
MAGNETOSTATIC FIELDS 
 

 

Static electric fields are characterized by E or D. Static magnetic fields, are characterized 

by H or B. There are similarities and dissimilarities between electric and magnetic fields. 

As E and D are related according to D = E for linear material space, H and B are related 

according to 
 
B = H. 
 
 
A definite link between electric and magnetic fields was established by Oersted in 1820. 

An electrostatic field is produced by static or stationary charges. If the charges are 

moving with constant velocity, a static magnetic (or magnetostatic) field is produced. A 

magnetostatic field is produced by a constant current flow (or direct current). This current 

flow may be due to magnetization currents as in permanent magnets, electron-beam 

currents as in vacuum tubes, or conduction currents as in current-carrying wires. 

 

The development of the motors, transformers, microphones, compasses, telephone bell 

ringers, television focusing controls, advertising displays, magnetically levitated high 

speed vehicles, memory stores, magnetic separators, and so on, involve magnetic 

phenomena and play an important role in our everyday life. 

 

 

There are two major laws governing magnetostatic fields: 
 

 

(1) Biot-Savart's law, and  
 

 

(2) Ampere's circuit law.  
 
 
 
 
 
 
 
 



Like Coulomb's law, Biot-Savart's law is the general law of magnetostatics. Just as 

Gauss's law is a special case of Coulomb's law, Ampere's law is a special case of Biot-

Savart's law and is easily applied in problems involving symmetrical current distribution. 

 

BIOT SAVART's LAW 
 

 

Biot-Savart's law states that the magnetic field intensity dH produced at a point P, as 

shown in Figure 1.1, by the differential current element I dl is proportional to the product 

I dl and the sine of the angle  between the element and the line joining P to the element 

and is inversely proportional to the square of the distance R between P and the element. 

 

That is,  
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where, k is the constant of proportionality. In SI units, k = 1/4 . So, eq. (1.2) becomes 
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From the definition of cross product equation A x B = AB Sin AB an, it is easy to 

notice that eq. (1.3) is better put in vector form as 
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where R in the denominator is |R| and aR = (vector R/|R|}. Thus, the direction of dH can 

be determined by the right-hand rule with the right-hand thumb pointing in the direction 

of the current, the right-hand fingers encircling the wire in the direction of dH as shown 

in Figure 1.2(a). Alternatively, one can use the right-handed screw rule to determine the 

direction of dH: with the screw placed along the wire and pointed in the direction of 

current flow, the direction of advance of the screw is the direction of dH as in Figure 

1.2(b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.1: Magnetic field dH at P due to current element I dl. 
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Figure 1.2: Determining the direction of dH using (a) the right-hand rule, or (b) 

the right-handed screw rule. 

 

It is customary to represent the direction of the magnetic field intensity H (or current I) 

by a small circle with a dot or cross sign depending on whether H (or I) is out of, or into, 

the page as illustrated in Figure 1.3. 

 

As like different charge configurations, one can have different current distributions: line 

current, surface current and volume current as shown in Figure 1.4. If we define K as the 

surface current density (in amperes/meter) and J as the volume current density (in 

amperes/meter square), the source elements are related as 

 

I dl  K dS  J dv (1.5) 
 

 

Thus, in terms of the distributed current sources, Biot-Savart law as in eq. (1.4) becomes 

 

H  
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a R  

(Line current) (1.6) 
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(Surface current) (1.7) 
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H  

V 

Jdv aR 

(Volume current) (1.8) 

 

4
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As an example, let us apply eq. (1.6) to determine the field due to a straight current 

carrying filamentary conductor of finite length AB as in Figure 1.5. We assume that the 

conductor is along the z-axis with its upper and lower ends respectively subtending 

angles 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Conventional representation of H (or I) (a) out of the page and (b) into 

the page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.4: Current distributions: (a) line current (b) surface current 
 

(c) volume current. 
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2 and 1 at P, the point at which H is to be determined. Particular note should be taken 

of this assumption, as the formula to be derived will have to be applied accordingly. If we 

consider the contribution dH at P due to an element dl at (0, 0, z), 

 

dH  

Idl  

R 
(1.9)  

4 R
3
 

 

  
 

 

 

But dl = dz az and R = a  - zaz , so 
 

 

dl x R =  dz a  (1.10) 
 

 

Hence, 
 

H  

 

 I  dz  
a

 (1.11) 
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Figure 1.5: Field at point P due to a straight filamentary conductor. 
 

 

Letting z =  cot , dz = -  cosec
2
  d , equation (1.11) becomes 

 

 
6 



 
 

H 

  I   2  

 
2
 cos ec 

2
 

d   a  

 

4  

1 

      

    

 
3
 cos ec

3
 

 
 

     
 

   I     2     
 

     a 

1 

sin  d   
 

      

  

4

 

     
 

       
 

Or            
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a  (1.12) 
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The equation (1.12) is generally applicable for any straight filamentary conductor of 

finite length. Note from eq. (1.12) that H is always along the unit vector a  (i.e., along 

concentric circular paths) irrespective of the length of the wire or the point of interest P. 

