
t




  
  

Taking curl on both sides of equation (ii) we get 

 

  2

________ ( )

;

HH
E x

t t

But E E E

 
 

     
 

    
 

Vector identity and substituting eqn. (1) in eqn (2), we get 

  2

2

2

0

_______ ( )

E
E E E

t t

E E
xi

t t

But E

 

 



  
      

  

 
   

 

 


 

 conductor, 

Therefore we get 0E   

Therefore eqn. (xi) becomes, 

2
2

2

E E
E

t t
 

 
    

   ____________ (xii) 

This is the wave equation for electric field E in a conducting medium. 

Wave equations for a conducting medium: 

1. Regions where conductivity is non-zero. 

2. Conduction currents may exist. 

For such regions, for time varying fields 

The Maxwell’s eqn. Are: 



_________ (1)

__________ (2)

: ( / )

E
H J

t

H
E

t

J E Conductivity m



 


  




  



 
 

    = conduction current density. 

Therefore eqn. (1) becomes, 

_________ (3)
E

H E
t




  
  

Taking curl of both sides of eqn. (2), we get 

 

 

 

2

2

2

2
2

2

________ (4)

( )

sin . (4) ,

_______ (5)

1
tan ,

E H
t

E E

t t

But

E E E vector identity

u g this eqn becomes vector identity

E E
E E

t t

But D

is cons t E D



 

 




   



 
  

 

    

 
     

 

  

   
  

Since there is no net charge within a conductor the charge density is zero ( there can be charge on the surface ), we 

get. 

1
0E D   

  

 Therefore using this result in eqn. (5) 

 we get 

2
2

2
0 ________(6)

E E
E

t t
 

 
    

   

This is the wave eqn. For the electric field E in a conducting medium. 

This is the wave eqn. for E . The wave eqn. for H is obtained in a similar manner. 

Taking curl of both sides of (1), we get 



2

2

________ (7)

________ (2)

(1) ,

________ (8)

E
H E

t

H
But E

t

becomes

H H
H

t t





 


   




  





 
    

 

 

As before, we make use of the vector identity. 

  2H H H    
 

in eqn. (8) and get 

 
2

2

2

2
2

2

________ (9)

1 1
0 0

.(9)

________ (10)

H H
H H

t t

But

B
H B

eqn becomes

H H
H

t t

 

  

 

 
      

 

      



 
   

   

This is the wave eqn. for H in a conducting medium. 

Sinusoidal Time Variations: 

In practice, most generators produce voltage and currents and hence electric and magnetic fields which vary 

sinusoidally with time. Further, any periodic variation can be represented as a weight sum of fundamental and 

harmonic frequencies. 

Therefore we consider fields having sinusoidal time variations, for example, 

  E = Em  

  E = Em  

 

Therefore every field or field component varies sinusoidally, mathematically by an additional term. Representing 

sinusoidal variation. For example, the electric field E can be represented as 



 

   

, , ,

., , ; , ,

E x y z t as

ie E r t r x y z
 

Where E is the time varying field. 

The time varying electric field can be equivalently represented, in terms of corresponding phasor quantity E (r) as 

   , ________ (11)j t

eE r t R E r e      

The symbol ‘tilda’ placed above the E vector represents that E is time – varying quantity. 

The phasor notation: 

We consider only one component at a time, say Ex. 

The phasor Ex is defined by 

     , ________ (12)j t

x e xE r t R E r e 
 

 

                                                            |  Ex | 

                                                                                                             |  Ex | 

                                                                                   

 

 

 

 

 xE r
denotes Ex as a function of space (x,y,z). In general 

 xE r
is complex and hence can be represented as a 

point in a complex and hence can be represented as a point in a complex plane. (see fig) Multiplication by 
jwte

results in a rotation through x 
jwte traces out a 

circle with center at the origin. Its projection on the real axis varies sinusoidally with time & we get the time-

harmonically varying electric field Ex (varying sinusoidally with time). We note that the phase of the sinusoid is 

x. 

