Gauss’ Law / Divergence Theorem

charged conducting object). For simplicity, use an imaginary sphere of radius R centered on charge
Q at origin:

X" R \ Imaginary/Fictitious Surface, S
S aka Gaussian Surface of radius R
centered on charge Q.

unit normal vector at area element dA. In this particular case (because of spherical symmetry of
problem): n” r”

pass through one portion of the surface S and out another — no net flux!)

Consider our point charge Q at origin. Calculate the flux of E passing through a sphere of radius r:
(see above picture)

Ko GQ 1 ., ..
A/ SErlg'Ar p OSry%/r smcfer

dA
infinitesimal vector
area element for
sphere of radius r

n.b. Vector area element of sphere of radius, r is|dA dAr™ r’sindd r* in spherical-polar

coordinates.



Q. sindd rir 20° sind
E ° o o I 0
Thus: 4 ™ 1'44 0

G_GG Q
Gauss’ Law (in Integral Form): E VvET I0A —enclosed

Q

Electric flux through closed surface S = (electric charge enclosed by surface S)/,

If (= there exists) lots of discrete charges ¢; (ALL enclosed by imaginary / fictitious / Gaussian
surface S), we know from principle of superposition that:

G NG
ENETrGEir ©

il

Then: NET EG r 1IdA
en: e V, Ener VvV

If volume charge density (r)6, then: Q. V(r)dG

Then using the DIVERGENCHHEOREM—¢
8 G JK G¢ Q
v (EridA iErd —endl — rd

\

0o 0o

This relation holds for any volume v the integrands of d must be equal, i.e.:

LS

JIK I\” G
Gauss’ Law (in Differential Form): iEr /
0

2 Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
2005 - 2008. All rights reserved.



The DIVERGENCE OF ErC iEr- ©

JK G G G rG
Calculate i% r directly from I';_lr _rd

0 v
all

space \

n.b. now extended over all space!
Remember that P is NOT a constant!

GGG
field source
point point
P S
KIK K 1 ¢ ¢ 1 Kr 6
%r i , rd i, rd
r r
4 sgzlilce 4 sgz!llce
JK i L 3 (see equation 1.100, Griffiths p. 50)
Now: ., 4 3D
T
G G G G G G
G r
Thus: = or: rr
4 4% r
i i |
2 r rGr (Fa
G GiG G, G G G,
iEr al 4°r rrd Gauss’ Law in Differential Form:
/405pace o
G G Gr
Er ~
Gauss’ Law in Integral Form:
K G g K G r © 1 G 1
r
iEr |, thus: iEd d rd Q.
K G g

Now apply/use the Divergence Theorem on the volume integral associated with iE r:

< e £
02005 - 2008. All rights reserved.
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. GG Q%
Thus we obtain: [\ E ridA === Gauss’ Law in Integral Form

0
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APPLICATIONS OF GAUSS’ LAW - very explicit, detailed derivation -

G
Griffiths Example 2.2: Find / determine the electric field intensity E r 63utside a uniformly charged

solid sphere of radius R and total charge q:
rr draw concentric Gaussian

“n° surface with radius r >R
centered on solid charged

sphere of radius R.

Field Point P @ P
on Gaussian surface

S Infinitesimal area element
) dA dAn" dAr:
) . dA r’dcosd

Charged solid
Sphere of XY Tt r’sindd
Radius R,

Fictitious / Imaginary spherical

Total charge q
Gaussian surface S of radius r

G
Gauss’ Law: Er iﬁA 5 Q 1 q u
VS encl

0o 0o 0

G G G ) ) n.b. la¥<symmetry ofAsphere:
dA dAn” dAr Espherer R E 1Y

I?r Err

(for Gaussian sphere) i.e. E must be radial!!
G G G G
EridA ErriidAr Er dAN ErdA ri

1

G n.b. Here again, by syrr&netry,

G
NOTE: E rG ‘E r ‘ the magnitude of E is constant (for all)/for any fixed r!!!
(on the Gaussian spherical surface).