As a special case, when the conductor is semi-infinite (with respect to P), so that point A 

is now at O(0, 0, 0) while B is at (0, 0, ); 1 = 90 , 2 = 0 , and eq. (1.12) becomes 

 

H  
I
   a  (1.13) 

4  
 

 

Another special case is when the conductor is infinite in length. For this case, point A is 

at (0, 0, - ) while B is at (0, 0, ); 1 = 180 , 2 = 0 . So, eq. (1.12) reduces to 

 

H  
I
   a  (1.14) 

2  
 

 

To find unit vector a  in equations (1.12) to (1.14) is not always easy. A simple 

approach is to determine a  from 
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a   a  a  (1.15) 
 

 

where al is a unit vector along the line current and a  is a unit vector along the 

perpendicular line from the line current to the field point. 

 
Illustration: The conducting triangular loop in Figure 1.6(a) carries a current of 10 

A. Find H at (0, 0, 5) due to side 1 of the loop. 
 
Solution: 

 

This example illustrates how eq. (1.12) is applied to any straight, thin, current-carrying 

conductor. The key point to be kept in mind in applying eq. (1.12) is figuring out 1, 2, 

 and a . To find H at (0, 0, 5) due to side 1 of the loop in Figure 1.6(a), consider Figure 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.6: (a) conducting triangular loop (b) side 1 of the loop. 
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1.6(b), where side 1 is treated as a straight conductor. Notice that we join the Point of 

interest (0, 0, 5) to the beginning and end of the line current. Observe that 1, 2 and  

are assigned in the same manner as in Figure 1.5 on which eq. (1.12) is based. 

 

cos 1 = cos 90  = 0, cos 2  
 2  

,  = 5  

 

 

 

 

  

  29    
 

 

 

To determine a  is often the hardest part of applying eq. (1.12). According to eq. (1.15), 

al = ax and a  = az, so 
 

a  = ax x az = -ay 
 

 

Hence, 
 

 

   1 cos

 

  

a 

 10  2      
 

H 
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0  ( a 

 

) 

 

 

4

 
 

4  

(5) 
     

 1   2 1    29    y  
 

 

 

= -59.1 ay mA/m 
 

 

AMPERE'S CIRCUIT LAW 
 

 

Ampere's circuit law states that the line integral of the tangential components of H 

around a closed path is the same as the net current Ienc enclosed by the path 

 

In other words, the circulation of H equals Ienc ; that is,  

H dl  I enc 
(1.16) 
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Ampere's law is similar to Gauss's law and it is easily applied to determine H when the 

current distribution is symmetrical. It should be noted that eq. (1.16) always holds 

whether the current distribution is symmetrical or not but we can only use the equation to 

determine H when symmetrical current distribution exists. Ampere's law is a special case 

of Biot-Savart's law; the former may be derived from the latter. 

 

By applying Stoke's theorem to the left-hand side of eq. (1.16), we obtain 
 

 

I
 enc   L

H
 

dl
 S 

(
 

H
 

)
 

dS
 (1.17) 

But  

I
 enc   S

J
 

dS
 (1.18) 

 

Comparing the surface integrals in eqs. (7.17) and (7.18) clearly reveals that 

 

 x H = J (1.19) 
 

 

This is the third Maxwell's equation to be derived; it is essentially Ampere's law in 

differential (or point) form whereas eq. (1.16) is the integral form. From eq. (1.19), we 

should observe that  X H = J  0; that is, magnetostatic field is not conservative. 

 

APPLICATIONS OF AMPERE'S LAW 
 

 

Infinite Line Current 
 

 

Consider an infinitely long filamentary current I along the z-axis as in Figure 1. 7. To 

determine H at an observation point P, we allow a closed 
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path pass through P. This path on, which Ampere's law is to be applied, is known as an 

Amperian path (analogous to the term Gaussian surface). We choose a concentric circle 

as the Amperian path in view of eq. (1.14), which shows that H is constant provided p is 

constant. Since this path encloses the whole current I, according to Ampere's law 
 

I  H  a    d  a   H   d   H  2  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7: Ampere's law applied to an infinite filamentary, line current. 
 

 

Or    
 

H  1 a (1.20)  
  

 2

 

  
 

   
 

As expected from eq. (1.14).  
 

 

 

MAGNETIC FLUX DENSITY 
 

 

The magnetic flux density B is similar to the electric flux density D. As D = 0E in free 

space, the magnetic flux density B is related to the magnetic field intensity H according 

to 
 

B = 0 H (1.21) 
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where, 0 is a constant known as the permeability of free space. The constant is in 

henrys/meter (H/m) and has the value of 

 

0 = 4  x 10
-7

 H/m (1.22) 

 

The precise definition of the magnetic field B, in terms of the magnetic force, can be 

discussed later. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.8: Magnetic flux lines due to a straight wire with current coming out of 

the page 

 
 

 

The magnetic flux through a surface S is given by  

  SB dS 
(1.23) 

 

 

Where the magnetic flux  is in webers (Wb) and the magnetic flux density is a 

webers/square meter (Wb/m
2
) or teslas. 