Therefore the time varying quantity may be expressed as 

  ________ (13)

cos( ) ________ (14)

j j t

x e x

x

E R E e e

E t

 

 



 
 

Maxwell’s eqn. in phasor notation: 

In time – harmonic form, the Maxwell’s first curl eqn. is: 

 

            t     

                          

 

  



_______ (15)
D

H J
t


  

  

using phasor notation, this eqn. becomes, 

  ________ (16)j t j t j t

e e eR He R De R Je
t

  
          

The diff. Operator & Re part operator may be interchanged to get, 

   

  0

j t j t j t

e e e

j t j t

e e

j t

e

R He R De R Je
t

R j D e R Je

R H j D J e

  

 







 
    

       



      

This relation is valid for all t. Thus we get 

________ (17)H J j D    

This phasor form can be obtained from time-varying form by replacing each time derivative by 

.,jw ie is to be replaced by
t


 

 
   

For the sinusoidal time variations, the Maxwell’s equation may be expressed in phasor form as: 

 (17)

(18)

(19)

(20) 0 0

L
S

L
S

V V
S

V

S

H J j D H dL J j D ds

E j B E dl j B ds

D D ds d

B B ds

 

 

 

    

    

  

  

 

 

 


 

The continuity eqn., contained within these is, 

_______ (21)
S

vol

J j J ds j dv      
 

The constitutive eqn. retain their forms: 

  

D E

B H

J E









 ____ (22) 



For sinusoidal time variations, the wave equations become 

 

 

2 2

2 2

( )

( )

E E for electric field

H H for electric field

 

 

   

   
_________ (23) 

Vector Helmholtz eqn. 

In a conducting medium, these become 

 

 

2 2

2 2

0

0

E j E

H j H

  

  

   

   
  ________ (24) 

Wave propagation in a loss less medium: 

In phasor form, the wave eqn. for VPW is 

2
22

22

2

2

1 2

; _______ (25)

_______ (26)

y

y

j x j x

y

E
EE

Ex
x

E

E C e C e 

 







   

  
  

  
 

C1 & C2 are arbitrary constants. 

The corresponding time varying field is 

   

   

   

1 2

1 2

,

______ (27)

cos cos ______ (28)

j t

y e y

t z t zj j

e

E x t R E x e

R C e C e

C t z C t z



   

   

 

   

  
 

   
 

When C1 and C2 are real. 

Therefore we note that, in a homogeneous, lossless medium, the assumption of sinusoidal time variations results in a 

space variation which is also sinusoidal. 

Eqn. (27) and (28) represent sum of two waves traveling in opposite directions. 

If C1 = C2 , the two traveling waves combine to form a simple standing wave which does not progress. 

If we rewrite eqn. (28) with Ey as a fn of (x-  




 

Let us identify some point in the waveform and observe its velocity; this point is 
 t x a  

constant 

Then  

' 'a t

dx x

dt t



 


  

 
 
  

   


 



This velocity is called phase velocity, the velocity of a phase point in the wave. 

e. 

 

 

Wavelength:  

ie., 

 

0

2

2 2

2

;

1
:

Z

or

But

f

or

f f in H

 

 
 

 

  
 

 

 


 

 



 

   



 


 

Wave propagation in a conducting medium 

We have, 



Where         
 

2 2

2 2

0E E

j

j j



   

  

  

  

  
 

propagation constant is, in general, complex. 

 

         

         

The eqn. for UPW of electric field strength is 

  

2
2

2

E
E

x





  

One possible solution is 

  
  0

xE x E e 
 

Therefore in time varying form, we get 

  

 

0

, x j t

e

x jwt

e

E x t R E e e

e R E e

 







   

     

This eqn. shown that a up wave traveling in the +x direction and attenuated by a factor 
xe 

. 

The phase shift factor 

 

2

and velocity f













 

 

 j j t  
 

   =    

2

2 2

2

2 2

1 1
2

1 1
2

 




 
 



 
  

 
 

 
   

 
 

 

Conductors and dielectrics: 

We have the phasor form of the 1
st
 Maxwell’s curl eqn. 

c dispH E j E J J      
 



where cJ E 
conduction current density ( A/m

2
 ) 

          dispJ j E  
displacement current density ( A/m

2
 ) 

cond

disp

J

J




 


 

We can choose a demarcation between dielectrics and conductors; 

1





  

*  

1





  is conductor.  Cu: 3.5*10
8
 @ 30 GHz 

*  

1





  is dielectric.  Mica: 0.0002 @ audio and RF 

*  For good conductors,   are independent of freq. 

*  For most dialectics,    are function of freq. 

*   



   is relatively constant over frequency range of interest 

  Therefore dielectric “ constant “ 

*   



   dissipation factor D 

if D is small, dissipation factor is practically as the power factor of the dielectric. 

