
Microcontroller

By

Prof.Mahesh Yanagimath

M.Tech(VLSI &ES), MIEEE, MISTE.

Assistant Professor,Dept of EEE

HIT Nidasoshi.

What is Microcontroller?

Why the name Microcontroller”?

Why it is required?

Where it is Used?

Why do we need to learn

Microprocessors/controllers?

 The microprocessor is the core of computer
systems.

 Many communication, digital entertainment,
portable devices, are controlled by them.

 A designer should know what types of components
he needs, ways to reduce production costs and
product reliable.

1. Meeting the computing needs of the task efficiently and cost

effectively

• speed, the amount of ROM and RAM, the number of I/O ports

and timers, size, packaging, power consumption

• easy to upgrade

• cost per unit

2. Availability of software development tools

• assemblers, debuggers, C compilers, emulator, simulator,

technical support

3. Wide availability and reliable sources of the microcontrollers.

Three criteria in Choosing a Microcontroller

Different aspects of a

microprocessor/controller

 Hardware : Interface to the real world

 Software : order how to deal with inputs

The necessary tools for a

microprocessor/controller

 CPU: Central Processing Unit

 I/O: Input /Output

 Bus: Address bus & Data bus

 Memory: RAM & ROM

 Timer

 Interrupt

 Serial Port

 Parallel Port

CPU

General-

Purpose

Micro-

processor

RAM ROM I/O

Port
Timer

Serial

COM

Port

Data Bus

Address Bus

General-Purpose Microprocessor System

Microprocessors:

 CPU for Computers

 No RAM, ROM, I/O on CPU chip itself

 Example：Intel’s x86, Motorola’s 680x0

Many chips on mother’s board

General-purpose Microprocessor

RAM ROM

I/O

Port
Timer

Serial

COM

Port
Microcontroller

CPU

 A smaller computer

 On-chip RAM, ROM, I/O ports...

 Example：Motorola’s 6811, Intel’s 8051, Zilog’s Z8 and PIC 16X

A single chip

Microcontroller :

Microprocessor

 CPU is stand-alone, RAM,

ROM, I/O, timer are separate

 Designer can decide on the

amount of ROM, RAM and

I/O ports.

 Expensive

 Versatility

 General-purpose

Microcontroller

• CPU, RAM, ROM, I/O and

timer are all on a single chip

• Fixed amount of on-chip

ROM, RAM, I/O ports

• For applications in which cost,

power and space are critical

• Single-purpose

Microprocessor vs. Microcontroller

 Embedded system means the processor is embedded into that

application.

 An embedded product uses a microprocessor or microcontroller to do

one task only.

 In an embedded system, there is only one application software that is

typically burned into ROM.

 Example：printer, keyboard, video game player

Embedded System

Block Diagram

CPU

On-chip

RAM

On-chip

ROM for

program

code

4 I/O Ports

Timer 0

Serial

PortOSC

Interrupt

Control

External interrupts

Timer 1

Timer/Counter

Bus

Control

TxD RxDP0 P1 P2 P3

Address/Data

Counter

Inputs

Pin Description of the 8051

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38

37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

P1.0
P1.1
P1.2

P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1

(T0)P3.4
(T1)P3.5

XTAL2
XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7
(WR)P3.6

Vcc
P0.0(AD0)
P0.1(AD1)

P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

EA/VPP
ALE/PROG

PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

8051

(8031)



Pins of 8051（1/4）

 Vcc（pin 40）：

– Vcc provides supply voltage to the chip.

– The voltage source is +5V.

 GND（pin 20）：ground

 XTAL1 and XTAL2（pins 19,18）

Figure (a). XTAL Connection to 8051

C2

30pF

C1

30pF

XTAL2

XTAL1

GND

 Using a quartz crystal oscillator

 We can observe the frequency on the XTAL2 pin.



Pins of 8051（2/4）

 RST（pin 9）：reset

– It is an input pin and is active high（normally low）.

 The high pulse must be high at least 2 machine cycles.

– It is a power-on reset.

 Upon applying a high pulse to RST, the

microcontroller will reset and all values in registers

will be lost.

 Reset values of some 8051 registers 

Figure (b). Power-On RESET Circuit

30 pF

30 pF

8.2 K

10 uF

+

Vcc

11.0592 MHz

EA/VPP
X1

X2

RST

31

19

18

9



Pins of 8051（3/4）

 /EA（pin 31）：external access

– There is no on-chip ROM in 8031 and 8032 .

– The /EA pin is connected to GND to indicate the code is

stored externally.

– /PSEN ＆ ALE are used for external ROM.

– For 8051, /EA pin is connected to Vcc.

– “/” means active low.

 /PSEN（pin 29）：program store enable

– This is an output pin and is connected to the OE pin of the

ROM.

Pins of 8051（4/4）

 ALE（pin 30）：address latch enable

– It is an output pin and is active high.

– 8051 port 0 provides both address and data.

– The ALE pin is used for de-multiplexing the address
and data by connecting to the G pin of the 74LS373
latch.

 I/O port pins

– The four ports P0, P1, P2, and P3.

– Each port uses 8 pins.

– All I/O pins are bi-directional.

Pins of I/O Port

 The 8051 has four I/O ports

– Port 0 （pins 32-39）：P0（P0.0～P0.7）
– Port 1（pins 1-8） ：P1（P1.0～P1.7）
– Port 2（pins 21-28）：P2（P2.0～P2.7）
– Port 3（pins 10-17）：P3（P3.0～P3.7）
– Each port has 8 pins.

 Named P0.X （X=0,1,...,7）, P1.X, P2.X, P3.X

 Ex：P0.0 is the bit 0（LSB）of P0

 Ex：P0.7 is the bit 7（MSB）of P0

 These 8 bits form a byte.

 Each port can be used as input or output (bi-direction).


Hardware Structure of I/O Pin

 Each pin of I/O ports

– Internal CPU bus：communicate with CPU

– A D latch store the value of this pin

 D latch is controlled by “Write to latch”

– Write to latch＝1：write data into the D latch

– 2 Tri-state buffer：

 TB1: controlled by “Read pin”

– Read pin＝1：really read the data present at the pin

 TB2: controlled by “Read latch”

– Read latch＝1：read value from internal latch

– A transistor M1 gate

 Gate=0: open

 Gate=1: close

D Latch:

A Pin of Port 1

8051 IC

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

TB1

TB2

P0.x

Writing “1” to Output Pin P1.X

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

8051 IC

2. output pin is

Vcc1. write a 1 to the pin
1

0 output 1

TB1

TB2

Writing “0” to Output Pin P1.X

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P1.X

pin
P1.X

8051 IC

2. output pin is

ground1. write a 0 to the pin
0

1 output 0

TB1

TB2

Reading “High” at Input Pin

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

8051 IC

2. MOV A,P1

external pin=High
1. write a 1 to the pin MOV

P1,#0FFH

1

0

3. Read pin=1 Read latch=0

Write to latch=1

1

TB1

TB2

Reading “Low” at Input Pin

D Q

Clk Q

Vcc

Load(L1)

Read latch

Read pin

Write to latch

Internal CPU bus

M1

P1.X pin

P1.X

8051 IC

2. MOV A,P1

external pin=Low1. write a 1 to the pin

MOV P1,#0FFH

1

0

3. Read pin=1 Read latch=0

Write to latch=1

0

TB1

TB2

Other Pins

 P1, P2, and P3 have internal pull-up resisters.

– P1, P2, and P3 are not open drain.

 P0 has no internal pull-up resistors and does not
connects to Vcc inside the 8051.

– P0 is open drain.

– Compare the figures of P1.X and P0.X. 

 However, for a programmer, it is the same to program
P0, P1, P2 and P3.

 All the ports upon RESET are configured as output.

A Pin of Port 0

8051 IC

D Q

Clk Q

Read latch

Read pin

Write to latch

Internal CPU

bus

M1

P0.X

pin
P1.X

TB1

TB2

P1.x

Port 0 with Pull-Up Resistors

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

DS5000

8751

8951

Vcc
10 K

P
o

rt

0

Port 3 Alternate Functions

17RDP3.7

16WRP3.6

15T1P3.5

14T0P3.4

13INT1P3.3

12INT0P3.2

11TxDP3.1

10RxDP3.0

PinFunctionP3 Bit



RESET Value of Some 8051 Registers:

0000DPTR

0007SP

0000PSW

0000B

0000ACC

0000PC

Reset ValueRegister

RAM are all zero.


Registers

A

B

R0

R1

R3

R4

R2

R5

R7

R6

DPH DPL

PC

DPTR

PC

Some 8051 16-bit Register

Some 8-bitt Registers of

the 8051

Memory mapping in 8051

 ROM memory map in 8051 family

0000H

0FFFH

0000H

1FFFH

0000H

7FFFH

8751

AT89C51
8752

AT89C52

4k

DS5000-32

8k 32k

from Atmel Corporation
from Dallas Semiconductor

 RAM memory space allocation in the 8051

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

Stack in the 8051

 The register used to access
the stack is called SP (stack
pointer) register.

 The stack pointer in the 8051
is only 8 bits wide, which
means that it can take value
00 to FFH. When 8051
powered up, the SP register
contains value 07.

7FH

30H

2FH

20H

1FH

17H

10H

0FH

07H

08H

18H

00H
Register Bank 0

(Stack) Register Bank 1

Register Bank 2

Register Bank 3

Bit-Addressable RAM

Scratch pad RAM

Timer :

TMOD Register:

 Gate : When set, timer only runs while INT(0,1) is

high.

 C/T : Counter/Timer select bit.

 M1 : Mode bit 1.

 M0 : Mode bit 0.

TCON Register:

 TF1: Timer 1 overflow flag.

 TR1: Timer 1 run control bit.

 TF0: Timer 0 overflag.

 TR0: Timer 0 run control bit.

 IE1: External interrupt 1 edge flag.

 IT1: External interrupt 1 type flag.

 IE0: External interrupt 0 edge flag.

 IT0: External interrupt 0 type flag.

Interrupt :

Interrupt Enable Register :

 EA : Global enable/disable.

 --- : Undefined.

 ET2 :Enable Timer 2 interrupt.

 ES :Enable Serial port interrupt.

 ET1 :Enable Timer 1 interrupt.