 
An isolated magnetic charge does not exit. 
 

 

Total flux through a closed surface in a magnetic field must be zero; 
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that is,  

B dS  0 
(1.24) 

This equation is referred to as the law of conservation of magnetic flux or Gauss'’s law for 

magnetostatic fields just as D. dS = Q is Gauss's law 
 
for electrostatic fields. Although the magnetostatic field is not conservative, magnetic 

flux is conserved. 

 
By applying the divergence theorem to eq. (1.24), we obtain 

S B dS  B dv  0 

v  

Or  

 . B = 0 (1.25) 

 

This equation is the fourth Maxwell's equation to be derived. Equation (1.24) or (1.25) 

shows that magnetostatic fields have no sources or sinks. Equation (1.25) suggests that 

magnetic field lines are always continuous. 

 

  TABLE 1.2: Maxwell's Equations for Static EM Fields  
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 Conservativeness of  

 

   electrostatic field  
 

       
 

        
 

  
x H = J 

  H dl  J dS  
Ampere's law 

 
 

   L   
 

    s    
 

        
 

 
 
 
 
 



13 



The Table 1.2 gives the information related to Maxwell's Equations for Static 

Electromagnetic Fields. 

 

MAGNETIC SCALAR AND VECTOR POTENTIALS 

 

We recall that some electrostatic field problems were simplified by relating the electric 

Potential V to the electric field intensity E (E = - V). Similarly, we can define a 

potential associated with magnetostatic field B. In fact, the magnetic potential could be 

scalar Vm vector A. To define Vm and A involves two important identities: 

 

 x ( V) = 0 (1.26) 

 . (  x A) = 0 (1.27) 
 

 

which must always hold for any scalar field V and vector field A. 
 

 

Just as E = - V, we define the magnetic scalar potential Vm (in amperes) as related to H 

according to 

 

H = -  Vm if J = 0 (1.28) 
 

 

The condition attached to this equation is important and will be explained. Combining eq. 

(1.28) and eq. (1.19) gives 

 

J =  x H = -  x (-  Vm) = 0 (1.29) 
 

 

since Vm, must satisfy the condition in eq. (1.26). Thus the magnetic scalar potential Vm 

is only defined in a region where J = 0 as in eq. (1.28). We should also note that Vm 

satisfies Laplace's equation just as V does for electrostatic fields; hence, 
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2
 Vm = 0, (J = 0) (1.30) 

 

We know that for a magnetostatic field,  x B = 0 as stated in eq. (1.25). In order to 

satisfy eqs. (1.25) and (1.27) simultaneously, we can define the vector magnetic potential 

A (in Wb/m) such that 

 

B =  x A 
 

 

Just as we defined 

 

V   
dQ

 

4 0 r 
 

 

We can define 
 

 

  I  dl 
 

A  

L 

0 
 

4 R 
 

 
 

 

  K  dS 
 

A  

S 

 0 
 

 4 R 
 

 

A  0 

J  dv
 

v
 4 R 

 

(1.31) 
 
 
 
 
 
 

 

(1.32) 
 
 
 
 
 
 
 
 
 

for line current (1.33) 
 
 
 
 
 

 

for surface current (1.34) 
 
 
 
 
 

 

for volume current (1.35) 

 
 
 

 

Illustration 1: Given the magnetic vector potential A = -
2
/4 az Wb/m, calculate the 

total magnetic flux crossing the surface  = /2, 1  2m, 0  z  5m. 
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Solution: 
 

B  A 

 

A
z  a  

 

 

a  , dS  d  dz a 

 

  

   2    
 

 

 1 5 2   1    15 
 

  B dS 

 

z

0 

 

1  d  dz  

 

2
 (5)  

  
 

2 4 4 
 

 
 
 

 = 3.75 Wb 
 

 

Illustration 2: 
 

 

Identify the configuration in figure 1.9 that is not a correct representation of I and H. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.9: Different I and H representations (related to Illustration 2) 
 
 

Solution: 
 
Figure 1.9 (c) is not a correct representation. The direction of H field should have been 

outwards for the given I direction. 
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MAGNETIC FORCES, MATERIALS AND DEVICES 
 

 

Force on a Charged Particle 
 

 

According to earlier information, the electric force Fe, on a stationary or moving electric 

charge Q in an electric field is given by Coulornb's experimental law and is related to the 

electric field intensity E as 

 

Fe = QE (2.1) 
 

 

This shows that if Q is Positive, Fe and E have the same direction. 
 

 

A magnetic field can exert force only on a moving charge. From experiments, it is found 

that the magnetic force Fm experienced by a charge Q moving with a velocity u in a 

magnetic field B is 

 

Fm = Qu x B (2.2) 
 

 

This clearly shows that Fm is perpendicular to both u and B. 
 

