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CHAPTER- 1-A

INCIDENCE AND NETWORK MATRICES

[CONTENTS: Definitions of important terms, Incidence matrices: Element node
incidence matrix and Bus incidence matrix, Primitive networks and matrices,
Performance of primitive networks, Frames of reference, Singular
transformation analysis, Formation of bus admittance matrix, examples]

INTRODUCTION

The solution of a given linear network problem requires the formation of a set of

equations describing the response of the network. The mathematical model so

derived, must describe the characteristics of the individual network components, as

well as the relationship which governs the interconnection of the individual

components. In the bus frame of reference the variables are the node voltages and

node currents.

The independent variables in any reference frame can be either currents or voltages.

Correspondingly, the coefficient matrix relating the dependent variables and the

independent variables will be either an impedance or admittance matrix. The

formulation of the appropriate relationships between the independent and dependent

variables is an integral part of a digital computer program for the solution of power

system problems. The formulation of the network equations in different frames of

reference requires the knowledge of graph theory. Elementary graph theory concepts

are presented here, followed by development of network equations in the bus frame of

reference.

ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS

The geometrical interconnection of the various branches of a network is called the

topology of the network. The connection of the network topology, shown by replacing

all its elements by lines is called a graph. A linear graph consists of a set of objects

called nodes and another set called elements such that each element is identified with

an ordered pair of nodes. An element is defined as any line segment of the graph

irrespective of the characteristics of the components involved. A graph in which a
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direction is assigned to each element is called an oriented graph or a directed graph.

It is to be noted that the directions of currents in various elements are arbitrarily

assigned and the network equations are derived, consistent with the assigned

directions. Elements are indicated by numbers and the nodes by encircled numbers.

The ground node is taken as the reference node.  In electric networks the convention

is to use associated directions for the voltage drops. This means the voltage drop in a

branch is taken to be in the direction of the current through the branch. Hence, we

need not mark the voltage polarities in the oriented graph.

Connected Graph : This is a graph where at least one  path (disregarding orientation)

exists between any two nodes of the graph. A representative power system and its

oriented graph are as shown in Fig 1, with:

e = number of elements = 6

n = number of nodes = 4

b = number of branches = n-1 = 3

l = number of links = e-b = 3

Tree = T(1,2,3)    and

Co-tree = T(4,5,6)

Sub-graph : sG  is a sub-graph of G if the following conditions are satisfied:

 sG is itself a graph

 Every node of sG is also a node of G

 Every branch of sG is  a branch of G

For eg., sG(1,2,3), sG(1,4,6), sG(2), sG(4,5,6), sG(3,4),.. are all valid sub-graphs of

the oriented graph of Fig.1c.

Loop : A sub-graph L of a graph G is  a loop if

 L is a connected sub-graph of G

 Precisely two and not more/less than two branches are incident on each node

in L

In Fig 1c, the set{1,2,4} forms a loop, while the set{1,2,3,4,5} is not a valid, although

the set(1,3,4,5) is a valid loop. The KVL (Kirchhoff’s  Voltage Law) for the loop is

stated as follows: In any lumped network, the algebraic sum of the branch voltages

around any of the loops  is zero.
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Fig 1a. Single line diagram of a power system

Fig 1b.  Reactance diagram

Fig 1c. Oriented Graph
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Cutset : It is a set of branches of a connected graph G which satisfies the following

conditions :

 The removal of all branches of the cutset causes the remaining graph to have

two separate unconnected sub-graphs.

 The removal of all but one of the branches of the set, leaves the remaining

graph connected.

Referring to Fig 1c, the set {3,5,6} constitutes a cutset since removal of them isolates

node 3 from rest of the network, thus dividing the graph into two unconnected sub-

graphs. However, the set(2,4,6) is not a valid cutset! The KCL (Kirchhoff’s Current

Law) for the cutset is stated as follows: In any lumped network, the algebraic sum of

all the branch currents traversing through the given cutset branches is zero.

Tree: It is a connected sub-graph containing all the nodes of the graph G, but without

any closed paths (loops). There is one and only one path between every pair of nodes

in a tree. The elements of the tree are called twigs or branches.  In a graph with n

nodes,

The number of branches:  b = n-1 (1)

For the graph of Fig 1c, some of the possible trees could be T(1,2,3), T(1,4,6),

T(2,4,5), T(2,5,6), etc.