By, o
Vo« rIdAVS ErdA Q/)
Ery daEr4® @ /
1

& / 1 G q r —qF
Er ETr
4 4, or 4 r: 4

0

= Electric field outside a charged sphere of radius R at radial distance r > R from center of sphere.

n.b. the electric field (for r > R) for charged sphere is equivalent / identical to that of a point charge q
located at the origin!!! 2005 - 2008. Al rights reserved.
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GAUSS’ LAW AND SYMMETRY

Use of (Geometrical / Reflection) symmetry (and any / all kinds of symmetry arguments in general)
can be extremely powerful in terms of simplifying seemingly complicated problems!!

Learn skill of recognizing symmetries and applying symmetry arguments to solve problems!
Examples of use of Geometrical Symmetries and Gauss’ Law

a) Charged sphere — use concentric Gaussian sphere and spherical coordinates

b) Charged cylinder — use coaxial Gaussian cylinder and cylindrical coordinates

¢) Charged box / Charged plane — use appropriately co-located Gaussian “pillbox” (rectangular
box) and rectangular coordinates

d) Charged ellipse — use concentric Gaussian ellipse and elliptical coordinates

e) Charged planar equilateral triangle Think about

f) Charged pyramid } these!!

APPLICATIONS OF GAUSS’ LAW (CONTINUED) - very explicit detailed derivation

Griffiths Example 2.3 Consider a long cylinder (e.g. plastic rod) of length L and radius S that carries
a volume charge density that is proportional to the distance from the axis s of the cylinder / rod —
e

coulombs
(s) =ks 3
meter
. . lom
k = proportionality constant col 04 bs
meter

G
a) Determine the electric field Er Cﬁnside this long cylinder / charged plastic rod
- Use a coaxial Gaussian cylinder of length | and radius s: (with | <<'L)

G |
Gauss’ Law VsE r IﬁA %

0

Enclosed charge: Q,,, sd kssdsddz integral over Gaussian surface
\ \
N " kssdsddz 2 kI Y
Qencl So , Kssdsddz o, SUds
= 3
Qencl 3k|S
Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois 5
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LHS Gaussian endcap Coaxial Gaussian cylinder
- Long charged cylinder of
\ eI —)“/ <« radius Sand length L
S\nz SR [ g )
L m A 3
7=0 =
A RHS Gaussian endcap
|< L >|
(L>>1)
L G G .G . G _ :
Cylindrical Symmetry Er Err (i.e. E points radially outward, to z-axis.)
G R G G Gg G
\, EridA EridA,, EridA,, EridA,
cylindrical LHS endcap endcap  RHs endcap endcap
ortionof portionof portionof
aussian Gaussian Gaussian
surface surface surface

Agad';n, frqr_;g cylindrical symmetry (here): G
Er ‘E r F'onstant on cylindrical Gaussian surface —i.e. fixed r r :? |
G G G
What are dA,, dA s ,and dAy,, 7?7
G endcap endcap
dA,, sdidr' n°, dA Sdsdz® sdsdz” (" ")
cyl. cyl. endcap endcap
infinitesimal surface area . . A
element of Gaussian cylinder dAgys sdsd 2° sdsd z° (N"gys ")
endcap endcap
G G n . n n
v Er 3a E rrisdir E rrisdsdz E rrisdsd?
S cyl. LHS RHS

Gaussian Gaussian Gaussian
cylinder surfa
ce

Gaussian
endca]
rirl r'iz’0 r'iz’o

Note(s): C
Er ‘E r konstant on cylindrical Gaussian surface (fixed r = s)
G G .
lg; . by symmetry of charged cylinder

r Err G G G
On LHS and RHS endcaps E r is not constant, because r is changing there - (but E still points
in r” direction! However, note that r’ir" 1 and r’iz" 0 Gaussian endcap terms do not
contribute!!!