  

 
-1

D 

PF & D difference by <1% when their values are less than 0.15. 

Example 11.1 

1. Express 

 
6 0

8 0

2 10 0.5 30

100 cos 2 10 0.5 30 /

100

y

j t z

y e

E t z v m as a phasor

E R e 



  

  

 
   

 Drop Re and suppress e
jwt

 term to get phasor 

Therefore phasor form of Eys = 

00.5 30100 ze 

 

Whereas Ey is real, Eys  is in general complex. 

Note: 0.5z is in radians; 
030 in degrees. 

Example 11.2 

Given   



0 0 0ˆ ˆ ˆ100 30 20 50 40 210 , /sE ax ay az V m     
 

find its time varying form representation 

Let us rewrite sE
as 

     

     

0 0 0

0 0 0

30 50 210

30 50 210

0 0 0

ˆ ˆ ˆ100 20 40 . /

100 20 40 /

100 cos 30 20 cos 50 40 cos 210 /

j j j

s

j t

e s

j t j t j t

e

E e ax e ay e az V m

E R E e

R e e e V m

E t t t V m



  

  



  

  

    

   
  

    

 

None of the amplitudes or phase angles in this are expressed as a function of x,y or z. 

Even if so, the procedure is still effective. 

2. Consider 

 

 
 

 

 

 

0.1 20

0.1 20

0.1

ˆ20 /

ˆ20

ˆ20 cos 20 /

, ,

: , ,

j z

j z

s

j t

e

z

x x

j tx
e x

j t

e x

H e ax A m

H t R e ax e

e t z ax A m

E E x y z

E
Note consider R E x y z e

t t

R j E e











 

 





 
 

 



 
    

     

Therefore taking the partial derivative of any field quantity wrt time is equivalent to multiplying the corresponding 

 

Example 

Given 

  
 

   

   

   

0 0.4

0
ˆ ˆ500 40 200 600 /

2,3,1 0

2,3,1 10 .

3,4,2 20 .

j x

sE ay j az e V m

Find a

b E at at t

c E at at t ns

d E at at t ns



   






 



Q. Fro

m given data, 

    

0 0

8
6

9
7

9

6

0.4

0.4 3 10
120 10

10
4 10

36

19.1 10f Hz

  











  

 
   

 

 
 

R. Giv

en, 

     

  

   

 
   

0

0 0

0 0

0 0.4

40 0.4 71.565 0.4

0.4 40 0.4 71.565

0.4 40 0.4 71.565

ˆ ˆ500 40 200 600

ˆ ˆ500 632.456

ˆ ˆ500 632.456

ˆ ˆ500 632.456

500 cos 0

j x

s

j j x j j x

j x j x

j x j xj t j t

e

E ay j az e

e e ay e e az

e ay e az

E t R e e ay e e az

t

 





   

   

   

   

 

 

  
  

    

     

0

0

ˆ ˆ.4 40 632.456 cos 0.4 71.565

ˆ ˆ2,3,1 0 500 cos 0.4 40 632.456 0.4 71.565

ˆ ˆ36.297 291.076 /

x ay t x az

E at t x ay x az

ay az V m

   

      

 

  

c) 

   

 

 

6 9 0

6 9 0

10 2,3,1

ˆ500 cos 120 10 10 10 0.4 2 40

ˆ632.456 cos 120 10 10 10 0.4 2 71.565

ˆ ˆ477.823 417.473 /

E at t ns at

ay

az

ay az V m







      

      

 

 

d) 

at t = 20 ns,  

                     

 2,3,1

ˆ ˆ438.736 631.644 /

E at

ay az V m 
 

D 11.2: 



Given 
 0 0.07ˆ ˆ2 40 3 20 /j z

sH ax ay e A m   
  for a UPW traveling in free space. Find 

x at p(1,2,3) at t = 31 ns.                (c)  
H

 at  t=0 at the origin. 