Co-Tree : The set of branches of the original graph G, not included in the tree is

called the co-tree. The co-tree could be connected or non-connected, closed or open.

The branches of the co-tree are called links. By convention, the tree elements are

shown as solid lines while the co-tree elements are shown by dotted lines as shown in

Fig.1c for tree T(1,2,3).  With e as the total number of elements,

The number of links: l = e – b = e – n + 1 (2)

For the graph of Fig 1c, the co-tree graphs corresponding to the various tree graphs

are as shown in the table below:

Tree T(1,2,3) T(1,4,6) T(2,4,5) T(2,5,6)

Co-Tree T(4,5,6) T(2,3,5) T(1,3,6) T(1,3,4)



12

Basic loops: When a link is added to a tree it forms a closed path or a loop. Addition

of each subsequent link forms the corresponding loop. A loop containing only one

link and remaining branches is called a basic loop or a fundamental loop. These loops

are defined for a particular tree. Since each link is associated with a basic loop, the

number of basic loops is equal to the number of links.

Basic cut-sets: Cut-sets which contain only one branch and remaining links are called

basic cutsets or fundamental cut-sets. The basic cut-sets are defined for a particular

tree.  Since each branch is associated with a basic cut-set, the number of basic cut-sets

is equal to the number of branches.

Examples on Basics of LG Theory:

Example-1: Obtain the oriented graph for the system shown in Fig. E1. Select any

four possible trees. For a selected tree show the basic loops and basic cut-sets.

Fig. E1a. Single line diagram of Example System

Fig. E1b.  Oriented Graph of Fig. E1a.
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For the system given, the oriented graph is as shown in figure E1b. some of the valid

Tree graphs could be T(1,2,3,4), T(3,4,8,9), T(1,2,5,6), T(4,5,6,7), etc. The basic cut-

sets (A,B,C,D) and basic loops (E,F,G,H,I) corresponding to the oriented graph of

Fig.E1a and tree, T(1,2,3,4) are as shown in Figure E1c and Fig.E1d respectively.

Fig. E1c.  Basic Cutsets of Fig. E1a.

Fig. E1d.  Basic Loops of Fig. E1a.
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INCIDENCE MATRICES

Element–node incidence matrix: Â

The incidence of branches to nodes in a connected graph is given by the element-node

incidence matrix, Â . An element aij of Â is defined as under:

aij = 1 if the branch-i is incident to and oriented away from the node-j.

= -1 if the branch-i is incident to and oriented towards the node-j.

= 0 if the branch-i is not at all incident on the node-j.

Thus the dimension of Â is en, where e is the number of elements and n is the

number of nodes in the network. For example, consider again the sample system with

its oriented graph as in fig. 1c. the corresponding element-node incidence matrix, is

obtained as under:

Nodes
0 1 2 3

Elements

1 1 -1

2 1 -1

Â = 3 1 -1

4 1 -1

5 1 -1

6 1 -1

It is to be noted that the first column and first row are not part of the actual matrix and

they only indicate the element number node number respectively as shown. Further,

the sum of every row is found to be equal to zero always. Hence, the rank of the

matrix is less than n. Thus in general, the matrix Â satisfies the identity:

n

∑ aij = 0  i = 1,2,…..e. (3)
j=1
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Bus incidence matrix: A

By selecting any one of the nodes of the connected graph as the reference node, the

corresponding column is deleted from Â to obtain the bus incidence matrix, A. The

dimensions of A are e (n-1) and the rank is n-1.  In the above example, selecting

node-0 as reference node, the matrix A is obtained by deleting the column

corresponding to node-0, as under:

Buses
1 2 3

Elements

1 -1

Ab Branches2 -1

A = 3 -1 =

4 1 -1

Al Links5 1 -1

6 1 -1

It may be observed that for a selected tree, say, T(1,2,3), the bus incidence matrix can

be so arranged that the branch elements occupy the top portion of the A-matrix

followed by the link elements. Then, the matrix-A can be partitioned into two sub

matrices Ab and Al as shown, where,

(i) Ab is of dimension (bxb) corresponding to the branches and

(ii) Al is of dimension (lxb) corresponding to links.