 

From eqs. (2.1) and (2.2), a comparison between the electric force Fe and the magnetic 

force Fm can be made. Fe is independent of the velocity of the charge and can perform 

work on the charge and change its kinetic energy. Unlike Fe, Fm depends on the charge 

velocity and is normal to it. Fm cannot perform work because it is at right angles to the 

direction of motion, of the charge (Fm.dl = 0); it does not cause an increase in kinetic 

energy of the charge. The magnitude of Fm is generally small compared to Fe except at 

high velocities. 

 

For a moving charge Q in the Presence of both electric and magnetic fields, the total 

force on the charge is given by 
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F = Fe + Fm 
 
or 

 

 

F = Q (E + u x B) (2.3) 
 

 

This is known as the Lorentz force equation. It relates mechanical force to electrical 

force. If the mass of the charged Particle moving in E and B fields is m, by Newton's 

second law of motion. 

 

F  m du  Q E u  B  (2.4)  
  

 dt  
 

 

 

The solution to this equation is important in determining the motion of charged particles 

in E and B fields. We should bear in mind that in such fields, energy transfer can be only 

by means of the electric field. A summary on the force exerted on a charged particle is 

given in table 2.1. 

 

TABLE 2.1: Force on a Charged Particle 
 

 

State of 
E Field B Field 

Combined E 
 

Particle and B Fields  

  
 

Stationary QE - QE 
 

    
 

Moving QE Qu x B Q(E + u x B) 
 

    
 

 
 
 
 
The magnetic field B is defined as the force per unit current element 

 

 

Alternatively, B may be defined from eq. (2.2) as the vector which satisfies Fm / q = u x B 

just as we defined electric field E as the force per unit charge, Fe / q. 
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Force between Two Current Elements 

 

Let us now consider the force between two elements I1 dl1 and I2 dl2. According to Biot-

Savart's law, both current elements produce magnetic fields. So we may find the force 

d(dF1) on element I1 dl1 due to the field dB2 produced by element I2 dl2 as shown in 

Figure 2.1. 

 
As per equation 
 

 

dF = I dl x B2 
 

 

d(dF1) = I1 dl1 x dB2 (2.5) 
 

 

But from Biot-Savart's law, 
 

 

dB2  

0 I 2 

dl2 aR      
(2.6) 

 

  21       

 

4 R21
2
 

     
 

          
 

Hence,    

0 I1dl1 

I 

   

 

 
 

d (dF1 ) 

 
2 dl 2 

a
R2

1 
(2.7)   

4 R21
2
 

    
 

          
 

            
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Force between two current loops. 
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This equation is essentially the law of force between two current elements and is 

analogous to Coulomb's law, which expresses the force between two stationary charges. 

From eq. (2.7), we obtain the total force F1 on current loop 1 due to current loop 2 shown 

Figure 2.1 as 

 

F1  

 

 
0 I I 

2 
L1 L 2 

dl1 

dl2 aR  

(2.8) 
 

 1   21    

 

4

 

  2    
 

      
R

21     
 

 
Although this equation appears complicated, we should remember that it is based on eq. 

(2.5). It is eq. (8. 10) that is of fundamental importance. 

 

The force F2 on loop 2 due to the magnetic field B1 from loop 1 is obtained from eq. (2.8) 

by interchanging subscripts 1 and 2. It can be shown that F2 = - F1; thus F1 and F2 obey 

Newton's third law that action and reaction are equal and opposite. It is worthwhile to 

mention that eq. (2.8) was experimentally established by Qersted and Ampete; Biot and 

Savart (Ampere's colleagues) actually based their law on it. 

 

MAGNETIC TORQUE AND MOMENT 
 

 

Now that we have considered the force on a current loop in a magnetic field, we can 

determine the torque on it. The concept of a current loop experiencing a torque in a 

magnetic field is of paramount importance in understanding the behavior of orbiting 

charged particles, d.c. motors, and generators. If the loop is placed parallel to a magnetic 

field, it experiences a force that tends to rotate it. 

 

The torque T (or mechanical moment of force) on the loop is the, vector product of the 

force F and the moment arm r. 
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That is, 
 

 

T = r x F (2.9) 
 

 

and its units are Newton-meters. 
 

 

Let us apply this to a rectangular loop of length l and width w placed in a uniform 

magnetic field B as shown in Figure 8.5(a). From this figure, we notice that dl is parallel 

to B along sides 12 and 34 of the loop and no force is exerted on those sides. Thus 
 

F  I 2
3
 dl  B  I 4

1
 dl  B 

 
 
 

l 0 

 I 2 dz az   B  I l  dz az   B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.2: Rectangular planar loop in a uniform magnetic field. 
 

 

or 
 

 

F= F0 – F0 = 0 (2.10) 
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Where, |F0| = I Bl because B is uniform. Thus, no force is exerted on the loop as a whole. 