(a)  we have   p = 0.07                 
( )j ze term

 

8 6

6

0.07

0.07
0.07 3 10 21.0 10 / sec

21.0 10 / sec

rad

rad

 




  

     


 
 

(b) 

   
   

 
 

 

 

0 040 0.07 20 0.07

0 0

0

6 0

6 9 0

3

ˆ ˆ2 3

ˆ ˆ2 cos 0.07 40 3 cos 0.07 20

( ) 2cos 0.07 40

( ) 1,2,3

2cos 2.1 10 0.21 40

31 sec; 2cos 2.1 10 31 10 0.21 40

2cos 651 10

j j z j j z j t

e

x

x

H t R e e ax e e ay e

t z ax t z ay

H t t z

H t at p

t

At t n



 



  





  
 

     

  

   

      

  00.21 40

1.9333 /A m

 



 

(c) 

     

     

ˆ ˆ0 2cos 0.07 0.7 3cos 0.7 0.35

ˆ ˆ2cos 0.7 3cos 0.3

ˆ ˆ1.53 2.82

3.20666 /

H t at t z ax z ay

H t ax ay

ax ay

A m

      

 

 


 

In free space, 



   

 

 

 

   

ˆ, 120sin /

,

120

120
ˆsin

120 120

1
sin

1
ˆ, sin

y

x

y

x

E z t t z ay V m

find H z t

E
we have

H

E
H t z ay

t z

H z t t z ax

 

 

 
 

 


 


 

   

     

  

   
 

Problem 3. J&B 

Non uniform plans waves also can exist under special conditions. Show that the function 

 sinzF e x t 




 
 

satisfies the wave equation 

2
2

2 2

1 F
F

c t


 

  

provided the wave velocity is given by 

2 2

2
1

c
e






 
  

 
 

Ans: 

From the given eqn. for F, we note that F is a function of x and z, 

 

 

 

 

2 2
2

2 2

2 2

2 2

2
2 2

2

cos

sin

sin

sin

z

z
z

z

z

F F
F

x y

F
e x t

x

F e
e x t F

x

F
e x t

z

F
e x t F

z










 


 

   


   







  












 
  

 


 



   
      

   


  




   

  



   

    

2
2 2

2

2

2

2

cos

sin

z

z

F F

dF
e x t

dt

d F
e x t

dt

F










 
 

 

 
  

 







 
    

 

 
   

 

 
     

 

 
 

The given wave equation is 

 

2
2

2 2

2
2 2

2 2

2 2
2

2 2

2 2
2

2 2

2
2

2
2

2

2 2 2
2

2 22 2 2

2

2 2

2

1

1

1

1

F
F

c t

F F
c

c

c

c

c c

cc

c
or

c


 



 




 













 









 



 
    
 

   

 





  







 

Example 

The electric field intensity of a uniform plane wave in air has a magnitude of 754 V/m and is in the z direction. 

ting in the y direction. 

Find 

(i) Freq

 cosA t z 
. 

(ii) Find 

an expression for H . 



In air or free space, 

      
83 10 / secc m   

 

(i)   

 

8
8

6

3 10
/ sec 1.5 10 150

2

2 2
3.14 /

2

754cos 2 150 10z

e
f m Hz MHz

m

rad m
m

E t y



 




 


    

  

    
 

 

(ii) 

For a wave propagating in the +y direction, 

xz

z z

EE

H H
  

 

For the given wave, 

 6

754 / ; 0

754 754
754 /

120 377

ˆ2cos 2 150 10 /

z x

x

E V m E

H A m

H t y ax A m




 

 

    

    
 

Example 

7
  



7 7

3

2 2

3
3

3
5

6

3
7

6

2 1

1 1 1 1

4 10 5.8 10

1 1 1 66 10

4 5.8 23.2

66 10
( ) 9.3459 10

50

66 10
( ) 3.8105 10

3 10

66 10
( ) 3.8105 10

3 10

f

f

f f f

i m

ii m

iii m


  

 

 














 

   
 


   




  


  




  

  

Wave Propagation in a loss less medium: 

Definition of uniform plane wave in Phasor form: 

In phasor form, the uniform plane wave is defined as one for which the equiphase surface is also an 

equiamplitude surface, it is a uniform plane wave. 

For a uniform plane wave having no variations in x and y directions, the wave equation in phasor form may be 

expressed as 

2 2
2 2

2 2
0 ________ ( )

E E
E r E i

Z Z
  

 
    

   

where 
   

. Let us consider eqn.(i) for, the Ey component, we get 

                                         

2

2

2

y

y

E
E

Z



 

  

yE
has a solution of the form, 

                        1 2 ________ (2)j z j z

yE C e C e   
 

Where C1 and C2 are arbitrary complex constants. The corresponding time varying form of  yE
 is 

                        

    

 1 2

,

_______ (3)

j t

y e y

j z j z j t

e

E z t R E z e

R C e C e e



  



       

If  C1 and C2 are real, the result of real part extraction operation is, 



     1 2, cos cos _______ (4)yE z t C t z C t z       
 

From (3) we note that, in a homogeneous lossless medium, sinusoidal time variation results in space variations 

which is also sinusoidal. 

