Gauss' Law / Divergence Theorem

Consider an <u>imaginary / fictitious surface</u> enclosing / surrounding e.g. a point charge (or a small charged conducting object). For simplicity, use an imaginary sphere of radius R centered on charge Q at origin:

G Area element dA is a VECTOR quantity: $dA dAn^{\circ} dAr^{\circ}$. By convention, n° is outward-pointing unit normal vector at area element dA. In this particular case (because of spherical symmetry of problem): $n^{\circ} r^{\circ}$

FLUX OF ELECTRIC FIELD LINES (through surface S): $\begin{bmatrix} K & G \\ E & r & idA \end{bmatrix}$

 $_{E}$ = "measure" of "number of *E*-field "lines" passing through surface *S*, (SI Units: Volt-meters).

TOTAL ELECTRIC FLUX (${}^{TOT}_{E}$) associated with any <u>closed</u> surface *S*, is a measure of the (total) charge enclosed by surface *S*.

n.b. charge <u>outside</u> of surface *S* will contribute <u>nothing</u> to total electric flux $_{E}$ (since *E*-field lines pass through one portion of the surface *S* and out another – no net flux!)

Consider our point charge Q at origin. Calculate the flux of E passing through a sphere of radius r: (see above picture)

$$N = \frac{K}{s} \frac{G}{E} r \, i \frac{G}{dA} r \frac{G}{4} \frac{1}{s} r^2 i r^2 \sin ddr$$

$$\int_{G} \frac{G}{dA} \frac{G}{infinitesimal vector}$$

$$\int_{S} \frac{G}{r} r^2 \sin ddr r$$
n.b. Vector area element of sphere of radius, *r* is $dA dAr^2 r^2 \sin ddr$ in spherical-polar coordinates.

$$\frac{Q}{2} = \frac{2}{\sin dd}$$

$$\frac{r^{2} r^{2} sin dd}{2}$$

$$\frac{r^{2} r^{2} r^{$$

Electric flux through closed surface $S = (\text{electric charge enclosed by surface } S)/_o$

If (= there exists) lots of <u>discrete</u> charges q_i (ALL <u>enclosed</u> by imaginary / fictitious / Gaussian surface *S*), we know from principle of superposition that:

This relation holds for <u>any</u> volume v the <u>integrands</u> of $\int_{v} d$ <u>must</u> be equal, i.e.:

Gauss' Law (in Differential Form):

The DIVERGENCE OF
$$E:r^{*}$$
 if r^{*} if

APPLICATIONS OF GAUSS' LAW

- very explicit, detailed derivation -

<u>Griffiths Example 2.2:</u> Find / determine the electric field intensity $\stackrel{G}{E} r \stackrel{G}{\text{outside a uniformly charged}}$ solid sphere of radius *R* and total charge *q*:

n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q located at the origin!!! 2005 - 2008. All rights reserved.

GAUSS' LAW AND SYMMETRY

Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general) can be extremely powerful in terms of simplifying seemingly complicated problems!!

Learn skill of recognizing symmetries and applying symmetry arguments to solve problems!

Examples of use of Geometrical Symmetries and Gauss' Law

- a) Charged sphere use concentric Gaussian sphere and spherical coordinates
- b) Charged cylinder use coaxial Gaussian cylinder and cylindrical coordinates
- c) Charged box / Charged plane use appropriately co-located Gaussian "pillbox" (rectangular box) and rectangular coordinates
- d) Charged ellipse use come
 e) Charged planar equilateral triangle d) Charged ellipse – use concentric Gaussian ellipse and elliptical coordinates
- Think about
- these!!

APPLICATIONS OF GAUSS' LAW (CONTINUED) - very explicit detailed derivation

Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries a volume charge density that is proportional to the distance from the axis s of the cylinder $/ \operatorname{rod}$ i.e.

coulombs (s) = ks*meter*³

coulombs k = proportionality constant meter⁴

a) Determine the electric field $\stackrel{G}{E}r$ $\stackrel{G}{\underline{\text{inside}}}$ this long cylinder / charged plastic rod - Use a coaxial Gaussian cylinder of length l and radius s: (with $l \ll L$)