However, F0 and –F0 act at different points on the loop, thereby creating a couple. If the 

normal to the plane of the loop makes an angle  with B, as shown in the cross-sectional 

view of Figure 2.2(b), the torque on the loop is 

 

|T| = |F0| w sin  
 
or 
 

T = B I l w sin  (2.11) 
 

 

But lw = S, the area of the loop. Hence, 
 

 

T = BIS sin  (2.12) 
 

 

We define the quantity 
 

 

m = ISan (2.13) 
 

 

as the magnetic dipole moment (in A/M
2
) of the loop. In eq. (2.13), an is a unit normal 

vector to the plane of the loop and its direction is determined by the right-hand rule: 

fingers in the direction of current Hand thumb along an. 

 
 
The magnetic dipole moment is the product of current and area of the loop; its reaction is 

normal to the loop. 

 

Introducing eq. (2.13) in eq. (2.12), we obtain 
 

 

T = m x B (2.14) 
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3.0 STOKE'S THEOREM 
 

 

Stoke's Theorem relates a line integral to the surface integral and vice-versa, that is 
 

C H dL  (  H ) dS (3.1) 
S  

 

 

FORCE ON A MOVING CHARGE DUE TO ELECTRIC AND MAGNETIC 

FIELDS 

 

If there is a charge or a moving charge, Q in an electric field, E, there exists a force on 

the charge. This force is given by 

 

FE = QE (3.2) 
 

 

If a charge, Q moving with a velocity, V is placed in a magnetic field, B (= H), then 

there exists a force on the charge (Fig. 3.1). This force is given by 

 

FH = Q(V x B) (3.3) 
 

 

B = magnetic flux density, (wb/m
2
) 

 
 

V = velocity of the charge, m/s 
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Fig. 3.1: Direction of field, velocity and force 
 

 

If the charge, Q is placed in both electric and magnetic fields, then the force on the 

charge is 

 

F =Q (E + V x B) (3.4) 
 

 

This equation is known as Lorentz force equation. 
 

 

Problem 1: A charge of 12 C has velocity of 5ax + 2ay - 3az m/s. Determine F on the 

charge in the field of (a) E=18ax,+5ay +10az V/m 
 

(b) B = 4ax + 4ay + 3az wb/m
2
. 

 
 

Solution: 
 

(a) The force, F on the charge, Q due to E is 
 

 

F = QE = 12 (18ax + 5ay + 10az) 
 

 

= 216ax + 60ay + 120az 
 
 
 

or,  F=Q |E|=12 18
2
  5

2
  10

2
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F = 254.27 N 
 

 

(b) The force F on the charge due to B is 
 

 

F = Q[V x B) 
 

 

Here V = 5ax + 2ay - 3az m/s 
 

 

B = 4 ax + 4 ay + 3 az wb / m
2
 

 
 

F = 12 [18ax - 27ay + 12az] 
 

 

or,  F=12 (324  729 144) 
 

 

F = 415.17 N 
 

 

FORCE ON A CURRENT ELEMENT IN A MAGNETIC FIELD 
 

 

The force on a current element when placed in a magnetic field, B is 
 

 

F = IL x B (3.5) 

or,  

F = I L B Sin  Newton (3.6) 
 

 

where  is the angle between the direction of the current element and the direction of 

magnetic flux density 

 

B = magnetic flux density, wb/m
2
 

 
 

IL = current element, Amp-m 
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Proof: Consider a differential charge, dQ to be moving with a velocity, V in a magnetic 

field, H = (B/ ). Then the differential force on the charge is given by 

 

dF = dQ (V x B) (3.7) 
 

 

But 
 

dQ =  d  
 

 

dF =  d  (V x B) 
 

 

= (  V x B) d  
 

 

But  V = J 
 

 

dF = J d  x B 
 

 

Jd  is nothing but IdL, 
 

 

dF =IdL x B 
 

 

or, F = IL x B, Newton (3.8) 
 

 

Problem 2: A current element 4 cm long is along y-axis with a current of 10 mA flowing 

in y-direction. Determine the force on the current element due to the magnetic field if the 

magnetic field H = (5ax/ ) A/m. 

 

Solution: 
 

 

The force on a current element under the influence of magnetic field is 
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F = IL x B 
 

 

Here, IL = 10 x 10
-3

 x 0.04ay 
 
 

= 4 x l0
-4

 ay 
 
 

H = (5ax/ ) A/m 
 

 

B = 5ax wb/m
2
 

 
 

F = 4 x l0
-4

 ay x 5ax 
 
 

or F = (0.4ay x 5ax) x 10
-3

 
 
 

F = -2.0az mN 
 

 

BOUNDARY CONDITIONS ON H AND B 
 

 

1. The tangential component of magnetic field, H is continuous across any boundary 

except at the surface of a perfect conductor, that is,  

 

Htanl - Htan2 = Js (3.9) 
 

 

At non-conducting boundaries, Js = 0. 
 