 EX1 :Enable External 1 interrupt.

 ET0 : Enable Timer 0 interrupt.

 EX0 : Enable External 0 interrupt.

MICROCONTROLLER INSTRUCTION SET

 Subject: MICROCONTROLLER

PRESENTED BY

Prof.Mahesh Yanagimath

Dept of EEE

Introduction
 An instruction is an order or command given to a

processor by a computer program. All commands are
known as instruction set and set of instructions is
known as program.

 8051 have in total 111 instructions, i.e. 111 different
words available for program writing.

Instruction Format
 irst part describes WHAT should be done, while other

explains HOW to do it.

 The latter part can be a data (binary number) or the
address at which the data is stored.

 Depending upon the number of bytes required to
represent 1 instruction completely.

Types Of Instructions
 Instructions are divided into 3 types;

1. One/single byte instruction.

2. Two/double byte instruction.

3. Three/triple byte instruction.

Types Of Instructions
1. One/single byte instructions :

 If operand is not given in the instruction or there is
no digits present with instruction, the instructions
can be completely represented in one byte opcode.

 OPCODE 8 bit

Types Of Instructions
2. Two/double byte instruction:

 If 8 bit number is given as operand in the
instruction, the such instructions can be completed
represented in two bytes.

 First byte OPCODE

 Second byte 8 bit data or I/O port

Types Of Instructions
3. Three/triple byte instruction:

 If 16 bit number is given as operand in the
instructions than such instructions can be
completely represented in three bytes 16 bit number
specified may be data or address.

Types Of Instructions
1. First byte will be instruction code.

2. Second byte will be 8 LSB’s of 16 bit number.

3. Third byte will be 8 MSB’s of 16 bit number.

 First byte OPCODE.

 Second byte 8 LSB’s of data/address.

 Third byte 8 MSB’S of data/address.

Addressing Modes
 Addressing modes specifies where the data (operand)

is. They specify the source or destination of data
(operand) in several different ways, depending upon
the situation.

 Addressing modes are used to know where the
operand located is.

Addressing Modes

 There are 5 types of addressing modes:

1. Register addressing.

2. Direct addressing.

3. Register indirect addressing.

4. Immediate addressing.

5. Index addressing.

Register Addressing Mode
 In register addressing mode; the source and/or

destination is a register.

 In this case; data is placed in any of the 8 registers(R0-
R7); in instructions it is specified with letter Rn (where
N indicates 0 to 7).

Register Addressing Mode
 For example;

1. ADD A, Rn (This is general instruction).

2. ADD A, R5 (This instruction will add the contents of
register R5 with the accumulator contents).

Direct Addressing Mode
 In direct addressing mode; the address of memory

location containing data to be read is specified in
instruction.

 In this case; address of the data is given with the
instruction itself.

Direct Addressing Mode
 For example;

1. MOV A, 25H (This instruction will read/move the
data from internal RAM address 25H and store it in
the accumulator.

Register Indirect Addressing Mode
 In register indirect addressing mode; the contents of

the designated register are used as a pointer to
memory.

 In this case; data is placed in memory, but address of
memory location is not given directly with instruction.

Register Indirect Addressing Mode
 For example;

1. MOV A,@R0 This instruction moves the data from
the register whose address is in the R0 register into
the accumulator.

Immediate Addressing Mode
 In immediate addressing mode, the data is given with

the instruction itself.

 In this case; the data to be stored in memory
immediately follows the opcode.

Immediate Addressing Mode
 For example;

1. MOV A, #25H (This instruction will move the data
25H to accumulator.

Index Addressing Mode
 Offset (from accumulator) is added to the base index

register(DPTR OR Program Counter) to form the
effective address of the memory location.

 In this case; this mode is made for reading tables in
the program memory.

Index Addressing Mode
 For example;

1. MOVC A, @ A + DPTR (This instruction moves the
data from the memory to accumulator; whose
address is computed by adding the contents of
accumulator and DPTR)

Types Of Instructions

1. Data transfer instructions.

2. Arithmetic instructions.

3. Logical instructions.

4. Logical instructions with bits.

5. Branch instructions.

Data Transfer Instructions
 These instructions move the content of one register to

another one.

 Data can be transferred to stack with the help of PUSH
and POP instructions.

Data Transfer Instructions
 MNEMONIC DESCRIPTION BYTES

 MOV A,Rn (A) (Rn) 1

 MOV A,Rx (A) (Rx) 2

 MOV A,@Ri (A) (Ri) 1

Data Transfer Instructions

 MOV A,#X (A) Data 2

 MOV Rn,A (Rn) (A) 1

 MOV Rn, Rx (Rn) (Rx) 2

Data Transfer Instructions

 MOV Rn, #X (Rn) Data 2

 MOV Rx, A (Rx) (A) 2

 MOV Rx, Rn (Rx) (Rn) 2

Data Transfer Instructions

 MOV Rx, Ry (RX) (Ry) 3

 MOV Rx, @ Ri (Rx) (Ri) 2

 MOV Rx, # X (Rx) Data 3

Data Transfer Instructions

 MOV @ Ri, A (Ri) (A) 1

 MOV @ Ri, Rx (Ri) (Rx) 2

 MOV @ Ri, #X (Ri) Data 2

Data Transfer Instructions

 MOV DPTR, #X (DPTR) Data 3

 MOVC A @ (A) (A+DPTR) 1
A+DPTR

 MOVC A@ (A) (A+PC) 1

A+PC

Data Transfer Instructions

 MOVX A,@ Ri A (Ri) 1

 MOVX A, @ (A) (DPTR) 1

 MOVX @Ri, A (Ri) (A) 1

DPTR

Data Transfer Instructions
 MOVX @ (DPTR) (A) 1

 PUSH Rx Push directly 2
addressed Rx register on stack

 POP Rx (A) (Rx) 2

DPTR, A

Data Transfer Instructions

 XCH A, Rn (A) (Rn) 1

 XCH A, Rx (A) (Rx) 2

 XCH A, @Ri (A) (Ri) 1

Data Transfer Instructions
 XCHD Exchange 4 lower 1

bits in accumulator with indirectly addressed
register

Arithmetic Instructions
 These instructions perform several basic operations.

After execution, the result is stored in the first
operand.

 8 bit addition, subtraction, multiplication, increment-
decrement instructions can be performed.

Arithmetic Instructions
 MNEMONICS DESCRIPTION BYTE

 ADD A, Rn A = A + Rn 1

 ADD A, Rx A = A + Rx 2

 AAD A, @ Ri A = A+ Ri 1

Arithmetic Instructions

 ADD A, # X A = A + Byte 2

 ADDC A, Rn A = A + Rn + C 1

 ADDC A , Rx A = A + Rx + C 2

Arithmetic Instructions

 ADDC A, @ Ri A = A + Ri + C 1

 ADDC A, # X A = A + Byte + C 2

 SUBB A, Rn A = A – Rn – 1 1

Arithmetic Instructions

 SUBB A, Rx A = A – Rx – 1 2

 SUBB A, @ Ri A = A – Ri – 1 1

 SUBB A, # X A = A – Byte – 1 2

Arithmetic Instructions

 INC A A = A + 1 1

 INC Rn Rn = Rn + 1 1

 INC Rx Rx = Rx + 1 2

Arithmetic Instructions

 INC @ Ri Ri = Ri + 1 1

 DEC A A = A – 1 1

 DEC Rn Rn = Rn – 1 1

Arithmetic Instructions

 DEC Rx Rx = Rx – 1 2

 DEC @ Ri Ri = Ri – 1 1

 INC DPTR DPTR = DPTR + 1 1

Arithmetic Instructions
 MUL AB B:A = A * B 1

 DIV AB A = [A/B] 1

 DA A Decimal adjustment of 1
accumulator according to BCD code

Logical Instructions
 These instructions perform logical operations between

two register contents on bit by bit basis.

 After execution, the result is stored in the first
operand.

Logical Instructions
 MNEMONIC DESCRIPTION BYTE

 ANL A, Rn (A) (A) ^ (Rn) 1

 ANL A, Rx (A) (A) ^ (Rx) 2

 ANL A,@ Ri (A) (A) ^ (Ri) 1

Logical Instructions

 ANL A, # X (A) (8 bit data) ^ (A) 2

 ANL Rx, A (Rx) (A) ^ (Rx) 2

 ANL Rx,# X (Rx) (8 bit data) ^ (Rx) 3

Logical Instructions

 ORL A, Rn (A) (A) + (Rn) 1

 ORL A, Rx (A) (A) + (Rx) 2

 ORL A, @ Ri (A) (A) + (Ri) 2

Logical Instructions
 ORL Rx, A (Rx) (A) + (Rx) 2

 ORL Rx,# X (Rx) (8 bit data) + (Rx) 2

 XORL A, Rn Logical exclusive 1 OR
operation between the contents of accumulator and R
register.

Logical Instructions

 XORL A, Rx Logical exclusive OR 2

operation between the contents of the accumulator
and directly addressed register Rx.

 XORL A,@ Ri Logical exclusive OR 1
operation between the contents of the accumulator
and directly addressed register.

Logical Instructions

 XORL A, # X Logical exclusive OR 2
operation between the contents of accumulator
and the given 8 bit data.

 XORL Rx, A Logical exclusive OR 2
operation between the contents of the accumulator
and directly addressed register Rx.

Logical Instructions
 XORL Rx, # X Logical exclusive OR 3 operation

between the contents of the directly addressed register
Rx and the given 8 bit data.

 CLR A (A) 0 1

 CPL A (A) (/A) 1

Logical Instructions
 SWAP A (A3-0) (A7-4) 1

 RL A (An + 1) (An) 1

(A0) (A7)

 RLC (An + 1) (An) 1

(A0) (C)

(C) (A7)

Logical Instructions
 RR A (An) (An + 1) 1

(A7) (A0)

 RRC A (An) (An + 1) 1

(A7) (C)

(C) (A0)

Logical Instructions On Bits

 Similar to logical instructions, these instructions
also perform logical operations.

 The difference is that these operations are
performed on single bits.