Gauss' Law
$$V_s^{G} r_i dA \frac{Q_{encl}}{Q_{encl}}$$

Enclosed charge: Q_{encl} , sd, kssdsddz

integral over Gaussian surface

 $\int_{s0}^{s} {}^2s \, ds$

$$Q_{encl} = \frac{ss \ 2}{s0 \ 0} = \frac{zl}{z0} kssdsddz \ 2 kl$$
$$Q_{encl} = \frac{2}{3} kls^{3}$$

Putting this all together now:

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 2005 - 2008. All rights reserved. 6

APPLICATIONS OF GAUSS' LAW - very explicit / detailed derivation -

An <u>infinite plane</u> carries uniform charge (coulombs / meter²). **Griffiths Example 2.4:** Find the electric field a distance $z = z_0$ above (or below) the plane.

Use Gaussian Pillbox centered on -plane:

 $Ezz^{}$ (below plane)

The Gaussian Pillbox has 6 sides - and thus has six outward unit normal vectors: :

2005 - 2008. All rights reserved.

Because $x \ y \ z \$, <u>no</u> contributions to $V_s \ EidA$ (here) from <u>4 sides</u> of Gaussian Pillbox (i.e. A_1, A_2, A_3 and A_4)

Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox because $\hat{n}_5 \hat{z}$ and $\hat{n}_6 \hat{z}$ which are & (or anti-parallel) $E z \hat{z}$ to

Thus, we only have (here): $V_s E r i dA$ xl/2 xl/2 xl/2 xl/2 xl/2 xl/2 xl/2 yl/2 $E z z^i z^2 dx dy$ xl/2 xl/2xl/

These integrals are not over *z*, and E(z) = constant for $z = \text{fixed} = z_0$ can pull E(z) outside integral, $z\hat{i}z\hat{i}1 = z\hat{i}z\hat{i}1$ etc.

$$\mathbf{V} = \begin{bmatrix} \mathbf{G} & \mathbf{G} & x^{1/2} & y^{1/2} \\ \mathbf{V} = \begin{bmatrix} \mathbf{E} \ \mathbf{r} \ \mathbf{i} dA & \mathbf{E} \ \mathbf{z} \\ x^{1/2} & y^{1/2} \\ \mathbf{E} \ \mathbf{z} & \frac{x^{1/2} & y^{1/2}}{x^{1/2} & y^{1/2}} \\ \mathbf{E} \ \mathbf{z} \ \mathbf{z} \ \mathbf{z} \ \mathbf{z}^{1/2} & y^{1/2} \\ \mathbf{z} \ \mathbf{z} \ \mathbf{z} \ \mathbf{z} \ \mathbf{z}^{1/2} \end{bmatrix} dx dy \quad \text{side } A_5 \text{ (top)}$$

But: l^2 11surface area of top and bottom surfaces of Gaussian PillboxNow: V_s G_s G_{encl} What is Q_{encl} (by Gaussian Pillbox)? Q_{encl} Coulombs
meter2 $meters^2$ l^2 Coulombs V_s G_s G_s G_{encl}
 Q_{encl} $2E z l^2 / l^2 / l_o$ or: V_s G_s G_s G_s Q_{encl}
 Q_{encl} $2E z l^2 / l^2 / l_o$ or: V_s G_s G_s G_s Q_{encl}
 Q_{encl} $2E z l^2 / l^2 / l_o$ or: V_s G_s G_s Q_{encl}
 Q_{encl} $2E z l^2 / l^2 / l_o$ or: $E z \frac{1}{2} / o 2_o$ Vectorially: $E z / 2_o /$

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 2 Prof. Steven Errede Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 11 $G = E^{G}_{r}$ from - plane (slight return):

Note that in the initial process of setting up the Gaussian Pillbox, if we'd shrunk the height *h* of the Pillbox to be infinitesimally small, i.e. $h \rightarrow h$ and then took the limit $h \rightarrow 0$, the contributions to $V_s Er i dA$ from (infinitesimally small) sides of $(A_1, A_2, A_3 \text{ and } A_4)$ Gaussian Pillbox would (formally) have vanished (i.e. = 0) independently of whether integrand Er i dA vanished on these sides (or not). Only top and bottom surfaces contribute to $V_s Er i dA$ then (here).

So using this "trick" of the shrinking Pillbox at a surface / boundary very often can be useful, to <u>simplify</u> doing the problem.