Equations (3) and (4) represent sum of two waves traveling in opposite directions. 

If  C1 =  C2, the two wave combine to form a standing wave which does not progress. 

Phase velocity and wavelength: 

The wave velocity can easily obtained when we rewrite Ey as a function and 
 z t

, as in eqn. (4). This 

shows that 

                         

________(5)







 

In phasor form, identifying a some reference point on the waveform and observing its velocity may obtain the 

same result. For a wave traveling in the +Z direction, this point is given by 
t z a  

constant. 

dz

dt





  

, as in eqn. (5) 

This -shift 

constant and is a measure of  phase shift in radians per unit length. 

Wavelength: Wavelength is defined as that distance over which the sinusoidal waveform passes through a full 

 

ie., 

2

2 2 2 1
; ________(7)

2

, ________(8)

ff

f f in Hz

 

   
 

     

 



     
  

 
 

 

0

8

0

1
_______(9)

; 3 10 / secC C m

 
 

   



   
 

  
 

Wave propagation in conducting medium: 

The wave eqn. written in the form of Helmholtz eqn. is 

   

2 2

2 2

0 _______(10)

_______(11)

E E

where j j j



      

  

    
. 



 

We have, for the uniform plane wave traveling in the z direction, the electric field E must satisfy 

       

2
2

2
_______(13)

E
E

Z





  

This equation has a possible solution 

       
  0 _______(14)ZE Z E e 

 

In time varying form this is becomes 

       
   0, _______(15)Z j t

eE z t R E e e 
 

     = 

  0 ________(16)
j t zz

ee R E e
  

 

This is the equation of a wave traveling in the +Z direction and attenuated by a factor 
Ze 

. The phase shift 

factor and the wavelength phase, velocity, as in the lossless case, are given by    

2
f

 
  

 
  

 

The propagation constant 

We have,             
  ________(11)j j     

 

 
22 2 2 22 ________(17)j j j                

 

2 2 2 2 2 2; ________(18)
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Therefore (19) in (18) gives: 
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We choose some reference point on the wave, the cosine function,(say a rest). The value of the wave ie., the 

 

                        0 2k z m 
   at m

th
 erest. 

Now let us fix our position on the wave as this m
th

  erest and observe time variation at this position, nothing that 

 

ie.,             
 0 0 2 /t k z m t z c      

 

Thus at t increases, position z must also increase to satisfy eqn. (   ). Thus the wave erest (and the entire wave 

moves in a +ve direction) with a speed given by the above eqn. Similarly, eqn. (  ) having a cosine argument 

 0t z 
describes a wave that moves in the negative direction (as + increases z must decrease to keep the 

argument constant). These two waves are called the traveling waves. 

Let us further consider only +ve z traveling wave: 

We have    
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Ey and Hx 

constant. 

Energy flow is in +Z direction. 

E and H are perpendicular to the direction of propagation; both lie in a plane that is transverse to the direction of 

propagation. Therefore also called a TEM wave. 

11.1.  The electric field amplitude of a UPW in the âz direction is 250 V/m. If E = 
ˆ

xE ax

H . 
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1. Giv

en 
 0 0 0.07ˆ ˆ2 40 3 20 /j z

sH ax ay e A m   
for a certain UPW traveling in free space. 

x at p(1,2,3) at t = 31ns and (iii) 
H

at t = 0 at the orign.  

Wave propagation in dielectrics: 

For an isotopic and homogeneous medium, the wave equation becomes 

2 2

0 0

s s

r r r r

E k

k k    

   

     
 

For Ex component 

We have 

2
2

2

xs
xs

d E
k E

dz
 

  for Ex  comp. Of electric field wave traveling in Z – direction. 

k can be complex one of the solutions of this eqn. is, 

0

z j z

xs x

jk j

E E e e 

 
 

 


 

Therefore its time varying part becomes, 

 0 cosz

xs xE E e t z   
This is UPW that propagates in the +Z direction with phase 

constant 
 zZ e 

. Thus the general effect of a complex valued k is 

to yield a traveling wave that changes its amplitude with distance. 



  

-ve   

 

–ve. 