A is a rectangular matrix, hence it is singular. Ab is a non-singular square matrix of

dimension-b. Since A gives the incidence of various elements on the nodes with their

direction of incidence, the KCL for the nodes can be written as

TA i = 0 (4)

where AT is the transpose of matrix A and i is the vector of branch currents. Similarly

for the branch voltages we can write,

v = A busE (5)
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Examples on Bus Incidence Matrix:

Example-2: For the sample network-oriented graph shown in Fig. E2, by selecting a

tree, T(1,2,3,4), obtain the incidence matrices A and Â . Also show the partitioned

form of the matrix-A.

Fig. E2.  Sample Network-Oriented Graph
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Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub-

matrices as under:

buses

Ab = branches




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Example-3: For the sample-system shown in Fig. E3, obtain an oriented graph. By

selecting a tree, T(1,2,3,4), obtain the incidence matrices A and Â . Also show the

partitioned form of the matrix-A.

Fig. E3a.  Sample Example network

Consider the oriented graph of the given system as shown in figure E3b, below.
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Fig. E3b.  Oriented Graph of system of Fig-E3a.

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the incidence

matricesẬand A can be obtained as follows:

e\n 0 1 2 3 4
1 1 -1
2 1 -1

Â = 3 1 -1

4 1 -1
5 1 -1
6 -1 1
7 1 -1
8 -1 1
9 -1 1

e\b 1 2 3 4
1 -1
2 -1

A = 3 -1

4 -1
5 1 -1
6 -1 1
7 1 -1
8 -1 1
9 -1 1

Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub-

matrices as under:

e\b 1 2 3 4
1 -1

Ab = 2 -1

3 -1

4 -1

e\b 1 2 3 4
5 1 -1

Al = 6 -1 1

7 1 -1
8 -1 1
9 -1 1
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PRIMITIVE NETWORKS

So far, the matrices of the interconnected network have been defined. These matrices

contain complete information about the network connectivity, the orientation of

current, the loops and cutsets. However, these matrices contain no information on the

nature of the elements which form the interconnected network. The complete

behaviour of the network can be obtained from the knowledge of the behaviour of the

individual elements which make the network, along with the incidence matrices. An

element in an electrical network is completely characterized by the relationship

between the current through the element and the voltage across it.

General representation of a network element: In general, a network element may

contain active or passive components. Figure 2 represents the alternative impedance

and admittance forms of representation of a general network component.

Ep p Ep p

ipq

(ipq+ jpq)

jpq

vpq = Ep - Eq

ipq ipq

Eq q Eq q

Fig.2   Representation of a primitive network element

(a) Impedance form   (b) Admittance form

epq

zpq

ypq
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The network performance can be represented by using either the impedance or the

admittance form of representation. With respect to the element, p-q, let,

vpq = voltage across the element p-q,

epq = source voltage in series with the element p-q,

ipq= current through the element p-q,

jpq= source current in shunt with the element p-q,

zpq= self impedance of the element p-q   and

ypq= self admittance of the element p-q.

Performance equation: Each element p-q has two variables, vpq and ipq. The

performance of the given element p-q can be expressed by the performance equations

as under:

vpq + epq = zpqipq (in its impedance form)

ipq +  jpq = ypqvpq (in its admittance form) (6)

Thus the parallel source current jpq in admittance form can be related to the series

source voltage, epq in impedance form as per the identity:

jpq = - ypq epq (7)

A set of non-connected elements of a given system is defined as a primitive Network

and an element in it is a fundamental element that is not connected to any other

element. In the equations above, if the variables and parameters are replaced by the

corresponding vectors and matrices, referring to the complete set of elements present

in a given system, then, we get the performance equations of the primitive network in

the form as under:

v + e = [z] i

i + j  = [y] v (8)

Primitive network matrices:

A diagonal element in the matrices, [z] or [y] is the self impedance zpq-pq or self

admittance, ypq-pq. An off-diagonal element is the mutual impedance, zpq-rs or mutual

admittance, ypq-rs, the value present as a mutual coupling between the elements p-q

and r-s. The primitive network admittance matrix, [y] can be obtained also by
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inverting the primitive impedance matrix, [z]. Further, if there are no mutually

coupled elements in the given system, then both the matrices, [z] and [y] are diagonal.

In such cases, the self impedances are just equal to the reciprocal of the corresponding

values of self admittances, and vice-versa.

