
1 

 

 

r   

E 

S                        G 

 

 Gauss’ Law / Divergence Theorem 

 

Consider an imaginary / fictitious surface enclosing / surrounding e.g. a point charge (or a small 

charged conducting object).  For simplicity, use an imaginary sphere of radius R centered on charge 

Q at origin: 

zˆ 

nˆ, 
K 

 
Rrˆ 

G   G       G 
E r   E Rrˆ

Infinitesimal Area Element, dA 
 

Q     R 
y
ˆ 



 
xˆ                                                          Imaginary/Fictitious Surface, S 

S               aka Gaussian Surface of radius R 

centered on charge Q.
 

G 
Area element dA is a VECTOR quantity:  dA  dAnˆ  dArˆ . By convention,  nˆ 

 

 

is outward-pointing
unit normal vector at area element dA.  In this particular case (because of spherical symmetry of 
problem):  nˆ  rˆ 

 

K   G     G
FLUX OF ELECTRIC FIELD LINES (through surface S): E     E r idA 

S
 

 

E   = “measure” of “number of E-field “lines” passing through surface S, (SI Units: Volt-meters). 

 

TOTAL ELECTRIC FLUX ( 
TOT  

) associated with any closed surface S, is a measure of the (total) 

charge enclosed by surface S. 

n.b. charge outside of surface S will contribute nothing to total electric flux  E 

pass through one portion of the surface S and out another – no net flux!) 

(since E-field lines

 
Consider our point charge Q at origin.  Calculate the flux of  E  passing through a sphere of radius r: 

(see above picture) 

K   G      G                           
    v

 E r idA  r 
  Q    

 
  1   

rˆi r
2   

sinddrˆ
E            

S                                     4
o           r

2            
     

dA
infinitesimal vector 
area element for 

sphere of radius r 
 

n.b.  Vector area element of sphere of radius, r is 

coordinates. 

dA  dArˆ  r
2 
sindd rˆ 

 

in spherical-polar
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E 

G 

o 



    
   Q       2 

sindd
  

rˆir

ˆ 

 
  2Q

 
 

sind

Thus: 
E        

4  o o N
1 N4  o 

2 

 o

 
 2 Q  

 
Q 

2o        o 

 

 

G   G      G 

  Gauss’ Law (in Integral Form): 
 

E   
vs

 E r idA  
Qenclosed  

o 

 

Electric flux through closed surface S = (electric charge enclosed by surface S)/o 

 
 
 
 

If    (= there exists) lots of discrete charges qi  (ALL enclosed by imaginary / fictitious / Gaussian 
surface S), we know from principle of superposition that: 

 

G       G       N     G   G
 

ENET  r   Ei  r 
i1 

G       G      G      N
 G   G      G 

Then: 
 

NET   
vS

 

 

ENET 
r idA  vS

 Ei  r idA
q

i    
 1 

      
qi  

Q
encl  

i1 

 

G 

i1 

 

G 

o            o   i1                     o

If    volume charge density (r) , then: Qencl    
v 
(r)d 

 

Then using the DIVERGENCE THEOREM: 
 

G   G      G
 

 
 
JK

  
G 

   
Q          1     

P
G

    v
 E r idA   iE r d        encl   

  r d E            
S                                   v 

o           o     
v

 

This relation holds for any volume v   the integrands of  
v 
  d   must be equal, i.e.: 

JK  G   G           G 

  Gauss’ Law (in Differential Form): iE r   
 r 

o
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r 

    

r 

G   G   G           
G

 

G 

   2 

r 

V 

 

 

The DIVERGENCE OF 
G   G 
E r : 

JK  G   G 
iE r 

 

JK  G   
G

 G   G         
1
 rˆ       G

Calculate iE r  directly from E r  


 rd 
r

 

 
 

Remember that  
G

 

 
 

 
is NOT a constant! 

4    o     v 
all 

space 
 

 

n.b. now extended over all space!

 

G    G    G 
r    r    r

 

field     source 

point    point 

P          S 

                                      
JK  JK  
G

 
JK     1  

 
  rˆ       G

        1  
 JK   rˆ       G

iE r   i


   r 2    rd        i r 2    rd 

4    o 



v          
all 

space     4    o 



v                 
all 

space

         
JK   rˆ  

i  3     G
  

(see equation 1.100, Griffiths p. 50)

Now:  
 r 

 

 
G

 

  4 2  


 

 
 

r 

N
  

3D 
Dirac 

  fcn. 