Logical Instructions On Bits
 MNEMONIC DESCRIPTION BYTE

 CLR C (C = 0) 1

 CLR bit clear directly addressed bit 2

 SETB C (C = 1) 1

Logical Instructions On Bits

 SETB bit Set directly 2
addressed bit

 CPL C (1 = 0, 0 = 1) 1

 CPL bit Complement directly 2
addressed bit

Logical Instructions On Bits

 ANL C, bit Logical AND operation 2
between Carry bit and directly addressed bit.

 ANL C,/bit Logical AND operation 2
between Carry bit and inverted directly addressed
bit.

Logical Instructions On Bits

 ORL C, bit Logical OR operation 2
between Carry bit and directly addressed bit.

 ORL C,/bit Logical OR operation 2
between Carry bit and inverted directly addressed
bit.

Logical Instructions On Bits
 MOV C, bit Move directly addressed 2 bit to

carry bit.

 MOV bit, C Move Carry bit to directly 2
addressed bit.

Program Flow Control Instructions
 In this group, instructions are related to the flow of the

program, these are used to control the operation like,
JUMP and CALL instructions.

 Some instructions are used to introduce delay in the
program, to the halt program.

Program Flow Control Instructions

 MNEMONIC DESCRIPTION BYTE

 ACALL adr11 (PC) (PC) + 2 2

(SP) (SP) + 1

((SP)) (PC7 – 0)

(SP) (SP) + 1

((SP)) (PC15-8)

Program Flow Control Instructions

 LCALL adr16 (PC) (PC) + 3 3

(SP) (SP) + 1

((SP)) (PC7-0)

(SP) (SP) + 1

((SP)) (PC15-8)

(PC) addr15-0

Program Flow Control Instructions

 RET (PC15-8) ((SP)) 1

(SP) (SP) – 1

(PC7-0) ((SP))

(SP) (SP) - 1

Program Flow Control Instructions
 RET1 (PC15-8) ((SP)) 1

(SP) (SP) – 1

(PC7-0) ((SP))

(SP) (SP) – 1

 AJMP addr11 (PC) (PC) + 2 1

(PC10-0) page address

Program Flow Control Instructions

 LJMP addr16 (PC) addr15-0 3

 SJMP rel short jump from 2

(from -128 to +127 locations in

relation to first next instruction)

Program Flow Control Instructions
 JC rel (PC) (PC) + 2 2

IF (C) = 1

THEN (PC) (PC) + rel

 JNC rel (PC) (PC) + 2 2

IF (C) = 0

THEN (PC) (PC) + rel

Program Flow Control Instructions

 JB bit, rel Jump if addressed 3

bit is set. Short jump.

 JBC bit, rel Jump if addressed 3

bit is set and clear it.

Short jump.

Program Flow Control Instructions

 JMP @A + DPTR (PC) (A) + (DPTR) 1

 JZ rel (PC) (PC) + 2 2

IF (A) = 0

THEN (PC) (PC) + rel

Program Flow Control Instructions

 JNZ rel (PC) (PC) + 2 2

IF (A) = 0

THEN (PC) (PC) + rel

 CJNE A, Rx, rel Compare the contents 3

of acc. And directly addressed register Rx. Jump if
they are different. Short jump.

Program Flow Control Instructions
 CJNE A, #X, rel (PC) (PC) + 3 3

IF (A) < > data

THEN (PC) (PC) + relative

offset

IF (A) < data

THEN (C) 1

ELSE (C) 0

Program Flow Control Instructions
 CJNE @ RI, # x, rel (PC) (PC) + 3 3

IF (Rn) <> data

THEN (PC) (PC) + relative

offset

IF (Rn) < data

THEN (C) 1

ELSE (C) 0

PUNJAB EDUSAT SOCIETY

Program Flow Control Instructions
 CJNE @ Ri, # X, rel (PC) (PC) + 3 3

IF ((Ri)) <> data

THEN (PC) (PC) + relative

offset

IF ((Ri)) < data

THEN (C) 1

ELSE (C) 0

Program Flow Control Instructions

 DJNZ Rn , rel (PC) (PC) + 2 2

(Rn) (Rn) - 1

IF (Rn) > 0 or (Rn) < 0

THEN (PC) (PC) + rel

Program Flow Control Instructions

 DJNZ Rx, rel (PC) (PC) + 2 3

(Rx) (Rn) – 1

IF (Rx) > 0 or (Rx) < 0

THEN (PC) (PC) + rel

 NOP No operation 1

Summary
 Instruction set.

 Addressing modes.

 Data transfer instruction.

 Arithmetic instruction.

 Logical instruction.

 Logical operation on bits.

Chapter 3
8051 Microcontroller

Objectives

Understand the 8051 Architecture

Use SFR in C

Use I/O ports in C

3.1 Overview

• The Intel 8051 is a very popular general purpose
microcontroller widely used for small scale
embedded systems. Many vendors such as Atmel,
Philips, and Texas Instruments produce MCS-51
family microcontroller chips.

• The 8051 is an 8-bit microcontroller with 8 bit data
bus and 16-bit address bus. The 16 bit address bus
can address a 64K(216) byte code memory space and
a separate 64K byte of data memory space. The 8051
has 4K on-chip read only code memory and 128
bytes of internal Random Access Memory (RAM)

Contd.

• Besides internal RAM, the 8051 has various Special
Function Registers (SFR) such as the Accumulator, the
B register, and many other control registers.

• 34 8-bit general purpose registers in total.

The ALU performs one 8-bit operation at a time.

• Two 16 bit /Counter timers

• 3 internal interrupts (one serial), 2 external interrupts.

• 4 8-bit I/O ports (3 of them are dual purposed). One of
them used for serial port,

Some 8051 chips come with UART for serial
communication and ADC for analog to digital
conversion.

3.1.1 8051 Chip Pins

40 pins on the 8051 chip.

Most of these pins are used to connect to I/O devices
or external data and code memory.

• 4 I/O port take 32 pins(4 x 8 bits) plus a pair of
XTALS pins for crystal clock

• A pair of Vcc and GND pins for power supply (the
8051 chip needs +5V 500mA to function properly)

• A pair of timer pins for timing controls, a group of
pins (EA, ALE, PSEN, WR, RD) for internal and
external data and code memory access controls

• One Reset pin for reboot purpose

1

2

 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

30

29

28

27

26

25

24

23

22

21

31

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

RST

(RXD) P3.0

(TXD) P3.1

(INT0) P3.2

(INT1) P3.3

(T0) P3.4

(T1) P3.5

(WR) P3.6

XTAL 2

XTAL 1

GND

Vcc

P0.0(AD0)

P2.0(A8)

P2.1(A9)

P2.2(A10)

P2.3(A11)

P2.4(A12)

P2.5(A13)

P2.6(A14)

P2.7(A15)

PSEN

ALE/PROG

EA/VPP

P0.6(AD6)

P0.7(AD7)

P0.5(AD5)

P0.4(AD4)

P0.3(AD3)

P0.2(AD2)

P0.1(AD1)

(RD) P3.7

P1.7

(Serial)

interrupt

Timer

Ex M W/R

clock

Ext

Memory

Address

Ext Memory

Access Control

Ext Memory

Address

8051

Pin out Diagram of the 8051 Microcontroller

Port 0

(enable Ex. Memory)

Port 2

ALE Address Latch Enable

EA’

PSEN’

RD’

WR’ Ex.Data RAM write

OE’

A8 - A15

A0 – A7

D0 – D7

Ex. Data RAM Reade

Extensl Code Memory

ROM or EPROM

8051

adress

multiplex

 latch

The Pin Connection for External Code and Data
Memory

• The EA' (External Access) pin is used to control the internal or
external memory access.
The signal 0 is for external memory access and signal 1 for
internal memory access.

• The PSEN' (Program Store Enable) is for reading external code
memory when it is low (0) and EA is also 0.

• The ALE (Address Latch Enable) activates the port 0 joined
with port 2 to provide 16 bit external address bus to access
the external memory. The ALE multiplexes the P0:
1 for latching address on P0 as A0-A7 in the 16 bit address
buss, 0 for latching P0 as data I/O.

• P0.x is named ADx because P0 is multiplexed for Address bus
and Data bus at different clock time.
WR' only provides the signal to write external data memory
RD' provides the signal to read external data and code
memory.

3.1.2. System Clock and Oscillator Circuits

• The 8051 requires an external oscillator circuit. The oscillator
circuit usually runs around 12MHz. the crystal generates 12M
pulses in one second. The pulse is used to synchronize the
system operation in a controlled pace..

• A machine cycle is minimum amount time a simplest machine
instruction must take

• An 8051 machine cycle consists of 12 crystal pulses (clock
cycle).

• instruction with a memory oprand so that it needs multiple
memory accesses.

Contd.

The first 6 crystal pulses (clock cycle) is used to fetch
the opcode and the second 6 pulses are used to
perform the operation on the operands in the ALU.
This gives an effective machine cycle rate at 1MIPS
(Million Instructions Per Second).

XTAL!

XTAL2

GND

Crystal

Crystal to 8051 XTAL 1/2

3.1.3. 8051 Internal Architecture
• The CPU has many important registers. The Program Count

(PC) always holds the code memory location of next
instruction.

• The CPU is the heart of any computer which is in charge of
computer operations.

• It fetches instructions from the code memory into the
instruction Register (IR),

analyzes the opcode of the instruction, updates the PC to the
location of next instruction,

fetches the oprand from the data memory if necessary, and
finally performs the operation in the Arithmetic-Logic Unit
(ALU) within the CPU.

Contd.

• The B register is a register just for multiplication
and division operation which requires more register
spaces for the product of multiplication and the
quotient and the remainder for the division.

• The immediate result is stored in the accumulator
register (Acc) for next operation

• and the Program Status Word (PSW) is updated
depending on the status of the operation result

Port 1 Port 3

Port 2 Port 0

Register B Acc T

ALT

psw

Data RAM

TCON,TMOD

TLO/1, THO/1

SCON,SBUF,IE,IP

FCON

(SFRs

User data

 EPROM

code

PC
Timer

And

Control

IR

OSC

P1.0 – p1.7 (1-8) P3.0 – p3.7 (10-17)

Vcc(40)

Vg(20)

Ex.M access

Control

(29-31)

Reset

(9)

(18 – 19) P2.7 – P2.0(21-28)

A
15 - 8

P0.7 – P0.0 (32-39)

A

A

7 - 0

15 - 0 Ex.M (upto 64k)

Simplified 8051 block diagram

Ex.M timer interrupt serial

R, W T1, T0 INT1, INT0TXD.RXD

+1

8051 Internal Architecture

3.2 Ports
3.2.1. Port Reading and Writing

There are 4 8-bit ports: P0, P1, P2 and P3. All of them are

dual purpose ports except P1 which is only used for I/O. The
following diagram shows a single bit in an 8051 I/O port.