Examples on Primitive Networks:

Example-4: Given that the self impedances of the elements of a network referred by

the bus incidence matrix given below are equal to: Z1=Z2=0.2, Z3=0.25, Z4=Z5=0.1

and Z6=0.4 units, draw the corresponding oriented graph, and find the primitive

network matrices. Neglect mutual values between the elements.

-1 0 0

0 -1 0

A = 0 0 -1

1 -1 0

0 1 -1

1 0 -1

Solution:

The element node incidence matrix, Â can be obtained from the given A matrix, by

pre-augmenting to it an extra column corresponding to the reference node, as under.

1 -1 0 0

1 0 -1 0

Â = 1 0 0 -1

0 1 -1 0

0 0 1 -1

0 1 0 -1
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Based on the conventional definitions of the elements of Â , the oriented graph can be

formed as under:

Fig. E4    Oriented Graph

Thus the primitive network matrices are square, symmetric and diagonal matrices of

order e=no. of elements = 6. They are obtained as follows.

0.2 0 0 0 0 0

0 0.2 0 0 0 0

[z] = 0 0 0.25 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 0.4

And

5.0 0 0 0 0 0

0 5.0 0 0 0 0

[y] = 0 0 4.0 0 0 0

0 0 0 10 0 0

0 0 0 0 10 0

0 0 0 0 0 2.5
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Example-5: Consider three passive elements whose data is given in Table E5 below.

Form the primitive network impedance matrix.

Table E5

Element

number

Self impedance (zpq-pq) Mutual impedance, (zpq-rs)

Bus-code,

(p-q)

Impedance in

p.u.

Bus-code,

(r-s)

Impedance in

p.u.

1 1-2 j 0.452

2 2-3 j 0.387 1-2 j 0.165

3 1-3 j 0.619 1-2 j 0.234

Solution:

1-2 2-3 1-3

1-2 j 0.452 j 0.165 j 0.234

[z] = 2-3 j 0.165 j 0.387 0

1-3 j 0.234 0 j 0.619

Note:

 The size of [z] is e e, where e= number of elements,

 The diagonal elements are the self impedances of the elements

 The off-diagonal elements are mutual impedances between the corresponding

elements.

 Matrices [z] and [y] are inter-invertible.
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FORMATION OF YBUS AND ZBUS

The bus admittance matrix, YBUS plays a very important role in computer aided power
system analysis. It can be formed in practice by either of the methods as under:

1. Rule of Inspection
2. Singular Transformation
3. Non-Singular Transformation
4. ZBUS Building Algorithms, etc.

The performance equations of a given power system can be considered in three
different frames of reference as discussed below:

Frames of Reference:

Bus Frame of Reference: There are b independent equations (b = no. of buses) relating
the bus vectors of currents and voltages through the bus impedance matrix and bus
admittance matrix:

EBUS = ZBUS IBUS

IBUS = YBUS EBUS (9)

Branch Frame of Reference: There are b independent equations (b = no. of branches
of a selected Tree sub-graph of the system Graph) relating the branch vectors of
currents and voltages through the branch impedance matrix and branch admittance
matrix:

EBR = ZBR IBR

IBR = YBR EBR (10)

Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents
and voltages through the branch impedance matrix and branch admittance matrix:

ELOOP = ZLOOP ILOOP

ILOOP = YLOOP ELOOP (11)

Of the various network matrices refered above, the bus admittance matrix (YBUS) and
the bus impedance matrix (ZBUS) are determined for a given power system by the rule
of inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figure5. Using the basic branch
relation: I = (YV), for all the elemental currents and applying Kirchhoff’s Current
Law principle at the nodal points, we get the relations as under:

At node 1:  I1 =Y1V1 + Y3 (V1-V3) + Y6 (V1 – V2)

At node 2:  I2 =Y2V2 + Y5 (V2-V3) + Y6 (V2 – V1)

At node 3:  0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 – V2) (12)
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Fig. 3   Example System for finding YBUS

These are the performance equations of the given network in admittance form and
they can be represented in matrix form as:

I1 =     (Y1+Y3 +Y6) -Y6 -Y3 V1

I2 = -Y6 (Y2+Y5 +Y6) -Y5 V2

0       = -Y3 -Y5 (Y3 +Y4+Y5)       V3 (13)

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS (14)

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus
voltage vectors respectively.