Constant here

QG € A2 G G
Vv E ridA Ersdld Ers o o did Ersl2 2slEr
Gau?sian CGyzillthds:g:r? ! Z
cylinder surface
S G Q 2
Putting this all together now: V.ET idA —<end where (here): Q. ;)kls3

0
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inside
RN & ks?
\// | 2
2 slEr —3 or: E.r 3—!” nb.r s as used in Griffith’s
srsS book, page 73

G
b) Find ELECTRIC FIELD Er %utside of this long cylinder / charged plastic rod
Again, use Coaxial Gaussian cylinder of length | (<< L) and radius s (> S):

G
Gauss’ Law: VSE r i%A %

(o]

Enclosed charge (for s > S): Qenct 2 3kIS3 coaxial Gaussian cylinder
radius s > S and length | << L
r]Acyl. ArA
Long charge cylinder of — Y
radius S and length L SN SN
l ’I \‘ - II \‘\

l' S ‘l‘
Nays  Z [ S z
© I:anr*Aln;

1

!
1
L

>

A >

B T

B o

P~-~-~--<}
N)

®

@

[fe—— I<<L —>]

) L
. . G G o
Again, from symmetry of long cylinder c E i constant (radial) direction!!
r Err
r = s (fixed radius)
G QG &G Gg G
\. EridA EridA,, EridA E ridAg,s
s cylindrical LHS endcap RHS endcap
Gaussian Gaussian Gaussian
surface endcap endcap
G X G
dA,, sdidr dA s sdsdz” sdsdz” dA s z
endcap endcap
G, . A G A . .
qIACyl rdA,r dAeRnlagap sdsd z° sdsdz” dAg, s z

Now: r'ir'l and r’iz" O
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Then =
& G G G
\, EridA ErridA,r ErridA ErriidA
cylindrical LHS RHS endcap
Gaussian Gaussian endcap
surface endcap
G 721 2 G

Er sdid 2sIEr
20 0

G 2 /K rs3 kS®
o 7l 3s,

Electric field outside charged rod (s =r >S) : E

ELECTRIC FIELD (INSIDE/OUTSIDE) LONG CHARGED CYLINDER
vs. radial distance s (radius S, (s) = ks)
Inside (s < S): Outside (s > S):
& G G kS*1]| ...
E.r s s E, ' & s
3, 3, s

Make a plot of?E rG ‘ vs. radial distance s:

G
s, |
4

A
Emax S S E
ks* o L
3, |
Varies as s* Varies as ~1/s
/ Radial
: Distance
S
; s=S >
8 Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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APPLICATIONS OF GAUSS’ LAW - very explicit / detailed derivation —

Griffiths Example 2.4: An infinite plane carries uniform charge (coulombs / meter?).
Find the electric field a distance z = z, above (or below) the plane.

Use Gaussian Pillbox
centered on -plane:

AZ “Square”
Gaussian
Pillbox
=
e
/ /A

=
AR

Edge-on Perspective: f

A

<V

z=+h/2
xAl (out of page) T
h
v

z=-h/2

i N,
>

y=-I/2 y = +l/2

Again, fr@m the symmetry associated with -plane,
Er Er 2 Ez7 (above plane), EzZ" (below plane)

The Gaussian Pillbox has 6 sides — and thus has six outward unit normal vectors: :
n;,z”

N

A, (baCk) nAZ X
As (top)

n 41y /’/

s s
-
z |-
- P >
-

A4 (RH side)/%/jr - .- A; (LH side)
A, (er,x‘ l n,z”

Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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Then:
QG QG e Gg G
V. EridA E ridA, : EridA, sEridA,
S A, A
G g G 8 G G g G
LEridA,  EridA "E ridA,
G . G X A
dA, dydz x dACf dydz x” dydz x
dé3 dxdz y” d% dxdzy” dxdzy”
dA, dxdy z° dA, dxdy z® dxdy z°
G G R .
forz>0: JEKr Ezz Again, by symmetry (of plane)
forz <0: Er &z Ez7 n.b. E(z) = constant (at least for

JK X
Now because Er Ezz

fixed z).