Internal data bus(one bit)

D Q

CL Q’

Latch

Read latch Read pin

Vcc(5v)

Port pin

10k

FET

Single Bit In I/O Port

Contd.

• When a C program writes a one byte value to a port
or a single bit value to a bit of a port, just simply
assign the value to the port as follows:

P1 = 0x12; or P1^2=1;
• P1 represents the 8 bits of port 1 and P1^2 is the

pin #2 of the port 1 of 8051 defined in the reg51.h
of C51, a C dedicated for 8051 family.

• When data is written to the port pin, it first
appears on the latch input (D) and is then passed
through to the output (Q) and through an inverter
to the Field Effect Transistor (FET).

Contd.

• If you write a logic 0 to the port pin, this Q is logic 0
which is inverted to logic 1 and turns on the FET
gate. It makes the port pin connected to ground
(logic 0).

• If you write a logic 1 is written to the port pin, then
Q is 1 which is inverted to a logic 0 and turns off the
FET gate. Therefore the pin is at logic 1 because it is
connected to high.

• You can see the written data is stored in the D latch
after the data is written to the port pin.

Contd.

• However, you must initialize the port for reading before
reading.

• If the latch was logic 0, then you will always get 0 regardless
the data in the port pin because it is grounded through the
FET gate.

• Therefore, in order to read the correct data from a port or a
port pin, the last written logic (stored in the latch D) must be
0XFF(8 bits) or 1(single bit). E.g., you read entire P1 port or
single bit of P1 port in this way:

unsigned char x; bit y;

P1 = 0xFF; //port reading initialization

x = P1; //read port

y = P1^2; //read bit

3.2.2. The Port Alternate Functions

• PORT P1 (Pins 1 to 8): The port P1 is a port dedicated for general
I/O purpose. The other ports P0, P2 and P3 have dual roles in
addition to their basic I/O function.

• PORT P0 (pins 32 to 39): When the external memory access is
required then Port P0 is multiplexed for address bus and data
bus that can be used to access external memory in conjunction
with port P2. P0 acts as A0-A7 in address bus and D0-D7 for port
data. It can be used for general purpose I/O if no external
memory presents.

• PORT P2 (pins 21 to 28): Similar to P0, the port P2 can also play a
role (A8-A15) in the address bus in conjunction with PORT P0 to
access external memory.

Contd.

• PORT P3 (Pins 10 to 17):

In addition to acting as a normal I/O port,
• P3.0 can be used for serial receive input pin(RXD)
• P3.1 can be used for serial transmit output pin(TXD)

in a serial port,
• P3.2 and P3.3 can be used as external interrupt

pins(INT0’ and INT1’),
• P3.4 and P3.5 are used for external counter input

pins(T0 and T1),
• P3.6 and P3.7 can be used as external data memory

write and read control signal pins(WR’ and RD’)read
and write pins for memory access.

3.3 Memory and SFR
3.3.1. Memory

• The 8051 code(program) memory is read-only, while the data
memory is read/write accessible. The program memory(in
EPROM) can be rewritten by the special programmer circuit.

• The 8051 memory is organized in a Harvard Architecture. Both
the code memory space and data memory space begin at
location 0x00 for internal or external memory which is different
from the Princeton Architecture where code and data share
same memory space.

• The advantage of the Harvard Architecture is not only doubling
the memory capacity of the microcontroller with same number
of address lines but also increases the reliability of the
microcontroller, since there are no instructions to write to the
code memory which is read only.

Separate read instructions for external data and code memory.

Internal code

Memory

ROM or EPROM

4k or up

SFR(direct access)

General purpose RAM

(variable data)

Bit addressible RAM

16x8 bits

Register bank 0(R0-R7)

Register bank 1(R0-R7)

Register bank 2(R0-R7)

Register bank 3(R0-R7)

External data memory

RAM

64k

External code memory

ROM or EPROMext

64k

Internal data memory

RAM

0xFF

0x80

0x7F

0x30

0x2F

0x20

0x1F

0x00

16 bytes

4 x 8 =

32 bytes

80 bytes

128 bytes

Contd.

• In this model, the data memory and code memory
use separate maps by a special control line called
Program Select Enable (PSEN’).

• This line (i.e. when PSEN’ = 0) is used to indicate that
the 16 address lines are being used to address the
code memory.

• When this line is ‘1’, the 16 address lines are being
used to address the data memory.

Contd.

• The 8051 has 256 bytes of internal addressable RAM,
although only first 128 bytes are available for general
use by the programmer.

• The first 128 bytes of RAM (from 0x00 to 0x7F) are
called the direct memory, and can be used to store
data.

• The lowest 32 bytes of RAM are reserved for 4
general register banks. The 8051 has 4 selectable
banks of 8 addressable 8-bit registers, R0 to R7.

Contd.

• This means that there are essentially 32 available
general purpose registers, although only 8 (one bank)
can be directly accessed at a time.

• The advantage of using these register banks is time
saving on the context switch for interrupted program to
store and recover the status.

• Otherwise the push and pop stack operations are
needed to save the current state and to recover it after
the interrupt is over.

• The default bank is bank 0.
• The second 128 bytes are used to store Special Function

Registers (SFR) that C51 program can configure and
control the ports, timer, interrupts, serial
communication, and other tasks.

3.3.2. Special Function Registers (SFRs)

• The SFR is the upper area of addressable memory, from
address 0x80 to 0xFF. This area consists of a series of
memory-mapped ports and registers.

• All port input and output can therefore be performed by get
and set operations on SFR port name such as P3.

• Also, different status registers are mapped into the SFR for
checking the status of the 8051, and changing some
operational parameters of the 8051.

• All 8051 CPU registers, I/O ports, timers and other
architecture components are accessible in 8051 C through
SFRs

• They are accessed in normal internal RAM (080H – 0FFH) by
8051 C, and they all are defined in the header file reg51.h
listed below.

Contd.

• There are 21 SFRs.

• In addition to I/O ports, the most frequently used SFRs
to control and configure 8051 operations are:
 TCON (Timer CONtrol)

 TMOD (Timer MODe)

 TH0/TH1 and TL0/TL1 (Timer’s high and low bytes)

 SCON (Serial port CONtrol)

 IP (Interrupt Priority)

 IE (Interrupt Enable)

• Almost all 8051 C embedded programs include the
reg51.h.

Contd.
• /*--
• REG51.H
• Header file for generic 80C51 and 80C31 microcontroller.
• Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software, Inc.
• All rights reserved.
• --*/
• /* BYTE Register */
• sfr P0 = 0x80;
• sfr P1 = 0x90;
• sfr P2 = 0xA0;
• sfr P3 = 0xB0;
• sfr PSW = 0xD0;
• sfr ACC = 0xE0;
• sfr B = 0xF0;
• sfr SP = 0x81;
• sfr DPL = 0x82;
• sfr DPH = 0x83;
• sfr PCON = 0x87;
• sfr TCON = 0x88;
• sfr TMOD = 0x89;
• sfr TL0 = 0x8A;

Contd.
• sfr TL1 = 0x8B;
• sfr TH0 = 0x8C;
• sfr TH1 = 0x8D;
• sfr IE = 0xA8;
• sfr IP = 0xB8;
• sfr SCON = 0x98;
• sfr SBUF = 0x99;
• /* BIT Register */
• /* PSW */
• sbit CY = 0xD7;
• sbit AC = 0xD6;
• sbit F0 = 0xD5;
• sbit RS1 = 0xD4;
• sbit RS0 = 0xD3;
• sbit OV = 0xD2;
• sbit P = 0xD0;
• /* TCON */
• sbit TF1 = 0x8F;
• sbit TR1 = 0x8E;
• sbit TF0 = 0x8D;
• sbit TR0 = 0x8C;

Contd.
• sbit IE1 = 0x8B;
• sbit IT1 = 0x8A;
• sbit IE0 = 0x89;
• sbit IT0 = 0x88; /* IE */
• sbit EA = 0xAF;
• sbit ES = 0xAC;
• sbit ET1 = 0xAB;
• sbit EX1 = 0xAA;
• sbit ET0 = 0xA9;
• sbit EX0 = 0xA8;
• /* IP */
• sbit PS = 0xBC;
• sbit PT1 = 0xBB;
• sbit PX1 = 0xBA;
• sbit PT0 = 0xB9;
• sbit PX0 = 0xB8;
• /* P3 */
• sbit RD = 0xB7;
• sbit WR = 0xB6;
• sbit T1 = 0xB5;
• sbit T0 = 0xB4;
• sbit INT1 = 0xB3;

Contd.

• sbit INT0 = 0xB2;

• sbit TXD = 0xB1;

• sbit RXD = 0xB0;

• /* SCON */

• sbit SM0 = 0x9F;

• sbit SM1 = 0x9E;

• sbit SM2 = 0x9D;

• sbit REN = 0x9C;

• sbit TB8 = 0x9B;

• sbit RB8 = 0x9A;

• sbit TI = 0x99;

• sbit RI = 0x98;

• The sbit register variables of these SFRs defined in reg51.h
often used in embedded C program.