By observing the elements of the bus admittance matrix, YBUS of equation (13), it is
observed that the matrix elements can as well be obtained by a simple inspection of
the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix,
YBUS, is equal to the sum total of the admittance values of all the elements
incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance
matrix, YBUS, is equal to the negative of the admittance value of the
connecting element present between the buses I and j, if any.

This is the principle of the rule of inspection. Thus the algorithmic equations for the
rule of inspection are obtained as:

Yii =  yij (j = 1,2,…….n)
Yij = - yij (j = 1,2,…….n) (15)



26

For i = 1,2,….n,  n = no. of buses of the given system, yij is the admittance of element
connected between buses i and j and yii is the admittance of element connected
between bus i and ground (reference bus).

Bus impedance matrix
In cases where, the bus impedance matrix is also required, it cannot be formed by
direct inspection of the given system diagram. However, the bus admittance matrix
determined by the rule of inspection following the steps explained above, can be
inverted to obtain the bus impedance matrix, since the two matrices are inter-
invertible.

Note: It is to be noted that the rule of inspection can be applied only to those power
systems that do not have any mutually coupled elements.

Examples on Rule of Inspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown
aside by the rule of inspection

Example 7: Obtain YBUS for the impedance network shown aside by the rule of
inspection. Also, determine YBUS for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.

16 -8 -4
YBUS = j -8   24 -8

-4 -8   16

-9.8    5    4
YBUS= j 5 -16  10

4   10 -14

ZBUS = YBUS
-1



27

SINGULAR TRANSFORMATIONS

The primitive network matrices are the most basic matrices and depend purely on the

impedance or admittance of the individual elements. However, they do not contain

any information about the behaviour of the interconnected network variables. Hence,

it is necessary to transform the primitive matrices into more meaningful matrices

which can relate variables of the interconnected network.

Bus admittance matrix, YBUS and Bus impedance matrix, ZBUS

In the bus frame of reference, the performance of the interconnected network is

described by n independent nodal equations, where n is the total number of buses

(n+1 nodes are present, out of which one of them is designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The

YBUS
New = YA-YBYD

-1YC

YBUS = -8.66    7.86
7.86 -8.86

YBUS
New = YA-YBYD

-1YC

YBUS = j -8.66    7.86
7.86 -8.66
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performance equation relating the bus voltages to bus current injections in bus frame

of reference in admittance form is given by

IBUS = YBUS EBUS (17)

Where EBUS = vector of bus voltages measured with respect to reference bus

IBUS = Vector of currents injected into the bus

YBUS = bus admittance matrix

The performance equation of the primitive network in admittance form is given by

i + j = [y] v

Pre-multiplying by At (transpose of A), we obtain

At i +At j = At [y] v (18)

However, as per equation (4),

At i =0,

since it indicates a vector whose elements are the algebraic sum of element currents

incident at a bus, which by Kirchhoff’s law is zero.  Similarly, At j gives the algebraic

sum of all source currents incident at each bus and this is nothing but the total current

injected at the bus. Hence,

At j  = IBUS (19)

Thus from (18) we have,        IBUS = At [y] v (20)

However, from (5), we have

v =A EBUS

And hence substituting in (20) we get,

IBUS = At [y] A EBUS (21)

Comparing (21) with (17) we obtain,

YBUS = At [y] A (22)

The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a

singular transformation of the primitive admittance matrix [y]. The bus impedance

matrix is given by ,

ZBUS = YBUS
-1 (23)

Note: This transformation can be derived using the concept of power invariance,

however, since the transformations are based purely on KCL and KVL, the

transformation will obviously be power invariant.
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Examples on Singular Transformation:

Example 8: For the network of Fig E8, form the primitive matrices [z] & [y] and

obtain the bus admittance matrix by singular transformation. Choose a Tree T(1,2,3).

The data is given in Table E8.