z 0 . i .
for {z 0 } respectively, we must break up integrals over z into

. zh 12 20 thi2
two separate regions: dz dz
zh 2 zh /2 20
Then:
8 G yl 12 n2G G yl 12 e G G
v Er idA an E ridydz x° " n ET idydz X
X z G X z G 3
S Ecr;idxdzyA N e EPldxdzyA
xI/2 zh/2 xl 12 zh 12
e e E?idxdy z i " E?idxdy A
xI /2 xI /2
@ G yl 2 20 thi2
v Er dA E z 2°iX’_dydz ® Ez zAixA/d@z side A; (front)
S yl /2 zh 12
iz 0 Ez7ZiX' d hiz Ez7ZiX d side A, (back)
Y2 e /WZ 20 )dz
M0 B2y gxd % E 7 2y oxd side As (RHS)
o z iy dxdz 2 7y’ dxdz 3
"R B yA/d,foz e y" dxdz side A; (LHS)
x1 /2 zh 12 20 yii2
" He yl|//z Ez 22" dxdy § /ZI » ., EzZizdxdy
X yl X y!
D2 _/
N N
side As (bottom) side As (top)
Now: z%ix" 0 'y” 0 X"iz" 0 yiz- 0 etc.
And: Xix" 1 yiy" 1 iz 1

2005 - 2008. All rights reserved.
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G

G
Because X" y" z", no contributions to V, EidA (here) from 4 sides of Gaussian Pillbox
(Ie A, Ay, Az and A4)

Only remaining / non-zero contributions are from bottom and top surfaces of Gaussian Pillbox
because n", z° and n", z© whichare & (or anti-parallel) Ez 7"

to
Thus, we only have (here):
G Xl 12 yli2
V, E ridA an - E z Z"iz"dxdy side As (bottom)
ne W2 E 7 7%z dxdy side As (top)
xl 12yl 12

These integrals are not over z, and E(z) = constant for z = fixed = z,
can pull E(z) outside integral, z%iz" 1 Z2'iz" 1 etc.

G Xl 12 yll2

Vo, EridA E z dxdy  side Ag (bottom)

yl/2
xli2  yli2

E z dxdy side As (top)

xI /2 yl/2

E zI° E zI* 2E zI?

But: I* Il surface area of top and bottom surfaces of Gaussian Pillbox
G | _ : .
Now: VSE r |8’A % What is Qener (by Gaussian Pillbox)?
Q.. %ombs; meters® 1*Coulombs
meter

v, Sk ke /R o e >/

C ] G
Vectorially: |E z z, for 20 NOTE: ‘Ez ‘ = constant!!

20 7, for 20

No z — dependence for charged plane!

2005 - 2008. All rights reserved.
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o~

G

FGr from - planp (qlight return):

Note that in the initial process of setting up the Gaussian Pillbox, if we’d shrunk the height h of the
Pill@x to beénfinitesimally small, i.e. h — h and then took the limit h—0, the contributions to

V, E ridA from (infinitesimally small) sides of (A1, Az, Az and Ay) Gau33|an Pillbox would

G
(formally) have vanished (i.e. = 0) independently of whether mtegrandE rG|dA vanished on these

sides (or not). Only top and bottom surfaces contribute to VSE r idA then (here).

So using this “trick” of the shrinking Pillbox at a surface / boundary very often can be useful, to

simplify doing the problem.

This explicitly shows that (sometimes) there is more than one way to correctly do / solve a problem
— equivalent methods may exist.

— It is very important, conceptually-speaking to have a (very) clear / good understanding of how to
do these Gauss’ Law-type problems the “long’ way and the “short” way!

2005 - 2008. All rights reserved.
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G JK
The Curl of Er:G Er R

G 1 g .

First, study / consider simplest possible situation: point chargegtorigin: Er i ? r

0

(note: 8 rG ; Gr here because r 0 - charge q located at origin!!!)