• 1. TCON (Timer/Counter Control Register) SFR for timer
control

• TF0/TF1: Timer0/1 overflow flag is set when the timer
counter overflows, reset by program

• TR0/TR1: Timer0/1 run control bit is set to start, reset to
stop the timer0/1

• IE0/IE1: External interrupt 0/1 edge detected flag1 is set
when a falling edge interrupt on the external port 0/1,
reset(cleared) by hardware itself for falling edge transition-
activated INT; Reset by code for low level INT.
IT0/IT1 External interrupt type (1: falling edge triggered, 0

low level triggered)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
(88H)

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

2. IE (Interrupt Enable Register) SFR used for interrupt
control

• EX0/EX1 : (1/0) Enables/disables the external interrupt 0
and the external interrupt 1 on port P3.2 and P3.3

• ET0/ET1 : (1/0) Enables/disables the Timer0 and Timer1
interrupt via TF0/1

• ES : (1/0) Enables/disables the serial port interrupt for
sending and receiving data

• EA : (1/0) Enables/disables all interrupts

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
(A8H)

EA ET2 ES ET1 EX1 ET0 EX0

3. IP (Interrupt Priority Register) SFR used for IP setting

• PX0/1: External interrupt 0/1 priority level

• PT0/1/2: Timer0, Timer1, Timer2(8052) interrupt priority
level

• PS: Serial port interrupt priority level

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

PT2 PS PT1 PX1 PT0 PX0

4. PSW (Program Status Word) SFR for CPU status
• P: parity check flag
• OV: ALU overflow flag
• RS0/RS1: Register bank specification mode
• 00: bank 0 (00H-07H); 01: bank1; 10: bank 2; 11: bank 3(18H-

1FH)
• F0: User defined lag
• CY: ALU carry out
• AC: ALU auxiliary carry out

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

CY AC F0 RS1 RS0 OV P

5. P3(Port 3) SFR used for I/O and other special purposes

• Addition to I/O usage, P3 can also be used for:
• RXD/TXD: Receive/Transmit serial data for RS232
• INT0, INT1: External interrupt port inputs
• T0,T1: Alternative Timer 0/1 bit
• WR/RD : Write/Read control bits used for external memory
• If external RAM or EPROM is used, ports P0 and P2 are used to

address the external memory.
• Other port SFRs such as P0, P1, P2 are mainly used for data I/O.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

RD WR T1 T0 INT1 INT0 TxD RxD

6. TL0/TL1 SFRs: Lower byte of Timer 0/1, used to set timer
interrupt period

TH0/TH1 SFRs: Higher byte of Timer 0,used to set timer
interrupt period

7. TMOD (Timer Mode Register) SFR(not bit addressable)

Note: bit 0-3 for Timer0 and bit 4-7 for Timer1

Gate Control:
• 0= Timer enabled(normal mode)
• 1 = if INT0/INT1 is high, the timer is enabled to count the number of pulses

in the external interrupt ports (P3.2 and P3.3)
C/T Counter/Timer Selector

• 0 = count internal clock pulse (count once per machine cycle = oscillator
clock/12)

• 1 = count external pulses on P3.4 (Timer 0) and P3.5(Timer 1)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

Gate C/T M1 M0 Gate C/T M1 M0

• Working as a “Timer”, the timer is incremented by one every
machine cycle. A machine cycle consists of 12 oscillator
periods, so the count rate is 1/12 of the oscillator frequency.

• Working as a “Counter”, the counter is incremented in
response to a falling edge transition in the external input pins.

• The external input is sampled once every machine cycle. A
“high” sample followed by a low sample is counted once.

• Timer 0 and Timer 1 have four operating modes.

M1, M0 Mode Control
0 0 (Mode 0) 13 bit count mode
0 1 (Mode 1) 16 bit count mode
1 0 (Mode 2) Auto reload mode
1 1 (Mode 3) Multiple mode

Contd.

• Note: Mode 0-2 are same for both Timer0 and timer1 but
mode 3 is not

• The Timer0 has two SFRs called TL0 and TH0 and the Timer1
has TL1 and TH1 respectively.

• TL0/1 are used to store the low byte and TH0/1 are used to
store the high byte of the number being counted by the
timer/counter.

• In mode 0, only TH0/1 is used as an 8-bit Counter. The timer
will count from the init value in the TH0/1 to 255, and then
overflows back to 0.

• If interrupt is enable (ET0/1 = 1) then an overflow interrupt
is triggered at this time which will set TF0/1 to 1.

• If used as a timer its rate equal to the oscillator rate divided
by (12x32)

• If used as a counter, the counting rate equals to the
oscillator rate divided by 32.

Contd.
• Mode 1 is the same as Mode 0, except that the Timer runs

with both 16 bits of TH and TL registers together and it will
count to 65535 and then overflow back to 0..

• If used as a timer its rate equals to the oscillator rate divided
by 12.

• If used as a counter, the max counting rate equals to the
oscillator rate divided by 24.

• Mode 2 configures the Timer register as an 8-bit Counter
(TL0/1) with automatic reload from TH0/1 after overflow.
Overflow from TL0/1 not only sets TF1, but also reloads TL0/1
with the preset value of TH0/1 automatically.

• Mode 3 is not very popular one so we skip it.

• C51 timer/counter configuration example

//0X52 = 010100102 enable timer 0 in mode 2,

//counter 1 in mode 1

TMOD = 0X52;

• Here we set the Timer/couter1 as a counter in mode 1 with
01012 and set the Timer/counter0 as a timer in mode 2 with
00102.

• The counter in mode 1 counts the input pulses up to 65,535
and then overflows back to 0.

• If the T1(P3.5) pin is connected to an encoder which produces
one pulse each revolution of a motor, then we can use TH1
and TL1 to calculate total input pulses in the port pin P3.5 by
TH1*256 + TL1 in a specified period of time which is
controlled by the timer0. In this way, we can conclude how
fast the motor is running.

Contd.

• The timer 0 is set in mode 2 which is an auto reload
mode. You can set TH0 and TH1 to control the time
out period for calculation the rotation rate of the
motor.

• After time out from timer 0, the TH1 and TL1 must
be cleared to 0 to start over the pulse counting again.

• Example produces a 25 ms timeout delay by timer1. 25,000 machine
clocks take 25ms, because one machine cycle = 1 µs in 12 MHZ crystal
oscillator 8051.

//Clear all T1 control bits in TMOD.
TMOD &= 0x0F;
//set T1 in mode 1 and leave T0 unchanged
TMOD |= 0X10;
ET1 = 0; //don’t need interrupt
TH = 0X9E; //0X9E = 158
TL = 0X62;

//0X62 = 98, 158 x 256 + 98 = 40536
// 65536 – 25000 = 40536

TF1 = 0; //reset timer 1 overflow flag
TR1 =1; // start timer1
// The loop will go 25ms until the timer 1 //overflow flag is set to 1
while (TF1 != 1);
TF1 =0; //reset TF1

• You can not use any bit symbol in TMOD because it is not bit addressable.
You must use bit-wise operation to set TMOD.

8. PCON (Power Control Register) SFR (Not bit addreesible)

• SMOD(serial mode) 1= high baud rate, 0 = low baud rate
• GF1, GF2 flags for free use
• PD: 1= power down mode for CMOS
• IDL: 1= idle mode.
• Ex. PCON |= 0x01;

// to set the IDL bit 1 to force the CPU in a power save mode
// the |operator is a shorthand bit wise logical OR operator

• The Acc, B, DPH, DPL, SP SFRs are only accessible by assembly
languages

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SMOD -- -- -- GF1 GF2 PD IDL

9. SCON (Serial Port Control Register) SFR

• REN: Receiver enable is set/reset by program
• TB8: stores transmitted bit 8(9th bit, the stop bit)
• RB8: Stores received bit 8(9th bit, the stop bit)
• TI: Transmit Interrupt is set at the end of 8th bit (mode

0)/ at the stop bit (other modes) indicating the completion
of one byte transmission, reset by program

• RI: Receive Interrupt is set at the end of 8th bit (mode
0)/at the stop bit (other modes) indicating the completion
of one byte receiving, reset by program

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

SM0 SM1 SM2 REN TB8 RB8 TI RI

• RI and TI flag in SCON SFR are used to detect the interrupt events.

• If RI = 1 then a byte is received at the RxD pin. If TI = 1 then a byte is
transmitted from the TxD pin.

We focus on mode 0 and mode1 because mode 2 and mode 3 are not
often used.

SM0 SM1 Serial Mode Baud Rate Device

0 0 0 (Sync.)
half duplex,

Oscillator/12
(fixed)

8-bit shift register

0 1 1(Async)
full duplex

Set by Timer 1 8-bit UART

1 0 2(Sync)
half duplex

Oscillator/64
(fixed)

9-bit UART

1 1 3(Async)
full duplex

Set by Timer 1 9-bit UART

TXD(P3.1)

RXD(P3.0)

RXD

TXD

COM port of PC or device8051

• The built-in Universal Asynchronous Receiver/Transmitter
(UART) integrated circuit can support serial full duplex
asynchronous communications over a computer or peripheral
device.

• In mode 0, 8051 TxD plays a role of synchronous clock and
RxD is used for both receiving and transmitting data so that
the mode 0 is a half duplex synchronous serial working mode.

The frequency of TxD clock is 1MHz (1/12 of 12MHz) and the
cycle period is 1 µs.

• The mode 1 works with UART without synchronous clock. it is
an asynchronous full duplex serial communication mode.
There are start and stop bits surrounding a byte data during
the transmission.

• The baud rate of serial communication is measured by
bps(bits/sec). The typical standard serial baud rates are 1200,
2400, 9600, 19200 bps.

• The baud rate is determined by timer 1 overflow rate of timer
1. By default, the baud rate = 1/32 of overflow rate of timer
1(if SMOD of PCON is 0).

• How to configure Timer 1 to get the desired overflow rate?
Just set the Timer 1 in its auto reload mode 2.

• The loaded value of TH1 is determined by this formula for the
12MHz 8051 :

TH1 = 256 – 1000000 / (32* (desired baud))

For example, in order to get the 19200 bps

TH1 = 256 – 1000000/32/19200 = 256 -2= 254 = 0xFE

TH1 = 253 -> baud rate 9600 bps

TH1 = 243 -> baud rate 2400 bps

TH1 = 230 -> baud rate 1200 bps

• If you set SMOD bit of the PCON SPR you can double
the baud rate. For example, if SMOD=1 then baud
rate =19200 bps if TH1=253.

• The SBUF SFR is a serial buffer data register to store
the received or transmitting data in byte. The SBUF
usage is shown below.

char c;

c= 0X41;

SBUF = c; // send ‘A’ to serial output line

c = SBUF; //get a char from serial line

3.4 SFRs and Interrupts

• Interrupt is an internal or external event that
suspends a program and transfers the control to an
event handler or ISR to handle the event.