Fig E8 System for Example-8

Table E8: Data for Example-8

Elements Self impedance Mutual impedance

1 j 0.6 -

2 j 0.5 j 0.1(with element 1)

3 j 0.5 -

4 j 0.4 j 0.2 (with element 1)

5 j 0.2 -

Solution:

The bus incidence matrix is formed taking node 1 as the reference bus.
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A =































101

001

110

010

001

The primitive incidence matrix is given by,

[z]=























2.00.00.00.00.0

0.04.00.00.02.0

0.00.05.00.00.0

0.00.00.05.01.0

0.02.00.01.06.0

j

jj

j

jj

jjj

The primitive admittance matrix [y] = [z]-1 and given by,

[y]=































0.50.00.00.00.0

0.00208.30.02083.00417.1

0.00.00.20.00.0

0.02083.00.00833.24167.0

0.00417.10.04167.00833.2

j

jjj

j

jjj

jjj

The bus admittance matrix by singular transformation is obtained as

YBUS = At [y] A  =






















0.70.20.5

0.20833.42083.0

0.52083.00208.8

jjj

jjj

jjj

ZBUS = YBUS
-1 =

















3609.01885.02299.0

1885.03437.01264.0

2299.01264.02713.0

jjj

jjj

jjj
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SUMMARY

The formulation of the mathematical model is the first step in obtaining the solution

of any electrical network. The independent variables can be either currents or

voltages. Correspondingly, the elements of the coefficient matrix will be impedances

or admittances.

Network equations can be formulated for solution of the network using graph theory,

independent of the nature of elements. In the graph of a network, the tree-branches

and links are distinctly identified. The complete information about the interconnection

of the network, with the directions of the currents is contained in the bus incidence

matrix.

The information on the nature of the elements which form the interconnected network

is contained in the primitive impedance matrix. A primitive element can be

represented in impedance form or admittance form. In the bus frame of reference, the

performance of the interconnected system is described by (n-1) nodal equations,

where n is the number of nodes. The bus admittance matrix and the bus impedance

matrix relate the bus voltages and currents. These matrices can be obtained from the

primitive impedance and admittance matrices.
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Chapter-1-B

FORMATION OF BUS IMPEDANCE MATRIX

[CONTENTS: Node elimination by matrix algebra, generalized algorithms for ZBUS

building, addition of BRANCH, addition of LINK, special cases of analysis,
removal of elements, changing the impedance value of an element, examples]

NODE ELIMINATION BY MATRIX ALGEBRA

Nodes can be eliminated by the matrix manipulation of the standard node equations.

However, only those nodes at which current does not enter or leave the network can

be considered for such elimination. Such nodes can be eliminated either in one group

or by taking the eligible nodes one after the other for elimination, as discussed next.

CASE-A: Simultaneous Elimination of Nodes:

Consider the performance equation of the given network in bus frame of reference in

admittance form for a n-bus system, given by:

IBUS = YBUS EBUS (1)

Where IBUS and EBUS are n-vectors of injected bus current and bus voltages and YBUS

is the square, symmetric, coefficient bus admittance matrix of order n.

Now, of the n buses present in the system, let p buses be considered for node-

elimination so that the reduced system after elimination of p nodes would be retained

with m (= n-p) nodes only. Hence the corresponding performance equation would be

similar to (1) except that the coefficient matrix would be of order m now, i.e.,

IBUS = YBUS
new EBUS (2)

Where YBUS
new is the bus admittance matrix of the reduced network and the vectors

IBUS and EBUS are of order m.  It is assumed in (1) that IBUS and EBUS are obtained with

their elements arranged such that the elements associated with p nodes to be

eliminated are in the lower portion of the vectors. Then the elements of YBUS also get

located accordingly so that (1) after matrix partitioning yields,
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m p

IBUS-m m YA YB EBUS-m

IBUS-p
= p YC YD EBUS-p

(3)

Where the self and mutual values of YA and YD are those identified only with the

nodes to be retained and removed respectively and YC=YB
t is composed of only the

corresponding mutual admittance values, that are common to the nodes m and p.