 

G 

 
 
 

G      G    G                   
G    G

Thus: 
 
   ˆ  

 4 3 r 
or :    r r 





 4 3 r  r

i                                          i             
   2                                      G    G 3   r   

 

 

G   G   G
 

  r  r   


 

 

G    G        G
 

 

 

 
G

  iE r   
    1  

 
4 o 

  v 
all 

space 

4  3 r  r rd  
o 

 

Gauss’ Law in Differential Form: 

iE r   
r 

o 

 

Gauss’ Law in Integral Form: 

JK  G   G      
   

G
 

 

JK  G   

G
 

 

 r 
  

 1          G             1

iE r   
 r  

,  thus:  iE rd  
v 
            d  

v 
 rd   Qencl

o                                                                                       o                 o o 

 

JK  G   G
Now apply/use the Divergence Theorem on the volume integral associated with iE r:

JK  G   
G

 G   G      G                 G
iE rd  


E r idA  

 1 
 rd   

 1  
Q

v                                              vS 
   v 

 

     
encl

o                                           o 
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G   G      G 

Thus we obtain: vS
 E ridA  

Qencl  


 

Gauss’ Law in Integral Form
o 
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r 

rˆir
ˆ 





E  r 

 

APPLICATIONS OF GAUSS’ LAW           - very explicit, detailed derivation - 
 

G   G 
Griffiths Example 2.2: Find / determine the electric field intensity E r outside a uniformly charged 

solid sphere of radius R and total charge q: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Charged solid 
 

Sphere of 

Radius R, 

zˆ 

rˆ,nˆ 
 
 
 

R              r 
 

                                yˆ 
 

 
 
 
 
 
 

xˆ 

draw concentric Gaussian 

surface with radius r > R 

centered on solid charged 

sphere of radius R. 
 

Field Point P @  
G

 

on Gaussian surface 
 

 

Infinitesimal area element 
G 

dA  dAnˆ  dArˆ 

dA  r2 d cos d

 r
2 
sindd

Total charge q                                                             Fictitious / Imaginary spherical 
Gaussian surface S of radius r 

G   G      G 

Gauss’ Law:
 

E r idA  
 1 

Q
 

 
 1  

q  
 q

vS 

 

     
encl        

         
 

G   G           
G 
E r   E r rˆ 

o                         o                o 
 

G 
dA  dAnˆ  dArˆ 

 

n.b. by symmetry of sphere: 
JK 
Esphere r  R  E rrˆ

 

 
G   G      G 

(for Gaussian sphere)                         i.e. E must be radial!! 
 

G                         G                        G

 E r idA  E r rˆidArˆ  E r dA
N

  E r dA

 
 
 

G       G   
G

 

1 

 
n.b. Here again, by symmetry, 

G

NOTE: E r   E r   the magnitude of  E is constant   (for all)/for any fixed r!!!
 

 
 

G   G      G
 

(on the Gaussian spherical surface). 
 
G

 v S  
E r idA  vS

 E r dA   
q
 

o

G                   G E r vS
 dA E r 4 r2    q 

o

G       q                   1     
q
 G   G   

 
     q      

rˆ  
   1     q  

rˆ
  E r    

4 r
2   

4   r2 or:          

4  r2 

 

4   r2
o                        o                                                          o                             o 

= Electric field outside a charged sphere of radius R  at radial distance r > R from center of sphere. 

 
n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q 

located at the origin!!! 
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GAUSS’ LAW AND SYMMETRY 

 
Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general) 

can be extremely powerful in terms of simplifying seemingly complicated problems!! 
 

   Learn skill of recognizing symmetries and applying symmetry arguments to solve problems! 

 
Examples of use of Geometrical Symmetries and Gauss’ Law 

 
a)   Charged sphere – use concentric Gaussian sphere and spherical coordinates 

b)   Charged cylinder – use coaxial Gaussian cylinder and cylindrical coordinates 

c)   Charged box / Charged plane – use appropriately co-located Gaussian “pillbox” (rectangular 

box) and rectangular coordinates 

d)   Charged ellipse – use concentric Gaussian ellipse and elliptical coordinates 

e)   Charged planar equilateral triangle                Think about 

f)   Charged pyramid                                                 these!! 
 