• After the service is over the control is back to the
suspended program to resume the execution, The
microcontroller in a embedded system connects
many devices and need to handle service requests
from devices all the time.

You can classify Registers for function

1. Enable interrupts

IE SFR enables interrupts individually and globally

EX0/EX1: Enable external interrupt INT0/INT1

ET0/ET1: Enable Timer 0/Timer1 interrupt

ES: Enable serial interrupt

EA: Enable global interrupt

Set 1 in a bit to enable its interrupt, e.g. EA =1;

reset 0 to masks that interrupt, e.g., EA = 0;

2. Interrupt Flags
The interrupt flags are set to 1 when the interrupts

occur.
IE0/IE1 in TCON - For External Interrupts
TF0/TF1 in TCON - For Timer Interrupts
TI/RI in SCON - For Serial Interrupts
The flag 1 indicates the interrupt occurrence and

the flag 0 indicates no interrupt.
3. Interrupt Priority

There are two types of interrupt priority:
User Defined Priority and Automatic Priority
User Defined Priority
The IP register is used to define priority levels by

users. The high priority interrupt can preempt the
low priority interrupt. There are only two levels of
interrupt priority.

//The external interrupt INT0 at port P3.2 is assigned a high priority.

EX0 = 1;
//the external interrupt INT1 at port P3.3 is assigned a low priority.

EX1 = 0;

Automatic Priority

In each priority level, a priority is given in order of:

INT0, TF0, INT1, TF1, SI.

For example, if two external interrupts are set at same
priority level, then INT0 has precedence over INT1.

1) External Interrupts
• An external interrupt is triggered by a low level or negative

edge on INT0 and INT1 which depends on the external
interrupt type setting.

Set up an external interrupt type by IT0 and IT1 of TCON SFR.

• E.g.,

IT0 = 1; //set INT0 as Negative edge triggered

IT1 = 0; // set INT1 as Level Triggered

• The external interrupt source may be a sensor, ADC, or a
switch connected to port P3.2(INT0) or P3.3(INT1). You use
IE0/IE1 to test the external interrupt events: Ex. If IE0 = 1
then the INT0 interrupt takes place.

• Note that if an external interrupt is set to low level trigger,
the interrupt will reoccur as long as P3.2 or P3.3 is low that
makes the code difficult to manage.

• You enable external interrupt by EX0/EX1 of IE SFR.
E.g.,
EA = 1;
EX0 = 1; //enable external interrupt INT0

• If the interrupt is level activated, then IE0/1 flag has
to be cleared by user software as
EX1 = 0;

• You don’t need to reset the edge triggered external
interrupt.

• This fragment makes the INT1 external interrupt
ready on port P3.3 pin:
EA =1;
EX1 =1;
IT1 =1;

2) Timer/Counter Interrupts

• This unit can be used as a counter to count external pulses on
P3.4 and P3.5 pins or it can be used to count the pulses
produced by the crystal oscillator of the microcontroller.

• Timer Interrupt is caused by Timer 0/ Timer1 overflow.
TF0/1: 1 => Condition occurred

Enabled using IE

ET0/1 = 1, EA = 1

• E.g.
TMOD = 0X12; //set timer 1 in mode 1, timer 0 in mode 2.

EA=1; // enable global interrupt

TH1=16; // Make timer 1 overflow every 240 clocks //240=256-16

TL1=16; // Make timer 1 overflow after 240 clocks(240 µs)

ET0=1; // enable timer 0

TR0=1; //start timer0

// Timer 0 overflows after 65535 clocks.

ET1=1; // enable timer 1

TR1=1; //start timer 1

3)Serial Interrupts

• Serial communication with Universal Asynchronous
Receive Transmit (UART) protocol transmits or
receives the bits of a byte one after the other in a
timed sequence on a single wire.

• It is used to communicate any serial port of devices
and computers.

• The serial interrupt is caused by completion of a
serial byte transmitting or receiving.

• The transmit data pin (TxD) is at P3.1 and the
receive data pin (RxD) is at P3.0.

• All communication modes are controlled through
SCON, a non bit addressable SFR. The SCON bits are
defined as SM0, SM1, SM2, REN, TB8, RB8, TI, RI.

• You use timers to control the baud of asynchronous serial
communication which is set by TMOD and TCON as we
discussed before

• full duplex asynchronous serial communication in mode 1 to
transmit and receive data simultaneously
#include <reg51.h>
main()

{
char c;

// set timer1 in auto reload 8 bit timer mode 2
TMOD=0x20;

// load timer 1 to generate baud rate of 19200 bps

TH1 = 0xFD;
TL1 = 0XFD;

// set serial communication in mode 1
SCON=0x40;

// start timer 1

TR1 = 1;

While(1){

// enable reception

REN = 1;

//wait until data is received
while((SCON & 0X02) == 0);

// same as while(RI==0);

// reset receive flag

RI=0;

// read a byte from RXD

c = SBUF;

// disable reception

REN = 0;

// write a byte to TXD

SBUF = c;

// wait until data transmitted

while(SCON & 0X01TI==0);

//same as while(TI==0);

// reset transmission flag

TI=0;

}

Summary

• This chapter explores the internal architecture of 8051
microcontroller and its interface. The Harvard architecture for
separation of code and data memory is discussed. The detail and
usage of 8051 SFRs, especially, the timer control SFRs such as
TMOD, TCON and serial control SFR such as SCON, the interrupt
control registers such as IE. The configurations of external
interrupt, timer/counter interrupt and serial communication
interrupt with C51

• Understand how to use 8051 to connect and control external
devices such as sensor, switch, LED, LCD, keypad.

• Learn how to design and handle the timing clock issue in the
embedded systems.

• This chapter is a foundation for the next chapter on the
embedded system software development and programming in C.

Serial Communication

Prepared by

Prof.Mahesh Yanagimath

Serial Communications

Objectives
• Introduce the RS232 standard and

position it within the crowded field of
serial communications standards.

• Configure the 8051 serial port.
• Read and write to the serial port.
• Introduce software and hardware

handshaking.

Basics of serial communication

Serial versus Parallel Data Transfer

6.1 Introduction

There are several popular types of serial communications.
Here are a few worth noting:

• RS232. Peer-to-peer (i.e. communications between two
devices)

• RS485. Multi-point (i.e. communications between two or
more devices)

• USB (Universal Serial Bus). Replaced RS232 on desktop
computers.

• CAN (Controller Area Network). Multi-point. Popular in the
automotive industry.

• SPI (Serial Peripheral Interface). Developed by Motorola.
Synchronous master/slave communications.

• I2C (Inter-Integrated Circuit).Developed by Philips. Multi-
master communications.

• The Silicon Laboratories 8051 development kit used
in this book supports RS232, SPI and I2C
communications. An RS232 serial port is included on
most 8051 microcontrollers. It is usually listed on the
datasheet as UART.

• When we talk about serial communications, what do
we really mean? How is the data transmitted? Serial
data is transmitted between devices one bit at a
time using agreed upon electrical signals. In our C
programs though, we read and write bytes to the
serial port – not bits. To accomplish the necessary
translation between bytes and bits, another piece of
hardware is required – the UART.

6.2 UARTs and Transceivers

• UART (pronounced “You Art”) is an industry acronym
that stands for Universal Asynchronous Receiver
Transmitter. It is the interface circuitry between the
microprocessor and the serial port. This circuitry is
built in to the 8051 microcontroller.

• The UART is responsible for breaking apart bytes of
data and transmitting it one bit at a time (i.e. serially).
Likewise, the UART receives serialized bits and
converts them back into bytes. In practice, it’s a little
more complicated, but that’s the basic idea.

• The UART, however, doesn’t operate at the line
voltages required by the RS232 standard. The UART
operates at TTL voltage levels (i.e. 0 to 5V). For noise
immunity and transmission length, the RS232
standard dictates the transmission of bits at a higher
voltage range and different polarities (i.e. typically -
9V to +9V). An external transceiver chip is needed.

• Binary 0: UART: 0V RS232: 3-25V

• Binary 1: UART: 5V RS232 -3V to -25V

8051 and DS275 RS-232 Transceiver

Vd

J2 Connector

P0.1

P0.0

42

39

Vd

1

Silicon

Laboratories

8051

Microcontroller

GND

39

Rx
1

Tx
3

Rx

Tx

7

5

Vcc

2 8

GND

4

Vdrv

DS275

RS-232

Transceiver

GND

Vd

Tx
3

Rx
2

5
GND

PC

(9-pin)

• UART communications is asynchronous (i.e. not
synchronous). This means that there is no master
clock used for timing data transfer between devices.

• The UART is also responsible for baud rate
generation. This determines the speed at which data
is transmitted and received. One baud is one bit per
second (bps). As of this writing, data rates can reach
up to 230,400 baud. The cable length between
devices is limited by the baud rate -- the higher the
speed, the shorter the cable. The RS-232C standard
only permits transmission speeds up to 19200 baud
with a cable length of 45 feet. With modern UARTs,
230,400 baud can be achieved with a short cable
length of a few feet.

6.3 Configuring the Serial Port

• The 8051 serial port is configured and accessed using
a group of SFRs (Special Function Registers).

4 UART operational modes
SM0 SM1 Serial Mode Baud Rate Device

0 0 0 0 (Sync.)
half duplex,

Oscillator/12
(fixed)

8-bit shift register

1 0 1 1(Async)
full duplex

Set by Timer 1 8-bit UART

2 1 0 2(Sync)
half duplex

Oscillator/64
(fixed)

9-bit UART

3 1 1 3(Async)
full duplex

Set by Timer 1 9-bit UART

We focus on mode 0 and mode1 because mode 2 and mode 3 are not often used.

TXD(P3.1)

RXD(P3.0)

RXD

TXD

COM port of PC or device8051

• Another job of the UART is to frame the byte of data that is
serialized and transmitted. There is always one start bit (set to 0)
and one stop bit (set to 1). Looking at it another way, for every
byte of data, 10 bits are transmitted.

Start and stop bits

SFRs

SCON (Serial Port Control)

SBUF (Serial Data Buffer)

IE (Interrupt Enable)

IP (Interrupt Priority)

UARTEN (UART Enable)

SMOD (Serial Port Baud Rate
Doubler Enable)

Description

RI (Receive Interrupt). SCON.0
TI (Transmit Interrupt). SCON.1
REN (UART Receive Enable). SCON.4
SM0 and SM1 (UART Operation Mode). SCON.6,
SCON.7

This is a one-byte buffer for both receive and transmit.