Wave propagation in a conducting medium for medium for time-harmonic fields: 

(Fields with sinusoidal time variations) 

 

                       

2 2E E    
      

In a conducting medium, the wave eqn. becomes for sinusoidal time variations: 

 2 2 0E j E     
 

Problem: 

Using Maxwell’s eqn. (1) show that 

. 0D     in a conductor 

if ohm’s law and sinusoidal time variations are assumed. When ohm’s law and sinusoidal time variations are 

assumed, the first Maxwell’s curl equation is 

H E j E    
 

Taking divergence on both sides, we get, 
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constants and of finite values and 
0

 

0D   

 

 

Wave propagation in free space: 

The Maxwell’s equation in free space, ie., source free medium are, 
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Note that wave motion can be inferred from the above equation. 

How? Let us see, 

Eqn. (1) states that if electric field E is changing with time at some, point then magnetic field H has a curl at that 

point; thus H varies spatially in a direction normal to its orientation direction. Further, if E varies with time, then 

H will, in general, also change with time; although not necessarily in the same way. 

Next 

From (2) we note that a time varying H generates E ; this electric field, having a curl, therefore varies spatially in 

a direction normal to its orientation direction. 

We thus have once more a time changing electric field, our original hypothesis, but this field is present a small 

distance away from the point of the original disturbance. 

The velocity with which the effect has moved away from the original disturbance is the velocity of light as we are 

going to prove later. 

 

UNIFORM PLANE WAVE: 

Uniform plane wave is defined as a wave in which (1) both fields E and H lie in the transverse plane. Ie., the 

plane whose normal is the direction of propagation; and (2) both E and H are of constant magnitude in the 

transverse plane. 

Therefore we call such a wave as transverse electro magnetic wave or TEM wave. 

The spatial variation of both E and H fields in the direction normal to their orientation (travel) ie., in the 

direction normal to the transverse plane. 

 

Differentiating eqn. (7) with respect to Z1 we get 

2 2

0 02
________(9)xE Hy H

Z Z t t Z
 

    
    

     

 

Differentiating (8) with respect to t1 we get 
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0 2
_________(10)xEH

t Z t


 

    

Therefore substituting (10) into (9) gives, 

2 2

0 02 2
_________(11)x xE E

t t


 
  

   

This eqn.(11) is the wave equation for the x-polarized TEM electric field in free space. 

The constant 0 0

1

 
is the velocity of the wave in free space, denoted c and has a value 

83 10 / secm , on 

substituting the values, 

9
7

0 0

10
4 10 /

36
H m and 




   

Differentiating (10) with respect to 

Z and differentiating (9) with respect to ‘t’ and following the similar procedure as above, we get 

2 2

0 02 2
_________(13)

y yH H

Z t


 
 

   

eqn. (11 and (13) are the second order partial differential eqn. and have solution of the form, for instance, 

         
     1 2, / / ________(14)xE Z t f t Z f t Z    

 

Let 
ˆ

xE E ax
(ie., the electric field is polarized (!) in the x- direction !) traveling along Z direction. Therefore 

variations of E occurs only in Z direction. 

Form (2) in this case, we get 
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ˆ ˆ ˆ
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Note that the direction of the electric field E determines the direction of H , we is now along the y direction. 

Therefore in a UPW, E and H are mutually orthogonal. (ie., perpendicular to each other). This in a UPW . 

(i)  E  and H are perpendicular to each other (mutually orthogonal and 

(ii) E and H are also perpendicular to the direction of travel. 

Form eqn. (1), for the UPW, we get 

0 0
ˆ ˆy x

H EE
H ax t ax

Z t t

 
    
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(using the mutually orthogonal property) _______________(6) 

Therefore we have obtained so far, 
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f1 and f2 can be any functions who se argument is of the form /t Z  . 

The first term on RHS represents a forward propagating wave ie., a wave traveling along positive Z direction. 

The second term on RHS represents a reverse propagating wave ie., a wave traveling along negative Z direction. 

(Real instantaneous form and phaser forms). 

The expression for Ex (z,t) can be of the form 
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p is called the phase velocity = c in free space k0 is called the wave number in free space = c



rad/m 

_________(16) 

eqn. (15) is the real instantaneous forms of the electric (field) wave. ( experimentally measurable) 

0t and k0z have the units of angle usually in radians. 

 rad/sec. 

k0 : spatial frequency, phase shift per unit distance in rad/m. 

k0 is the phase constant for lossless propagation. 