This explicitly shows that (sometimes) there <u>is</u> more than one way to <u>correctly</u> do / solve a problem – equivalent methods <u>may</u> exist.

 \rightarrow It is very important, conceptually-speaking to have a (very) clear / good understanding of how to do these Gauss' Law-type problems the "long' way <u>and</u> the "short" way!

The Curl of E r: JK Er

G First, study / consider simplest possible situation: point charge $\overline{\frac{G}{at} origin}$: E r(note: $\begin{array}{ccc} G & G & G \\ G & r & r \end{array}$ here because $r \ 0$ - charge q located at origin!!!)

Thus (here), E_r^G is <u>radial</u> (i.e. in \hat{r} direction) due to spherical symmetry of problem (rotational invariance) thus static $\stackrel{G}{E}$ -field has <u>no</u> rotation/swirl/whirl no curl! (Read Griffith's Ch. 1 on curl)

$$E r \quad 0 \quad (\underline{must} = 0)$$

Let's calculate:

Line integral $\int_{a}^{b} \frac{G}{Er} = \int_{a}^{G} \frac{G}{A}$ as shown in figure below:

In spherical coordinates: $\overset{\mathbf{G}}{d\mathbf{A}} drr r d r \sin d$

$$\begin{array}{cccccccc} G & G & G & \underline{1} & \underline{q} \\ E r i d & & & r^{\hat{1}} \\ A & & & r^{2} \\ & & 4 & o \end{array}$$

<u>Again</u> :	rîrî 1	rîi 0	rîî 0
	i 1	ir 0	i^ 0
	îî 1	îr 0	î 0

(
\hat{r} , , and $$	are mutually
orthogonal b	basis vectors
(form <u>ortho</u>	- <i>normal</i> basis)
)

 $\begin{array}{ccc} G & G & \underline{1} & \underline{q} \\ E r \, \mathrm{i} d \, \mathrm{A} & & \\ & 4 & r^2 \end{array} dr$

 r_a = distance from origin to point <u>a</u>. r_b = distance from origin to point <u>b</u>. The line integral $\begin{array}{c} G & G \\ E & r & id \end{array} \begin{array}{c} G & G \\ around a <u>closed</u> contour C is zero! 2005 - 2008. All rights reserved. \end{array}$

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 2

i.e. $V_{C} \stackrel{G}{E} r \stackrel{G}{id} \stackrel{G}{A} \stackrel{O}{0}$ This is <u>not</u> a trivial result! (Not true vectors!!)

(But *is* true for <u>static</u> $\stackrel{K}{E}$ -fields)

Use Stokes' Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)

UIUC Physics 435 EM Fields & Source	s I	Fall Semester, 2007	Lecture Notes 2	Prof. Steven Err	rede
FOR <u>ANY STATIC</u>	STAT	$TIC = \underline{NO} \underline{TIME} D$	EPENDENCE / V	VARIATION	

CHARGE DISTRIBUTION

14	Professor Steven Errede	, Department of Physics	, University of Illinois at	Urbana-Champaign, Illinois
----	-------------------------	-------------------------	-----------------------------	----------------------------

$$\begin{array}{ccc} JK & G & G \\ E r & 0 & G \end{array} \qquad HOLDS FOR: \end{array}$$

Static Discrete/Point Charges Static Line Charges Static Surface Charges Static Volume Charges

All Static Charge Distributions

Again, this *not* trivial (we'll see why, soon. . .)

One other (very important) point about the mathematical & geometrical nature of vector fields:

This is a consequence of the so-called <u>Helmholtz theorem</u> – see/read <u>Appendix *B*</u> of Griffiths book.

The Helmholtz theorem also has an important corollary:

Any differentiable vector function Ar^{G} that goes to zero faster than 1/r as r can be expressed as the gradient of a scalar plus the curl of a vector:

This result is valid e.g. in electrostatics for <u>localized</u> (i.e. finite spatial extent) charge distributions.

2005 - 2008. All rights reserved.

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 2 Prof. Steven Errede For <u>infinite-expanse</u> charge distributions (n.b. these are unphysical/artificial!), we must appeal to (more sophisticated) mathematical formalisms than the Helmholtz theorem...