ES (Enable Serial). IE.4
Set the bit to 1 to enable receive and transmit
interrupts.

PS (Priority Serial). IP.4
Set the bit to 0 for a low priority or 1 for a high
priority.

XBR0.2 (Port I/O Crossbar Register 0, Bit 2)

PCON (Power Control Register). PCON.7
Set the bit to 1 to double the baud rate defined by
serial port mode in SCON.

6.4 Setting the Baud Rate

The baud rate is a combination of factors:

• UART mode.

• The crystal frequency.

• The number of ticks required by the 8051 to
complete a simple instruction. This varies from 1 to
12. For the 8051 microcontroller used in this book,
the value is 1.

• The setting of the SMOD bit (i.e. normal or double
baud rate).

• The reload value for the Timer.

• RS232 works in a restricted range of baud rates: 75, 110, 300,
1200, 2400, 4800, 9600, 14400, 19200, 28800, 33600, 56000,
115200 and 230400. With the UART operating in mode 1, the
baud rate will be generated based on a formula using the
factors listed above

• Where:
• SMOD is the normal/double baud rate bit.
• is the clock rate in hertz.
• is the machine instruction executed each

clock cycle. It is one for the 8051 microcontroller used in this
book. For comparison, the original 8051 by Intel used 12 clock
cycles for each instruction.

• TRV is the reload value for the timer.

Baud Summary
• Set the UART operational mode to 1. (SCON.6 = 1,

SCON.7 = 0)

• Set the REN bit to enable UART receive. (SCON.4 =
1)

• Set the UART enable bit (UARTEN) in the XBR0
register. (XBR0.2 = 1)

• Set the bit for normal or double baud rate (SMOD)
in the PCON register. (PCON.7 = 1 for double)

• Determine the TRV (Timer Reload Value) based on
crystal frequency and desired baud rate.

Baud rates for SMOD=0

Machine cycle freq. = 12 MHz / 12 = 1 MHz

and

1MHz / 32 = 28,800 Hz since SMOD = 0

Baud rates for SMOD=1

Machine cycle freq. = 12 MHz / 12 = 1 MHz

and

1 MHz / 16 ≈ 57,600 Hz since SMOD = 1

Practice

6.5 Reading and Writing

• After all that we went through to configure the port,
reading and writing bytes is easy. We simply read
from and write to the SBUF register. For example:

• inByte = SBUF; // Read a character from the UART
• SBUF = outByte; // Write a character to the UART
• The register SBUF is used for both reading and

writing bytes. Internally, there are two separate
registers. They are both represented as SBUF for the
convenience of the programmer.

• The SBUF register (both transmit and receive) can
only hold one byte. How do you know when the byte
that you wrote to the port has been transmitted?
Conversely, how do you know when a byte is
available?

• There are ways to handle this using time delays and
polling. If your application is simple enough, you may
be able to get away with it.

• The best solution to the problem, however, is to use
interrupts. The two interrupts we are interested in
are TI (Transmit Interrupt) and RI (Receive Interrupt).

6.6 Handshaking

• The 8051 only has a one-byte buffer – SBUF. In
contrast, a typical PC serial port with a UART with 16-
byte buffer.

• If SBUF is not serviced “quickly” enough, an incoming
byte may overwrite a byte that has not yet been
read and processed. Using a control technique called
handshaking, it is possible to get the transmitting
device to stop sending bytes until the 8051 is ready.

• Likewise, the 8051 can be signaled by the receiving
device to stop transmitting. There are two forms of
handshaking – software and hardware.

• Software handshaking (also called XON/XOFF) uses control
characters in the byte stream to signal the halting and
resuming of data transmission. Control-S (ASCII 19) signals the
other device to stop sending data. Control-Q (ASCII 17) signals
the other device to resume sending data. The disadvantage
with this approach is that the response time is slower and two
characters in the ASCII character set must be reserved for
handshaking use.

• Hardware handshaking uses additional I/O lines. The most
common form of hardware handshaking is to use two
additional control wires called RTS (Ready to Send) and CTS
(Clear to Send). One line is controlled by each device. The line
(either RTS or CTS) is asserted when bytes can be received
and unasserted otherwise. These two handshaking lines are
used to prevent buffer overruns.

Data communication classification

Typically, the connector is “male” for DTE

equipment and “female” for DCE equipment.

RS232 DB9 pin D-SUB male connector

• There are two other less commonly used lines – DTR
(Data Terminal Ready) and DSR (Data Set Ready).
These lines are typically used by devices signaling to
each other that they are powered up and ready to
communicate.

• To summarize, RTS/CTS are used for buffer control
and DTS/DSR are used for device present and
working indicators. In practice, serial communication
with no handshaking uses 3 wires (TX, RX and GND).
Serial communications with basic hardware
handshaking uses 5 wires (TX, RX, RTS, CTS and GND).

DTE (Data Terminal Equipment) and DCE (Data
Communications Equipment)

• RS232 is a point-to-point protocol meant to connect two
devices together – terminals and modems. E.g., the PC is the
DTE while the modem is the DCE.

• But what about other types of devices like barcode scanners
and weigh scales that connect to a PC. With respect to the PC,
they are all DCE devices.

• If you take the PC out of the picture, however, that may
change. If you are developing an 8051 application that logs
data from a weigh scale, your 8051 device will become the
DTE. Knowing whether your device is DTE or DCE is important
because it will determine which handshaking line to control.
The DTE controls the RTS and DTR lines. In this case, point of
reference is very important.

Pin Signal Name Direction(DTE  DCE)

1 CD (Carrier Detect) 

2 RXD (Receive Data) 

3 TXD (Transmit Data) 

4 DTR (Data Terminal Ready) 

5 GND (System Ground)

6 DSR (Data Set Ready) 

7 RTS (Request To Send) 

8 CTS (Clear To Send) 

9 RI (Ring Indicator) 

DB9 RS232 serial port on a PC.

• Typically, the connector is “male” for DTE
equipment and “female” for DCE equipment.

RS232 DB9 pin D-SUB male connector

6.8 Summary

• This chapter introduced the RS232 serial
communications standard and placed it in context
with newer forms of serial communications. It also
discussed the role of the UART and external
transceiver circuits necessary to transmit bits of data
at the proper voltage.

• On the software side, this chapter discussed how to
configure the serial port using the special function
registers and also discussed issues pertaining to
baud rate generation. Finally, reading and writing to
the serial port was addressed and both software and
hardware handshaking concepts were introduced.

Interfacing Concepts

Prepared by

Prof.Mahesh P. Yanagimath

Introduction

• Overview of I/O operations

• Programmed I/O

– Standard I/O

– Memory Mapped I/O

• Device synchronization

• Readings: Scan Chapter 8

I/O operations

 Of Von Neumann's five computer building blocks,

potentially the most important are the input and the

output devices

 In this section we will look at the general

techniques for performing I/O operations and their

impact on the system performance

(Detailed discussions will be presented in follow-on

sections)

CONTD

• Basic I/O considerations:

Timing

» Typically the processor and the I/O device

will not be operating at the same clock

frequency

» As a result, we must have a means of

synchronizing (at least momentarily) the two

in order to effect the information transfer

I/O operations

Speed

» During I/O operations, objective is to keep both

the processor and the I/O device busy

» Not easy to do because of the range of operating

speeds of the processor and the I/O device

Coding

» Information in the processor is held in a "machine

readable" format (generally binary numbers)

contd

I/O operations

» The data representation is most likely not in a form

suitable for external use

Externally, we like to think in terms of ASCII, 16-bit

Unicode, EBCDIC, etc. --- Must make provisions for

code conversion during I/O operations

From these three considerations, the I/O interface

consists of two parts:

– The hardware interface -- the electrical

connections and signal paths

– The software interface -- provides a means for

manipulating the data

contd

I/O operations

 The I/O interface can be viewed as a "system"

of processor registers

– Control -- defines the operational

characteristics of the interface

– Status -- tracks the use of the interface -- Is it

busy now?

– Data -- provides the actual data transfer

mechanism

I/O operations

 Three categories of I/O operations, based on the

control mechanism that is used:

– Program controlled I/O

– Interrupt controlled I/O -- I/O operations are a
result of the processor's response to external

I/O interrupts that indicate the readiness of the

I/O device to transfer data

(More on this later!)
contd

I/O operations

– DMA controlled I/O -- I/O operations are

initiated and controlled by hardware external

to the processor -- operation and actual data

transfer do not involve the processor (Not

implemented in the 68HC11)

I/O operations

Programmed I/O

 In the program controlled I/O mode:

– The I/O operations are completely supervised by and

controlled by the processor

– The processor executes program segments that initiate,

direct, and terminate the I/O operation

» Initialize I/O hardware

» Test and wait for I/O device to be “ready”

» Perform 1 transfer

» If not done, repeat the process

contd

Programmed I/O

– The program segments can be part of the applications

program or a lower-level operating system function

This type of operation is available on every computer

system

– Simple to implement

– Requires very little special hardware or software

– Primary disadvantage is the loss of processor

efficiency -- it is slowed to the speed of the I/O

device

Programmed I/O

Two ways address I/O devices:

– Isolated (standard) I/O

» I/O devices have their own unique address space

» Individual devices are selected based on the

combined actions of:

 Valid device address being placed on the address

bus

 IO/M signal indicates I/O operation

Valid read or write pulse

contd

Programmed I/O

Memory mapped I/O

» If the I/O device address is part of the memory system

addressing scheme, then any instruction that references

memory can also be used toperform an I/O operation

» I/O device is treated like a memory location

» More flexibility in accessing the device, but tradeoff is a

loss of real memory locations

Programmed I/O

 I/O device synchronization: under programmed

I/O, data can be transferred using one of two

methods:

– Normal “conditional” transfers

» Transfer can only take place after the processor

determines that the I/O device is "ready“

» Processor "polls" the device and waits until

it is ready

contd

Programmed I/O

» This handshaking guarantees that device will not

be flooded by the processor (or that the processor

won't read the same data more than once)