 

ie., 

0 0

0

2

2

k z k

or
k

 




 



(in free space) _________(17) 

Let us consider some point, for instance, the crest or trough or zero crossing (either –ve to +ve or +ve to –ve). 

Having chosen such a reference, say the crest, on the forward-propagating cosine function, ie., the function 

 0 1cos t k z  

the m
th

 erest of the wave from our reference point, the condition becomes, 

K0  

This point on the cosine wave we have chosen, let us see what happens as time increases. 



point. 

Therefore we get,     
 0 / 2 _______(18)t k z t Z m      

 

As time increases, the position Z must also increase to satisfy (18). The wave erest, and the entire wave, moves in 

the positive Z-direction with a phase velocity C (in free space). 

Using the same reasoning, the second term on the RHS of eqn. (15) having the cosine argument 
 0t k z 

represents a wave propagating in the Z direction, with a phase velocity C, since as time t increases, Z must decrease 

to keep the argument constant. 

 

POLARISATION: 

It shows the time varying behavior of the electric field strength vector at some point in space. 

Consider of a UPW traveling along Z direction with E and H vectors lying in the x-y plane. 

1. If 
0Ey 

and only Ex is present, the wave is said to be polarized in the x-direction. 

2. If  Ex = 0 and only 
Ey

is present, the wave is said to be polarized in the y-direction. 

Therefore the direction of E is the direction of polarization 

3. If both Ex and 
Ey

are present and are in phase, then the resultant electric field E has a 

direction that depends on the relative magnitudes of Ex and 
Ey

. 

The angle which this resultant direction makes with the x axis is tan
-1

 

Ey

Ex ; and this angle will be constant with 

time. 

1. Linear polarization: 

In all the above three cases, the direction of the resultant vector is constant with time and the wave is said to be 

linearly polarized. 

If  Ex  and 
Ey

are not in phase ie., they reach their maxima at different instances of time, then the direction of the 

resultant electric vector will vary with time. In this case it can be shown that the locus of the end point of the 

resultant E will be an ellipse and the wave is said to be elliptically polarized. 

In the particular case where Ex and 
Ey

have equal magnitudes and a 90
0
 phase difference, the locus of the resultant 

E is a circle and the wave is circularly polarized. 

Linear Polarisation: 

Consider the phasor form of the electric field of a UPW traveling in the Z-direction: 



  0

j zE Z E e  
 

Its time varying or instanious time form is 

   0, j z j t

eE Z t R E e e 
 

The wave is traveling in Z-direction. 

Therefore zE
lies in the x-y plane. In general, 0E

is a complex vector ie., a vector whose components are complex 

numbers. 

Therefore we can write 0E
as, 

0 0r iE E jE 
 

Where 0E
and 0iE

are real vectors having, in general, different directions. 

At some point in space, (say z = 0) the resultant time varying electric field is 
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Therefore E not only changes its magnitude but also changes its direction as time varies. 

Circular Polarisation: 

Here the x and y components of the electric field vector are equal in magnitude. 

If Ey leads Ex by 90
0
 and Ex  and Ey have the same amplitudes, 

Ie., 
x yE E

, we have, 
  0

ˆ ˆE ax j ay E 
 

The corresponding time varying version is, 
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Which shows that the end point of 
 0 0,E t

traces a circle of radius 0E
as time progresses. 

Therefore the wave is said to the circularly polarized. Further we see that the sense or direction of rotation is that of 

a left handed screw advancing in the Z-direction ( ie., in the direction of propagation). Then this wave is said to be 

left circularly polarized. 

Similar remarks hold for a right-circularly polarized wave represented by the complex vector, 

  0
ˆ ˆE ax j ay E 

 



It is apparent that a reversal of the sense of rotation may be obtained by a 180
0
 phase shift applied either to the x 

component of the electric field. 

Elliptical Polarisation: 

Here x and y components of the electric field differ in amplitudes 
 x yE E

. 

Assume that Ey leads Ex by 90
0
. 

Then, 

            0
ˆ ˆE ax A j ay B

 

Where A and B are +ve real constants. 

Its time varying form is 

 
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Thus the end point of the 
 0,E t

vector traces out an ellipse and the wave is elliptically polarized; the sense of 

polarization is left-handed. 

Elliptical polarization is a more general form of polarization. The polarization is completely specified by the 

orientation and axial ratio of the polarization ellipse and by the sense in which the end point of the electric field 

moves around the ellipse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 