 
 

APPLICATIONS OF GAUSS’ LAW (CONTINUED)       - very explicit detailed derivation 

 
Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries 
a volume charge density   that is proportional to the distance from the axis s of the cylinder / rod – 
i.e.

 

(s) = ks 
 coulombs 
                 
 meter

3   

                 

 
k = proportionality constant 

 
 coulombs 
                 
 meter

4   
                 

 

G   G
a)  Determine the electric field E r  inside this long cylinder / charged plastic rod

- Use a coaxial Gaussian cylinder of length l and radius s:  (with l << L) 
 

G   G      G 

Gauss’ Law vS
 E r idA  

Qencl  

 

 
Enclosed charge: 

o 

 

Qencl   
v 
 sd   

v 
kssdsddz 

 

 
integral over Gaussian surface

ss
 

2


zl                                                                      ss      
2Qencl             kssdsddz  2 kl s ds

s0 0 z0 s0

 

Qencl 
 
2 

 kls
3 

3
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G 

endcap endcap 

 

LHS Gaussian endcap                        Coaxial Gaussian cylinder 

 
Long charged cylinder of 

l                                                         radius S and length L
S     nˆ  zˆ            s nˆ  zˆ        S 

zˆ
z=0                       z=l 

nˆ
cyl.   rˆ 

L 
(L >> l) 

 

G   G           G 
Cylindrical Symmetry  E r   E r rˆ 

 
 
 
 
 

 
G 

(i.e.  E 

 

RHS Gaussian endcap 
 

 
 
 
 

points radially outward,  to z-axis.)
G   G      G G   G      G G   G      G G   G      G

v  E r idA     E r idA
cyl.  

     E r idA
LHS      

     E r idA
RHSS 

cylindrical                                      LHS endcap endcap 
 

RHS endcap endcap

portionof                                       portionof                                               portionof 
Gaussian                                        Gaussian                                                Gaussian 
surface                                           surface                                                   surface 

 

 

Again, from cylindrical symmetry (here): 
G       G   G                                                                                                 G

E r   E r   constant on cylindrical Gaussian surface – i.e. fixed  r   r   s
 

G         G                   G
What are  dAcyl. ,  dALHS 

endcap 
, and  dARHS 

endcap 
???

G 
dA

cyl.  
 sdld rˆ  nˆ

cyl.  
 rˆ

 

infinitesimal surface area 

element of Gaussian cylinder 

 

dALHS 

endcap 
 

 

dARHS 
endcap 

 

 sdsd zˆ  sdsd zˆ  ( nˆ
LHS 

endcap 

 
 sdsd zˆ  sdsd zˆ  ( nˆ

RHS 

endcap 

 

 zˆ ) 
 

 
 zˆ )

G   G      G                    G                                           G                                              G
   v E r idA    E r rˆisdldrˆ    E r rˆisdsdzˆ    E r rˆisdsdzˆ

S                                                Cyl. LHS RHS
Gaussian                                    Gaussian                                                                  Gaussian Gaussian

cylinder 

 

 

Note(s): 
G           G

 

 surfa ce           
rˆirˆ1 

            
rˆizˆ0 

            
rˆizˆ0

E r   E r   constant on cylindrical Gaussian surface (fixed r = s)
G   G           
G 
E r   E r rˆ 

 

by symmetry of charged cylinder 
G   G                                                                                    G

On LHS and RHS endcaps E r  is not constant, because r is changing there - (but  E still points

in rˆ direction! However, note that  rˆirˆ 1 and  rˆizˆ  0 

contribute!!! 

  Gaussian endcap terms do not

 

 
G   G      
G 

Constant here 
 

G                     
G

 

 

 
 
zl   

 

 

 
 

2                             G                              G

   v E r idA     E r sdld  E r s     dld  E r sl 2   2 slE r 
 

S                                      cylindrical 
Gaussian                                Gaussian 
cylinder                                  surface 

 

 
 

G   G      G
 

z0 0 

 

 
2 

Putting this all together now: vS 
E r idA  

Qencl  

o 

 

where (here): 
 

Qencl 
     kls

3
 

3
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3 

G            ks 
2    

l 

inside 

G     
G

 