 

2. The normal component of magnetic flux density, B is continuous across any 

discontinuity, that is,  

 

Bnl = Bn2 (3.10) 
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Proof: Consider Fig. 3.2 in which a differential rectangular loop across a boundary 

separating medium 1 and medium 2 are shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2: A rectangular loop across a boundary 
 

 

From Ampere's circuit law, we have  

H dL 

        

 50 01 12 23 34 45 

 H y 4  
y

  H y 

3 

y
  H x1 x  H 

y1 

2    2    

y
  H y 

2 

y
  H x 2 x 

 I   
2 2       

 
 
As y  0, we get  

H dL  H x1 x  H x 2 x  I 

 
or, 
 

H x1   H x 2  

 

I 

 J s (3.11) 

 

x 
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Here, Hxl and Hx2 are tangential components in medium 1 and 2, respectively. 

 

So, Htan1 – Htan2 = Js (3.12) 
 

 

Now consider a cylinder shown in Fig. 3.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.3: A differential cylinder across the boundary 
 

 

Gauss's law for magnetic fields is  

B dS  0 (3.13) 
s  

 

 

In this case, for y  0  

B dS  

Bn1a y  dS a y   Bn 2 a y  dS ( a y ) (3.14) 
s s s  

 

 

that is,   Bn1 S - Bn2 S = 0 
 

 

Therefore, Bnl = Bn2 (3.15) 
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Problem 3: 
 

 

Two homogeneous, linear and isotropic media have an interface at x = 0. x < 0 describes 

medium 1 and x > 0 describes medium 2. r1 = 2 and r2 = 5. The magnetic field in 

medium 1 is 150ax - 400ay + 250az A/m. 

 

Determine: 
 

(a) Magnetic field in medium 2  
 

(b) Magnetic flux density in medium 1  
 

(c) Magnetic flux density in medium 2.  
 

 

Solution: 
 

The magnetic field in medium 1 is 
 

 

H1 = 150ax - 400ay +250az A/m 
 
Consider Fig. 3.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.4: Illustrative figure 
 

 

(a) H1 = Htan1 + Hn1  
 

 

Htanl = -400ay + 250az A/m Hn1 

= 150ax  
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The boundary condition is 
 

 

Htanl = Htan2 
 

 

Htan2 = - 400ay + 50az A/m 
 

 

The boundary condition on B is Bn1 = Bn2 
 

 

that is, 1 Hn1 = 1 Hn2 
 

 H n 2  

 

1 H
 n1 

 

 2 
 

    

 
 

 
2

 150ax  

5  
 

 

= 60ax  
 

 

H2 = Htan2 + Hn2 
 
 
 

 

(b) B1= 1 H1  
 

 

= 0 r H1  
 

 

=4  x 10
-7

 x 2(150ax - 400ay + 250az) 
 
 

= (376.5ax - 1004ay + 627.5az) wb/m
2
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(c) B2 = 2 H2  
 

 

= 4  x 10
-7

 x 5 (60ax - 400ay + 250az)  
 
 

= (376.98ax - 2513.2ay +1570.75az) wb/m
2
  

 
 
 

 

SCALAR MAGNETIC POTENTIAL 
 

 

Like scalar electrostatic potential, it is possible to have scalar magnetic potential. It is 

defined in such a way that its negative gradient gives the magnetic field, that is, 

 

H =  Vm (3.16) 
 

 

Vm = scalar magnetic potential (Amp) 
 

 

Taking curl on both sides, we get 
 

 

 x H = -  x Vm (3.17) 
 

 

But curl of the gradient of any scalar is always zero. 
 

 

So,  x H =0 (3.18) 

But, by Ampere's circuit law  X H = J 

or, J = 0  
 

 

In other words, scalar magnetic potential exists in a region where J = 0. 
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H = - Vm  (J=0) (3.19) 
 

 

The scalar potential satisfies Laplace's equation, that is, we have 
 

 

.B = 0 .H = 0 = m  (- Vm) = 0 
 

 

or, 
 

2
 Vm = 0 (J = 0) (3.20) 

 

Characteristics of Scalar Magnetic Potential (Vm) 

 

1. The negative gradient of Vm gives H, or H = - Vm  
 

2. It exists where J = 0  
 

3. It satisfies Laplac’s equation.  
 

4. It is directly defined as  

Vm  
B
 H dL 

A 
 

5. It has the unit of Ampere. 
 

 

VECTOR MAGNETIC POTENTIAL 

 

Vector magnetic potential exists in regions where J is present. It is defined in such a 

way that its curl gives the magnetic flux density, that is, 

 

B  x A (3.21) 
 

 

where A = vector magnetic potential (wb/m). 
 