Thus (here), EGr is radial (i.e. in r" direction) due to spherical symmetry of problem (rotational
invariance)aFEUSétatiC E -field has no rotation/swirl/whirl no curl! (Read Griffith’s Ch. 1 on curl)
Er 8’ (must = 0)

Let’s calculate:

.. b G 9 G .
Line integral . EridA asshown in figure below:

G
In spherical coordinates: d A drr” rd rsind”

Gec G 1 q
Erid r't drr” rd rsin”
A r’
4
Again: rrir 1 ri 0 r'i~ 0 r’, ,and” are mutually
i1 ir 0 i" 0 orthogonal basis vectors
71 "irt 0 i 0 (form ortho-normal basis)
G 1 q
EridA , dr
4 r

bG G 1 bﬂ ]__g

Thus: EridA 2 dr
a 4a|’ 4 J‘ 4 r rb 4 (ra rb

1 g g g 1 1

r,= distance from origin to point a. r, = distance from origin to point b.

G G
The line integral Er ig A aroundzgogl_o%gggc%ntou&girgge;egg!

I1rig Vi
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c C
ie. VCEriHA 0 | Thisis not a trivial result! (Not true vectors!!)
J

K
(But is true for static E -fields)

Use Stokes’ Theorem (See Griffiths, Ch. 1.3.5, p. 34 and Appendix A-5)

HE I I I
AN ) b ) b )
ETidA v _EridA 0
N N
arbitrary closed arbitrary closed
surface S contour C (on S)

. JK. G g G . .
Since , ET idA 0 must be / is true for arbitrary closed surface S,
1K G -~
this can only be true for all closed surfaces S IFF (ifandonly if): | Er O

Can use the Principle of Superposition to show that:

e 6 "G gy q G G G
Eor T Ei r 4— zrrﬁ! «—1i1=1,23...Ndiscrete charges, angl r r r,
i1 o i1
G G G G
E,r E?r E,r CEN r G G s
Er&field point P
A s \
so%ce@ointé 0> P
@r,,r,...r,
*f1
y
X" r m |rG ri?
6K NG vIK G oG
Then: E,,r Er Err
il il
N IK 1 g
2~ 0
4 r n.b. all individual terms =0 !!!
i1 o
Ea( rG 1 MK 1 ;
- TOT i q r
or: 4 2!

It can be shown that| Er

2005 - 2008. All rights reserved.
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FOR ANY STATIC STATIC = NO TIME DEPENDENCE / VARIATION
CHARGE DISTRIBUTION

14 Professor Steven Errede, Department of Physics, University of Illinois at Urbana-Champaign, Illinois
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JK G G
Er O HOLDS FOR:
Static Discrete/Point Charges q rG
Static Line Charges G rG All Static Charge Distributions
Static Surface Charges G r
Static Volume Charges r

Again, this not trivial (we’ll see why, soon. . . )
One other (very important) point about the mathematical & geometrical nature of vector fields:

The gature of a (phys(i;callyérealizable) vector field ArG is fully specified if both its divergence
G

i%r and its curl Ar are known.

This is a consequence of the so-called Helmholtz theorem — see/read Appendix B of Griffiths book.

The Helmholtz theorem also has an important corollary:

Any differentiable vector function ArG that goes to zero faster than 1/ r as r can be expressed
as the gradient of a scalar plus the curl of a vector:

Gg G S5 G G _ SG
=—1Ar i At
AI’ d d
4 v r 4 v r
66 6—6
For the case of electrostatics: [iIET 1~ /J
and—E+—6
—6G CEENNE «
G G
¢ 1 iEr 1 BT~
Er - d = d
Th 4 v r 4 v r
us
a r © G G
d Vvr
4, v
6 a G
A=) O r
> © G L - Sl Units:
i.e. Er Vr with M 4———&—= Electrostatic Potential Volts

This result is valid e.g. in electrostatics for localized (i.e. finite spatial extent) charge distributions.
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For infinite-expanse charge distributions (n.b. these are unphysical/artificial!), we must appeal to
(more sophisticated) mathematical formalisms than the Helmholtz theorem...
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