 
 

ks
2

2  s l E r   
 2 

 
3o 

or: Ein r   rˆ 
3

o 

n.b. r   s     as used in Griffith’s

s  r  S  book, page 73
 

 

b) Find ELECTRIC FIELD 
G   G 
E r  outside of this long cylinder / charged plastic rod

Again, use Coaxial Gaussian cylinder of length l (<< L) and radius s (> S): 
 

G   G      G 

Gauss’ Law: vS
 E r idA  

Qencl  

o 

 

Enclosed charge (for s > S): 
 
 
 

 
Long charge cylinder of 
radius S and length L 

 

 

Qencl 

 

 
2 

 klS
3 

3 
 
nˆ

cyl.   rˆ 

 

 

coaxial Gaussian cylinder 

radius s > S and length l << L

 

 

nˆ
LHS 

Endcap 

 

 

 zˆ 

s 

nˆ
RHS 

Endcap 

 

 

 zˆ 

 

 

S         zˆ

 
 
 
 
 
 
 

l << L 
 
 

 

Again, from symmetry of long cylinder 

L 
 

G   G           
G 

E r   E r rˆ 

 
 

 

constant (radial) direction!!

r = s (fixed radius)
 

G   G      
G 

 

G   G      
G 

 

G   G      
G 

 

G   G      G

v  E r idA     E r idAcyl  
    E r idALHS      

    E r idARHSS 
cylindrical                                        LHS endcap 

 

RHS endcap

Gaussian                                       Gaussian                                           Gaussian 
surface                                          endcap                                               endcap 

G                                                          G                                                      G
dAcyl    sdld rˆ dA

LHS  sdsd zˆ  sdsdzˆ   dALHS zˆ
endcap                                                                                    endcap 

G                                              G                                                      G
  dAcyl rˆ  dAcyl rˆ dA

RHS  sdsd zˆ  sdsdzˆ   dARHS zˆ
endcap                                                                                     endcap 

 

Now:  rˆirˆ 1 and rˆizˆ  0
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s 

 

Then:                                                                                       = 0                                           = 0
G   G      G G                                      G                       


G                     

v  E r idA     E r rˆidAcyl rˆ    E r rˆi dALHS
 zˆ     E r rˆi dARHS

 zˆ 
S 

cylindrical                                                      LHS        endcap    
 

RHS      endcap    

Gaussian                                                        Gaussian                                                                  endcap 
surface                                                           endcap

G    zl   
 

2                                           G
 E r      sdld  2 slE r 

z0 0
 

 

  Electric field outside charged rod (s = r > S) : 
 

Eout 

G        2       kl S
3 

r                      r 
3i 2 sl

o 

kS
3
 

3so
 

 
 

ELECTRIC FIELD (INSIDE/OUTSIDE)               LONG CHARGED CYLINDER 

vs. radial distance s                                                  (radius S, (s) = ks) 
 

 
 

Inside (s < S):                                      Outside (s > S):
G     G      

       2 
 

G      G      kS 
3  

 1  

Ein 
r   

ks   
sˆ 
3o 

 

G   G
 

 

Eout 
r  

 

    sˆ 
3  o     

sˆ  rˆ

Make a plot of E r 
 

G   

G 
E r 

vs. radial distance s:

 
 
 

Emax  s  S 

kS
2


3o 

 

 

Varies as s
2                                            

Varies as ~1/s
 

 
 
 
 

 
0                            s = S 

Radial 

Distance 

s
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APPLICATIONS OF GAUSS’ LAW  - very explicit / detailed derivation – 
 

Griffiths Example 2.4:            An infinite plane carries uniform charge   (coulombs / meter
2
). 

Find the electric field a distance z = zo  above (or below) the plane. 

Use Gaussian Pillbox 
centered on  -plane: 

zˆ 

 
 
 

“Square” 

Gaussian 

Pillbox
 

    h 
                                                        yˆ 

l 
 

l 
 

xˆ 
 

 
 

Edge-on Perspective:                                       zˆ 

 
xˆ   (out of page) 

h 
 

 

l 

z = +h/2 

 
yˆ 

z = −h/2

y = −l/2                                      y = +l/2 
 

Again, from the symmetry associated with   -plane, 
G   G           G
E r   E r  zˆ  E z zˆ (above plane),  E z zˆ (below plane)

 

 

The Gaussian Pillbox has 6 sides – and thus has six outward unit normal vectors: : 

nˆ
5 ,zˆ

 
 