Programmed I/O

–Unconditional transfers

» An instruction transfers data to/from the device without

determining if that device is actually ready to send or

receive the data

» A "blind" transfer

» As a result of the speed differential between the processor

and the device, unconditional transfers are generally used

to exchange data with a port that is known to be "ready“

� Transfer command (setup) information to a device

� Receive status information from a device

Programmed I/O

 Parallel I/O

– Each line carries 1 bit of data ord

– All 5 ports on the HC11 can be used for parallel I/O

» If not used for another I/O subsystem

– Ports B and C can be used for strobed I/O or full

handshake I/O

contd

–Uses:

» LED

» Keypad

» Printer interface

» Control relays, switches

» Sensor switch inputs

Programmed I/O

Programmed I/O

Serial I/O

 Uses a single line to transmit bits one after the

other

May be synchronous or asynchronous

 Port D used for serial I/O

 Often used for:

» Computer communication

» Modem

» Mouse

» Printer

» Network

Programmable Timer

– Port A used for timer functions

– Uses:

» Generate time delays

» Generate pulse streams

» Measure period/frequency of input signals

» Measure pulse widths

contd

Programmed I/O

Analog/Digital Converter

– Converts an analog voltage into a binary number

– Port E used for A/D conversions

– Many physical quantities are represented by analog

values

» Temperature

» Voltage

» Light intensity

» Pressure

Programmed I/O

Summary of port functions:

– Port A:

» Timer operations or parallel I/O

� PA0-PA2 input only

� PA4-PA6 output only

� PA3 and PA7 input or output

– Port B:

» Upper 8 bits of address bus (expanded

multiplexed mode) or parallel I/O

� PB0-PB7 output only

contd

Programmed I/O

– Port C:

» Multiplexed address/data bus (expanded multiplexed

mode) or parallel I/O

PC0-PC7 input or output

– Port D:

» Asynchronous serial I/O (PD0-PD1), synchronous

serial I/O (PD2-PD5), or parallel I/O

 PD0-PD5 input or output

– Port E:

» A/D converter or parallel I/O PE0-PE7 input only

Programmed I/O

Presentation On

Real World interfacing with
Microcontroller

By

Prof.Mahesh Yanagimath M.Tech (VLSI &ES), MIEEE, MISTE.

Faculty,Dept of Elertrical and Electronics Engg

Staff Advisor, IEEE Student Branch

Hirasugar Institute of Technology, Nidasoshi.

Content

• Microcontroller

• How to Interface devices

• Microcontroller Interfaces

• 8051 Serial communication

• Serial data transmission modes

• Microcontroller applications

Why do we need to learn
Microprocessors/controllers?

• The microprocessor is the core of computer
systems.

• Nowadays many communication, digital
entertainment, portable devices, are
controlled by them.

• A designer should know what types of
components he needs, ways to reduce
production costs and product reliable.

Microcontrollers

The prime use of a microcontroller :

►To control the operation of a machine using a fixed program
that is stored in ROM and that does not change over the
lifetime of the system

Typical Microcontrollers

►The most common microcontrollers are 8-bit.

►4-bit are used in high volume very low cost
applications

►16 & 32 bit are used in high-end applications.

►Typical clock frequencies are 12 - 24 MHz

Different manufacturers of microcontroller

►Intel
►Atmel
►Philips
►Dallas Semiconductors
►Microchip
►Motorola

History of 8051

►1981, Intel MCS-51

►The 8051 became popular after Intel allowed
other manufacturers to make and market an
flavor of the 8051.

– different speed, amount of on-chip ROM

– code-compatible with the original 8051

– form a 8051 family

Criteria for Selecting microcontroller
• Meeting the computing needs of the task

efficiently and cost effectively
– speed, the amount of ROM and RAM, the number

of I/O ports and timers, size, packaging, power
consumption

– easy to upgrade
– cost per unit

• availability of software development tools
– assemblers, debuggers, C compilers, emulator,

simulator, technical support

• wide availability and reliable sources of the
microcontrollers.

Different aspects of a microcontroller

► Hardware: Interface to the real world

► Software: order how to deal with inputs

Test case: 8051

► A smaller computer

► On-chip RAM, ROM, I/O ports...

RAM ROM

I/O

Port
Timer

Serial

COM

Port

CPU

A single chip

Block Diagram

Counter

Inputs

CPU

On-chip

RAM

On-chip

ROM for

program

code

4 I/O Ports

Timer 0

Serial

PortOSC

Interrupt

Control

External interrupts

Timer 1

Timer/Counter

Bus

Control

TxD RxDP0 P2 P1 P3

Address/Data

Pin Description of the 8051

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

40
39
38

37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21

P1.0
P1.1
P1.2

P1.3
P1.4
P1.5
P1.6
P1.7
RST

(RXD)P3.0
(TXD)P3.1

(T0)P3.4
(T1)P3.5

XTAL2
XTAL1

GND

(INT0)P3.2

(INT1)P3.3

(RD)P3.7
(WR)P3.6

Vcc
P0.0(AD0)
P0.1(AD1)

P0.2(AD2)
P0.3(AD3)
P0.4(AD4)
P0.5(AD5)
P0.6(AD6)
P0.7(AD7)

EA/VPP
ALE/PROG

PSEN
P2.7(A15)
P2.6(A14)
P2.5(A13)
P2.4(A12)
P2.3(A11)
P2.2(A10)
P2.1(A9)
P2.0(A8)

8051

(8031)

What is interfacing?

►Inputs and Outputs

►Compatibility of I/Os

►Selecting right microcontroller

How to interface Devices

Basic I/O considerations

1) Timing

--» Typically the processor and the I/O device will
not be operating at the same clock frequency.

2) Speed

– » During I/O operations, objective is to keep both the
processor and the I/O device busy

– » Not easy to do because of the range of operating
speeds of the processor and the I/O device

3) Coding

– » Information in the processor is held in a "machine
readable" format (generally binary numbers)

The I/O interface can be viewed as a "system"
of processor registers

• – Control -- defines the operational
characteristics of the interface

• – Status -- tracks the use of the interface

-- Is it busy now?

• – Data -- provides the actual data transfer
mechanism

Three categories of I/O operations, based on the
control mechanism that is used:

– Program controlled I/O

– Interrupt controlled I/O -- I/O operations are a
result of the processor's response to external

I/O interrupts that indicate the readyness of the

I/O device to transfer data

-- DMA controlled I/O -- I/O operations are initiated
and controlled by hardware external to the processor
-- operation and actual data transfer do not involve
the processor (Not implemented in the 68HC11)

Analog Inputs
Physical effect produces an analog voltage or current
Microphone

In phones, cameras, voice recorders, …
Accelerometer

In airbag controllers
Fluid-flow sensors

In industrial machines, coffee machines, …
Gas detectors

In safety equipment

LCD Interfacing

LCD is finding widespread use replacing LEDs
for the following reasons:

• The declining prices of LCD

• The ability to display numbers, characters, and
graphics

• Incorporation of a refreshing controller into the
LCD, thereby relieving the CPU of the task of
refreshing the LCD

• Ease of programming for characters and graphics

LCD timing diagram for read operation

LCD timing diagram for write Operation

Digital Design — Chapter 8 — I/O
Interfacing

35

Digital Design — Chapter 8 — I/O
Interfacing

36

Digital Design — Chapter 8 — I/O
Interfacing

37

8051 SERIAL COMMUNICATION

Types of Serial Communication

• Synchronous serial Data Communication

Transfer Block of data at a time

• Asynchronous Serial Data Communication

Transfers single byte at a time

Half Duplex Data Transfer(One way at a time)

Full Duplex Data Transfer(Both way at a time)

Serial Data Transmission Modes:

• Mode-0: In this mode, the serial port works
like a shift register and the data transmission
works synchronously with a clock frequency of
fosc /12. Serial data is received and transmitted
through RXD. 8 bits are transmitted/ received
at a time.

• Mode-1, the serial port functions as a standard
Universal Asynchronous Receiver Transmitter (UART)
mode. 10 bits are transmitted through TXD or received
through RXD. The 10 bits consist of one start bit (which
is usually '0'), 8 data bits (LSB is sent first/received
first), and a stop bit (which is usually '1').

• The following figure shows the way the bits are
transmitted/ received.

Serial Data Mode-2 - Multiprocessor Mode :
• In this mode 11 bits are transmitted through TXD

or received through RXD. The various bits are as
follows: a start bit (usually '0'), 8 data bits (LSB
first), a programmable 9 th (TB8 or RB8)bit and a
stop bit (usually '1').

• While transmitting, the 9 th data bit (TB8 in SCON)
can be assigned the value '0' or '1'. For example,
if the information of parity is to be transmitted,
the parity bit (P) in PSW could be moved into
TB8. On reception of the data, the 9 th bit goes
into RB8 in 'SCON', while the stop bit is ignored.

Mode-3 - Multi processor mode with variable baud rate

• In this mode 11 bits are transmitted through TXD or
received through RXD. The various bits are: a start bit
(usually '0'), 8 data bits (LSB first), a programmable 9 th
bit and a stop bit (usually '1').

• Mode-3 is same as mode-2, except the fact that the
baud rate in mode-3 is variable (i.e., just as in mode-1).

• f baud = (2 SMOD /32) * (fosc / 12 (256-TH1)) .

• This baudrate holds when Timer-1 is programmed in
Mode-2.

Applications of microcontroller

►Personal information products: Cell phone, pager,
watch, pocket recorder, calculator

►Laptop components: mouse, keyboard, modem,
fax card, sound card, battery charger

►Home appliances: door lock, alarm clock,
thermostat, air conditioner, TV remote, VCR, small
refrigerator, exercise equipment, washer/dryer,
microwave oven

►Industrial equipment: Temperature/pressure
controllers, Counters, timers, RPM Controllers

►Toys: video games, cars, dolls, etc.

Any Questions ?

Thank You

Contact address

Prof.Mahesh Yanagimath M.Tech (VLSI &ES), MIEEE, MISTE.

Faculty,Dept of Elertrical and Electronics Engg

Staff Advisor, IEEE Student Branch

Hirasugar Institute of Technology, Nidasoshi.

Mail Address: maheshyanagimath.eee@hsit.ac.in

Contact No: 09341449466

mailto:maheshyanagimath.eee@hsit.ac.in