 

It is also defined as 
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A  

 

0 IdL 

 

Henry  Amp 

 
 

 

 

  

 

 

 

m 

 
 

  

4 R  

   
 

or, 

A  

 

0 

Kds
 

,  (K = current sheet) 
 

 s 4 R    
 

      

or, 

A  

 

0 

Jdv
 

,    
 

 v 4 R    
 

      

 
 
 

 

Characteristics of Vector Magnetic Potential 
 

 

1. It exists even when J is present.  
 

2. It is defined in two ways  
 

B   x A   and 
 Jd  
0  

4 R 
v 

 
 
 
(3.22) 
 
 
 

 

(3.23) 
 
 
 
 
 
(3.24) 

 

3. 
2
A = 0 j  

 

4. 
2
A = 0 if J = 0  

 
5. Vector magnetic potential, A has applications to obtain radiation 

characteristics of antennas, apertures and also to obtain radiation leakage from 

transmission lines, waveguides and microwave ovens.  
 

6. A is used to find near and far-fields of antennas.  
 

 

Problem 4: 

 

The vector magnetic potential, A due to a direct current in a conductor in free space is 

given by A = (X
2
 + Y

2
) az wb /m

2
. Determine the magnetic field produced by the 

current element at (1, 2, 3). 
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Solution: 
 

A = (x
2
 +y

2
) az wb/m

2
 

 
We have B =  x A 

 

    
a

x  
a

 y    
a

z           
 

10
6
 

                  
 

 
x 

 
y 

 

x 
2
 

 
z 

          
 

                  

    0 0   

 y 
2
 

        
 

    2   2      2  2   6 
 

 

  

x 

 

 y 

 

ax    
 

 

x 

 

 y 

 

a
 y  10 

  

x 

      
 

           

x 

       
 

 

 x 
2
   2 y ax  2x  y 

2
 a y 10

6
 

 

 

B / at (1,2,3)  1  4 ax  2  4 ay 10
6
 

 

 

 5ax  6a y 10
6
 

 
 
 

H  

1 5ax  6a y 

10
6
 

 

 
 

  0  
 

 

 1  5ax  6a y 

10
6
 

 

4  

10
7
 

 

  
 

 
 

H = (3.978ax – 4.774ay), A/m 
 

 

FORCE AND TORQUE ON A LOOP OR COIL 
 

 

Consider Fig. 3.5 in which a rectangular loop is placed under a uniform magnetic flux 

density, B. 
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Fig. 3.5: Rectangular conductor loop in x-z plane 
 

 

From Fig. 3.5, the force on QR due to B is 
 

 

F1 =IL x B =-ILaz x Bax (3.25) 

F1 = -ILBay (3.26) 
 

 

that is, the force, F1 on QR moves it downwards. Now the force on PS is 
 

 

F2 = IL x B = -ILaz x Bax (3.27) 

F2 = - ILBay (3.28) 
 

 

Force, F2 on PS moves it upwards. It may be noted that the sides PQ and SR will not 

experience force as they are parallel to the field, B. 

 

The forces on QR and PS exert a torque. This torque tends to rotate the coil about its axis. 

 
The torque, T is nothing but a mechanical moment of force. The torque on the loop is 

defined as the vector product of moment arm and force, 
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that is,   

 T  r x F, N-m (3.29) 

where r = moment arm  

 F = force  

 

Applying this definition to the loop considered above, the expression for torque is 

given by 

 

 T = r1 x F1 + r2 x F2    (3.30) 
 

  w   w    
 

   

ax  ( ILBa y )    ax  (ILBa y ) (3.31)   

2 2 
 

       
 

 = -BILwaz      
 

or, T = -BISaz     (3.32) 
 

 

 

where S = wL = area of the loop 
 

 

The torque in terms of magnetic dipole moment, m is 
 

 

T = m x B, N-m (3.34) 
 

 

where m = I l w ay 
 

 

= I S ay 

 

Problem 5: 

 

A rectangular coil is placed in a field of B = (2ax + ay) wb/m
2
. The coil is in y-z plane 

and has dimensions of 2 m x 2 m. It carries a current of 1 A. Find the torque about the z-

axis. 
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Solution: 
 

 

m=IS an = 1 x 4ax 
 

 

T = m x B = 4ax x (2ax + ay) 
 

 

T = 4az, N-m 
 
 
 

MATERIALS IN MAGNETIC FIELDS 
 
 
A material, is said to be magnetic if m  0, r = 1 
 
 
A material is said to be non-magnetic if m = 0, r = 1. 
 
 
The term 'Magnetism' is commonly discussed in terms of magnets with basic examples 

like north pole, compass needle, horse shoe magnets and so on. 

 
Magnetic properties are described in terms of magnetic susceptibility and relative 

permeability of the materials. 

 

Magnetic materials are classified into 

 

1. Diamagnetic materials  
 

2. Paramagnetic materials  
 

3. Ferromagnetic materials  
 

 

Diamagnetic Materials 
 
 
A material is said to diamagnetic if its susceptibility, m < 0 and r  1.0. 

 

Examples are copper, lead, silicon, diamond and bismuth. 
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Characteristics of diamagnetic materials 
 

 

 Magnetic fields due to the motion of orbiting electrons and spinning electrons 

cancel each other.  
 