A5  (top) 

A2  (back) nˆ
2 ,xˆ

 

 

nˆ
4 ,yˆ nˆ

3 , yˆ

 
A4 (RH side)                                                                                A3  (LH side) 

 

 

A1  (front) nˆ
1,xˆ nˆ

6 ,zˆ A6  (bottom)
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1 

3 

4 

                            

2 

5 

6 



 



Then: 
 

G   G      
G 

 

 
G   G      
G 

 

 
G   G      
G 

 

 
G   G      G

vS  
E r idA  

A
 E r idA1   

A
 E r idA2   

A
 E r idA3

G   G      G
 G   G     

G G   G      G

 
A 

 

G 

E r idA4   
A 

E r idA5   
A 

 

G 

E r idA6

dA
1  

 dydz xˆ 
G 

dA
3  

 dxdz yˆ 
G 

dA
5  

 dxdy zˆ 
 

G   G
 

dA2   dydz xˆ  dydz xˆ 
G 

dA4   dxdz yˆ   dxdz yˆ 
G 

dA6   dxdy zˆ  dxdy zˆ

for z > 0: 
 

for z < 0: 

E r   E z zˆ 
JK  G 
E r   E zzˆ  E z zˆ 

Again, by symmetry (of plane) 

n.b. E(z) = constant (at least for 

fixed z).

 

Now because 
JK 
E r  E z zˆ 
 

zh /2  

 

for 
z  0 

z  0 
z0 

 

respectively, we must break up integrals over z into 
 
zh / 2

two separate regions: 
zh /2  

dz  
zh / 2 

dz  
z0         

dz

Then: 
G   G      G 

 

 
yl /2 

 

 

zh / 2  G   G
 

 

 
yl /2 

 

 

zh /2  G   G

v  E r idA          E r idydz xˆ         E r idydz xˆ
S                                   yl /2  

xl /2 
 

zh /2  

zh /2  G   G
 

yl /2  

xl / 2
 

zh /2  

zh / 2  G   G
        E r idxdz yˆ          E r idxdz yˆ 

xl /2  

xl / 2
 

zh /2  

yl /2  G   G
 xl /2  

xl / 2
 

zh /2  

yl /2  G   G

xl /2     
 
yl / 2 

E r idxdy zˆ 
xl /2     

 
yl / 2 

E r idxdy zˆ

G   G       G
 

 

yl /2 
  

z0
  

zh / 2

vS  
E r  dA  

yl /2  zh /2  
E z zˆixˆ dydz 

z0 
E z zˆixˆ dydz   side A1  (front)

yl /2  


yl /2  

 

xl /2 
 

z0 

zh/2  

z0
 

E z zˆixˆ dydz  zh / 2 

z0 
 

zh / 2
 

E z zˆixˆ dydz   side A2  (back)

xl /2  

zh /2  
E z zˆiyˆ dxdz 

z0 
E z zˆiyˆ dxdz   side A3  (RHS)

xl /2  


  z0 

E z zˆi yˆ dxdz 
 zh / 2 

E z zˆi yˆ dxdz   side A4  (LHS)

xl /2  

xl /2 
 

zh /2  

yl /2 
 

z0 

xl /2 
 

yl / 2

xl /2     
 
yl / 2 

E z zˆizˆ  dxdy 
xl /2  

 
yl / 2 

E z zˆizˆdxdy
 

 

side A6  (bottom)                           side A5 (top) 

Now:  zˆixˆ  0 

And:    xˆixˆ 1 

zˆiyˆ   0 

 yˆiyˆ   1 

xˆizˆ  0 

zˆizˆ  1 

 yˆizˆ  0 etc.
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  

G 



 

G    
G

  Because xˆ  yˆ  zˆ , no contributions to  vS 
EidA (here) from 4 sides of Gaussian Pillbox

(i.e. A1, A2, A3  and A4) 
 

  Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox

because  nˆ
5   zˆ and nˆ

6   zˆ which are &  (or anti-parallel) 

to 

E z zˆ

 
Thus, we only have (here):

G   G      G xl /2 
 

yl / 2

vS  
E r idA  

xl /2     
 
yl / 2 

E z zˆizˆdxdy    side A6  (bottom)

xl /2  

xl /2     
yl /2  

 

yl / 2 

E z zˆizˆ dxdy 
 

   side A5  (top)
 

 

These integrals are not over z, and E(z) = constant for z = fixed = zo

 can pull E(z) outside integral, zˆizˆ 1 zˆizˆ  1 etc.