Now, for the p nodes to be eliminated, it is necessary that, each element of the vector

IBUS-p should be zero. Thus we have from (3):

IBUS-m = YA EBUS-m + YB EBUS-p

IBUS-p = YC EBUS-m + YD EBUS-p = 0 (4)

Solving, EBUS-p = - YD
-1YC EBUS-m (5)

Thus, by simplification, we obtain an expression similar to (2) as,

IBUS-m = {YA - YBYD
-1YC} EBUS-m (6)

Thus by comparing (2) and (6), we get an expression for the new bus admittance

matrix in terms of the sub-matrices of the original bus admittance matrix as:

YBUS
new = {YA - YBYD

-1YC} (7)

This expression enables us to construct the given network with only the necessary

nodes retained and all the unwanted nodes/buses eliminated. However, it can be

observed from (7) that the expression involves finding the inverse of the sub-matrix

YD (of order p). This would be computationally very tedious if p, the nodes to be

eliminated is very large, especially for real practical systems. In such cases, it is more

advantageous to eliminate the unwanted nodes from the given network by considering

one node only at a time for elimination, as discussed next.
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CASE-B: Separate Elimination of Nodes:

Here again, the system buses are to be renumbered, if necessary, such that the node to

be removed always happens to be the last numbered one. The sub-matrix YD then

would be a single element matrix and hence it inverse would be just equal to its own

reciprocal value. Thus the generalized algorithmic equation for finding the elements

of the new bus admittance matrix can be obtained from (6) as,

Yij
new = Yij

old – Yin Ynj / Ynn  i,j = 1,2,…… n. (8)

Each element of the original matrix must therefore be modified as per (7). Further,

this procedure of eliminating the last numbered node from the given system of n

nodes is to be iteratively repeated p times, so as to eliminate all the unnecessary p

nodes from the original system.

Examples on Node elimination:

Example-1: Obtain YBUS for the impedance network shown below by the rule of

inspection. Also, determine YBUS for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.

The admittance equivalent network is as follows:
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The bus admittance matrix is obtained by RoI as:

The reduced matrix after elimination of node 3 from the given system is determined
as per the equation:

YBUS
New = YA-YBYD

-1YC

n/n 1 2

YBUS
new= 1 -j8.66 j7.86

2 j7.86 -j8.66

Alternatively,

Yij
new = Yij

old – Yi3 Y3j / Y33  i,j = 1,2.

Y11 = Y11-Y13Y31/ Y33 = -j8.66

Y22 = Y22 – Y23Y32/ Y33 = -j8.66

Y12 = Y21 = Y12 – Y13Y32/Y33 = j7.86

Thus the reduced network can be obtained again by the rule of inspection as shown
be low.

-9.8   5    4
YBUS= j 5 -16  10

4 10 -14
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Example-2: Obtain YBUS for the admittance network shown below by the rule of

inspection. Also, determine YBUS for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.

n/n 1 2 3 4
1 -j50 0 j20 j10

YBUS= 2 0 -j60 0 j72 = YA YB

3 j20 0 -j72 j50 YC YD

4 j10 j72 j50 -j81

YBUS
New = YA-YBYD

-1YC

n/n 1 2

YBUS
new= 1 -j32.12 j10.32

2 j10.32 -j51.36

Thus the reduced system of two nodes can be drawn by the rule of inspection as

under:
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ZBUS building

FORMATION OF BUS IMPEDANCE MATRIX

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative

method is possible, based on an algorithm to form the bus impedance matrix directly

from system parameters and the coded bus numbers. The bus impedance matrix is

formed adding one element at a time to a partial network of the given system. The

performance equation of the network in bus frame of reference in impedance form

using the currents as independent variables is given in matrix form by

  busbusbus IZE  (9)

When expanded so as to refer to a n bus system, (9) will be of the form

nnkk IZIZIZIZE 112121111 ........... 



nknkkkkkk IZIZIZIZE  ..........2211




nnnknknnn IZIZIZIZE  ..............2211 (10)

Now assume that the bus impedance matrix Zbus is known for a partial network of m

buses and a known reference bus. Thus, Zbus of the partial network is of dimension

mm. If now a new element is added between buses p and q we have the following

two possibilities:
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(i) p is an existing bus in the partial network and q is a new bus; in this case

p-q is a branch added to the p-network as shown in Fig 1a, and

(ii) both p and q are buses existing in the partial network; in this case p-q is a

link added to the p-network as shown in Fig 1b.

q

Ref.

Fig 1a. Addition of branch p-q

Ref.

Fig 1b. Addition of link  p-q

1
2

Partial
Network

p

ZBUS i

m

0

1
2

Partial
Network

p

ZBUS q

m

0
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If the added element ia a branch, p-q, then the new bus impedance matrix would be of
order m+1, and the analysis is confined to finding only the elements of the new row
and column (corresponding to bus-q) introduced into the original matrix.