 Permanent magnetic moment of each atom is zero.  
 

 These materials are widely affected by magnetic field.  
 

 Magnetic susceptibility m is (-)ve.  
 

 r = 1  
 

 B = 0  
 

 Most of the materials exhibit diamagnetism.  
 

 They are linear magnetic materials.  
 

 Diamagnetism is not temperature dependent.  
 

 These materials acquire magnetisation opposite to H and hence they are called 

diamagnetic materials.  

 

Paramagnetic Materials 

 

A material for which m > 0 and r  1 is said to be paramagnetic. 
 

 

Examples are air, tungsten, potassium and platinum. 
 

 

Characteristics of paramagnetic materials 
 

 

 They have non-zero permanent magnetic moment.  
 

 Magnetic fields due to orbiting and spinning electrons do not cancel each other.  
 

 Paramagnetism is temperature dependent.  
 

 m lies between 10
-5

 and 10
-3

.  
 

 These are used in MASERS.  
 

 m > 0  
 

 r  1  
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They are linear magnetic materials. 
 

 

These materials acquire magnetisation parallel to H and hence they are called 

paramagnetic materials. 

 

Ferromagnetic Materials 
 
 

A material for which m >> 0, r >> 1 is said to be ferromagnetic. 

 

Examples are iron, nickel, cobalt and their alloys. 
 

 

Characteristics of ferromagnetic materials 
 

 

 They exhibit large permanent dipole moment.  
 

 m >> 0  
 

 r >> l  
 

 They are strongly magnetised by magnetic field.  
 

 They retain magnetism even if the magnetic field is removed.  
 

 They lose their ferromagnetic properties when the temperature is raised.  
 

 If a permanent magnet made of iron is heated above its curie temperature, 

770 C, it loses its magnetisation completely.  
 

 They are non-linear magnetic materials.  
 

 B = H does not hold good as  depends on B.  
 

 In these materials, magnetisation is not determined by the field present. It 

depends on the magnetic history of the object.  

 

INDUCTANCE 

 

Inductor is a coil of wire wound according to various designs with or without a core 

of magnetic material to concentrate the magnetic field. 
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Inductance, L In a conductor, device or circuit, an inductance is the inertial property 

caused by an induced reverse voltage that opposes the flow of current when a voltage is 

applied. It also opposes a sudden change in current that has been established. 

 

Definition of Inductance, L (Henry): 

 

The inductance, L of a conductor system is defined as the ratio of magnetic flux linkage 

to the current producing the flux, that is, 

 

 L  

N

 (Henry)  

   

  I 
 

Here N = number of turns 
 

  = flux produced 
 

 I = current in the coil 
 

 1 Henry  l wb/Amp 
 

 

 

L is also defined as (2WH/I
2
), or 

 

L  

2W
H 

I 
2
 

 

 

where, WH = energy in H produced by I. 

 

 
(3.35) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(3.36) 

 

 

In fact, a straight conductor carrying current has the property of inductance. Aircore coils 

are wound to provide a few pico henries to a few micro henries. These are used at IF and 

RF frequencies in tuning coils, interstage coupling coils and so on. 
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The requirements of such coils are: 
 

 

 Stability of inductance under all operating conditions  
 

 High ratio inductive reactance to effective loss resistance at the operating 

frequency  
 

 Low self capacitance  
 

 Small size and low cost  
 

 Low temperature coefficient  
 

 

STANDARD INDUCTANCE CONFIGURATIONS 

 

Toroid 
 

 

It consists of a coil wound on annular core. One side of each turn of the coil is threaded 

through the ring to form a Toroid (Fig. 3.6). 

 
 
 
 
 
 
 
 
 
 
 

 

    Fig. 3.6: Toroid  
 

Inductance of Toroid, 

L 

  
0 
N 

2
 S (3.37)  

    
 

   2 r  
 

Here N = number of turns  
 

 r = average radius  
 

 S = cross-sectional area  
 

Magnetic field in a Toroid, H  
NI  

(3.38)  
2

r 

 

      
 

 
I is the current in the coil. 
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Solenoid 
 

 

It is a coil of wire which has a long axial length relative to its diameter. The coil is 

tubular in form. It is used to produce a known magnetic flux density along its axis. 

 
A solenoid is also used to demonstrate electromagnetic induction. A bar of iron, which is 

free to move along the axis of the coil, is usually provided for this purpose. A typical 

solenoid is shown in Fig. 3.7. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3.7: Solenoid 
 

 

The inductance, L of a solenoid is 
 

L 

 
 
0 
N 

2
 S 

(3.39) 
 

  
 

l 
 

l = length of solenoid S = 

cross-sectional area N = 

Number of turns 

 

The magnetic field in a solenoid is 
 

H  
NI  

(3.40)  
l 

 

  
 

I is the current  
 

 -----------  oo0oo ----------- 
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