G   G      
G 

 

xl /2 
 

 

yl / 2

   v S  
E r idA  E z

xl /2     
xl /2  

E  z         

 
yl / 2 

yl / 2 

dxdy 

 
dxdy 

   side A6  (bottom) 

 
   side A5  (top)

xl /2  yl / 2

 E zl
2  

 E zl
2  

 2E zl
2
 

 

But: l
2  

 l l     surface area of top and bottom surfaces of Gaussian Pillbox
G   G      G 

Now: vS
 E r idA  

Qencl  


 

What is Qencl 

 

(by Gaussian Pillbox)?
o 

Q       
 Coulombs 

 meters
2   l2 

Coulombsencl    
meter2      

                  
G   G      G      

 
 1 



  vS 
E r idA  

Qencl    2E z l2 

o 

   l2
 o                   or: E z      

 2 


o        2o

 
Vectorially:

 
 

E z  


 zˆ, for  z0
  

NOTE:
 G 

E z
  

= constant!!    2o  

  

 zˆ, for  z0          

No z – dependence for charged   plane! 
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G   

G 
E r  from   - plane (slight return): 

 
 
 

Note that in the initial process of setting up the Gaussian Pillbox, if we’d shrunk the height h of the 

Pillbox to be infinitesimally small, i.e. h → h and then took the limit h→0, the contributions to 
G   G      G

vS
 E r idA  from (infinitesimally small) sides of  (A1, A2, A3  and A4) Gaussian Pillbox would

G   G      G
 

(formally) have vanished (i.e. = 0) independently of whether integrandE r idA vanished on these 
G   
G

sides (or not).  Only top and bottom surfaces contribute to  vS 
E r idA  then (here).

 

So using this “trick” of the shrinking Pillbox at a surface / boundary very often can be useful, to 

simplify doing the problem. 

 
This explicitly shows that (sometimes) there is more than one way to correctly do / solve a problem 

– equivalent methods may exist. 

 
→ It is very important, conceptually-speaking to have a (very) clear / good understanding of how to 

do these Gauss’ Law-type problems the “long’ way and the “short” way! 
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G  

        

                           
r

2
 

2 

o       o    a 
r o    a r b  

 

The Curl of 
G   G 
E r : 

JK    G 
 E r 

                G   
G

 

 
 

 
   1      q   

ˆ
First, study / consider simplest possible situation:  point charge at origin: E r            

4
o   r 2   r 

 

(note: 
G    G    G     
G 
r    r    r    r here because  r  0 - charge q located at origin!!!)

G   

G 
Thus (here), E r  is radial (i.e. in rˆ  direction) due to spherical symmetry of problem (rotational 

G 
invariance), thus static E -field has no rotation/swirl/whirl   no curl! (Read Griffith’s Ch. 1 on curl) 

JK    G   
G 

  E r   0  (must = 0) 
 

Let’s calculate:  

b   G   G     G
Line integral  

a 

 
zˆ 

E r id A     as shown in figure below: 

zˆ                     rˆ 
 

ˆ 

b

rb                                                                                                              
            yˆ

q                                   yˆ                                       

ra             dA                                                                                ˆ 
G 

a                     d A 
xˆ                                                                             xˆ 

 

G 
In spherical coordinates:  d A  drrˆ  rd   r sindˆ 

 
G   G     G       1      q  

E r id                     rˆi  drrˆ  rd  r sinˆ

A 
4

     
o       

 

Again: rˆirˆ 1 rˆi   0 rˆiˆ  0 rˆ ,   , and ˆ 
 

are mutually
 

 i   1 

ˆiˆ 1 

 

 irˆ  0 

ˆirˆ  0 

 

 iˆ  0 

ˆi   0 

 

orthogonal basis vectors 
 

(form ortho-normal basis)

G   G     
G    1      q  

  E r id A           
4o   r 

2   dr 

b   G   
G

 
G       1  

  

b  q
 rb

 

1    q     1      q     q 


   q      1     1 

Thus: 
a  

E r id A  4
o  

a   r 
dr 

4   
 
r 

ra 

 
4   

 
r 

     
b   4   

 
r  

    

 

ra = distance from origin  to point a.  rb  = distance from origin  to point b. 
 

G   G     G
 

The line integral   E r id A   around a closed contour C is zero! 
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r 

    

ˆ 0 

 

G   G     G
i.e. vC 

E r id A  0 This is not a trivial result!  (Not true   vectors!!) 
J
K 

(But is true for static  E -fields)
 

Use Stokes’ Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)
 

JK    G   G       G
 

 

G   G     G

  E r idA  v E r id A  0
S                                                    C 

 
arbitrary closed                  arbitrary closed 

surface S                             contour C (on S) 
 

JK    G   G       GSince  
S
  E r idA  0 must be / is true for arbitrary closed surface S, 

JK    G   G
this can only be true for all   closed surfaces S IFF (if and only if):  E r   0

 

 

Can use the Principle of Superposition to show that: 

G       G       N     G   G                N
 

G      G    G 

E       r   


E   r    
   1  

 
 qi    

rˆ
  

← i = 1,2,3. . . N discrete charges, and  r  r  r 
TOT     

i1 

i    
4o 

  2     i                                                                                                                    i                      i 
i1     i

 

G    G      G    G      G    G            G     G
 E1 r  E2 r  E3 r  ... EN  r   

 
 
 

G           
zˆ 
r

 

G   G 
E r @ field point P 

 

G 
r3

source points          q2                 q3                                                                      P
 

G   G      G                                            G
@ r1 , r2 … rN 

q1 

r
G    G 
r2      r3                        r 

G 
r1 

                                      yˆ

 

 
 

JK    
G

 

 

 
 

G      JK
 

 

 
 
N     G   
G

 

 

xˆ 

N      JK    G   G
 

G 
ri    ri 

G    G 
r    ri

Then:  ETOT  r    Ei  r    Ei  r 
i1 

N   JK 



i1 

    1      qi   
    

2

      


i1 

4  
r  

 r
i    
   n.b. all individual terms = 0 !!!

JK    G       
G

 
       o    i        

N         JK 

           E       r  
   1  

   1  
q           rˆ   0

or: 
TOT     4

o 

  i 
i1    2    i 

 ri    

 

JK    G   G 
It can be shown that   E r   0 
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FOR ANY STATIC 

CHARGE DISTRIBUTION 

STATIC = NO TIME DEPENDENCE / VARIATION
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r 

r 

r 

G 

r

G 

 

JK    G   G 
 E r   0 

 

 

HOLDS FOR: 
G

    Static Discrete/Point Charges 
 

    Static Line Charges 
 

    Static Surface Charges 
 

    Static Volume Charges 

q r 

 
G

  
G

  
G


 
 

All Static Charge Distributions

 
Again, this not trivial (we’ll see why, soon. . . ) 

 
One other (very important) point about the mathematical & geometrical nature of vector fields: 

G
The nature of a (physically-realizable) vector field Ar  is fully specified if both its divergence
G   G   
G

 G     G   G

iAr and its curl  Ar  are known. 

This is a consequence of the so-called Helmholtz theorem – see/read Appendix B of Griffiths book. 

The Helmholtz theorem also has an important corollary: 

G
Any differentiable vector function Ar  that goes to zero faster than 1 r  as  r  can be expressed

as the gradient of a scalar plus the curl of a vector:
 

 

G   G      G       

 
 

 

G  G G
 

 

G              
G   G G

 

Ar 
      1      iAr                1 

           d 
 Ar     

             d 

                                    
    4   v            r           4   v              r                                                                                      

 

G   G   G           G 
For the case of electrostatics:  iE r    r  o 

 

G     G   

G 
and   E r   0

G          G                
G    G   

G
 

G                
G      G              

 

E r 
 
 
  1   iE r     

d   
   1   E r  

d 
    4   v            r

           4   v               r              

Thus: 
                                                                             

G            
G                 

G      G   1       

            


r      
d     V r 

                    
4o          

v        r 
 

 

G   G         G      G
 


 

 

G         1  
 

 

 
 

G 


 
 
 

 
                       SI Units:

i.e. E r   V r  with V r             d   = Electrostatic Potential4o     
v        r Volts

 

This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions. 
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For infinite-expanse charge distributions (n.b. these are unphysical/artificial!), we must appeal to 

(more sophisticated) mathematical formalisms than the Helmholtz theorem… 
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