If the added element ia a link, p-q, then the new bus impedance matrix will remain
unaltered with regard to its order. However, all the elements of the original matrix are
updated to take account of the effect of the link added.

ADDITION OF A BRANCH

Consider now the performance equation of the network in impedance form with the

added branch p-q, given by

























































































q

m

p

qqqmqpqq

mqmmmpmm

pqpmpppp

qmp

qmp

q

m

p

I

I

I

I

I

ZZZZZ

ZZZZZ

ZZZZZ

ZZZZZ

ZZZZZ

E

E

E

E

E























2

1

21

21

21

2222221

1111211

2

1

(11)

It is assumed that the added branch p-q is mutually coupled with some elements of the

partial network and since the network has bilateral passive elements only, we have

Vector ypq-rs is not equal to zero and Zij= Zji  i,j=1,2,…m,q                    (12)

To find Zqi:

The elements of last row-q and last column-q are determined by injecting a current of

1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference

bus-0, as shown in Fig.2. Since all other bus currents are zero, we have from (11) that

Ek = Zki Ii = Zki  k = 1, 2,…i.…...p,….m, q (13)

Hence,   Eq = Zqi ;   Ep = Zpi ………

Also,  Eq=Ep -vpq ; so that Zqi = Zpi - vpq  i =1, 2,…i.…...p,….m, ≠q (14)

To find vpq:

In terms of the primitive admittances and voltages across the elements, the current

through the elements is given by
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

























rs

pq

rsrspqrs

rspqpqpq

rs

pq

v

v

yy

yy

i

i

,,

,,

(15)

vpq

q

Ii =1pu

Ref.

Fig.2 Calculation for Zqi

where pqi is current through element p-q

rsi is vector of currents through elements of the partial network

pqv is voltage across element p-q

pqpqy , is self – admittance of the added element

rspqy , is the vector of mutual admittances between the added elements p-q and

elements r-s of the partial network.

rsv is vector of voltage across elements of partial network.

pqrsy , is transpose of rspqy , .

rsrsy , is the primitive admittance of partial network.

Since the current in the added branch p-q, is zero, 0pqi . We thus have from (15),

0,,  rsrspqpqpqpqpq vyvyi (16)

1
2

Partial
Network

p

i

ZBUS

m

0
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Solving,
pqpq

rsrspq
pq y

vy
v

,

, or

 
pqpq

srrspq
pq y

EEy
v

,

, 
 (17)

Using (13) and (17) in (14), we get

 
pqpq

sirirspq
piqi y

ZZy
ZZ

,

, 
 qimi  ;......2,1 (18)

To find zqq:

The element Zqq can be computed by injecting a current of 1pu at bus-q, Iq = 1.0 pu.

As before, we have the relations as under:

Ek = Zkq Iq = Zkq  k = 1, 2,…i.…...p,….m, q (19)

Hence,   Eq = Zqq ;   Ep = Zpq ;  Also, Eq =Ep - vpq ;   so that Zqq = Zpq - vpq (20)

Since now the current in the added element is 0.1 qpq Ii , we have from (15)

1,,  rsrspqpqpqpqpq vyvyi

Solving,
pqpq

rsrspq
pq y

vy
v

,

,1

 
pqpq

srrspq
pq y

EEy
v

,

,1


 (21)

Using (19) and (21) in (20), we get

 
pqpq

sqrqrspq
pqqq y

ZZy
ZZ

,

,1 
 (22)

Special Cases

The following special cases of analysis concerning ZBUS building can be considered

with respect to the addition of branch to a p-network.

Case (a): If there is no mutual coupling then elements of rspqy , are zero. Further, if p

is the reference node, then Ep=0. thus,

Zpi = 0 qimi  :......2,1
And Zpq = 0.
Hence, from (18) (22) Zqi = 0 qimi  ;.......2,1

And pqpqqq zZ , \ (23)
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Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)

and (22), we again have,

qimiZZ piqi  ;....2,1,

pqpqpqqq zZZ , (24)

ADDITION OF A LINK

Consider now the performance equation of the network in impedance form with the

added link p-l, (p-l being a fictitious branch and l being a fictitious node) given by
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(25)

It is assumed that the added branch p-q is mutually coupled with some elements of the

partial network and since the network has bilateral passive elements only, we have

Vector ypq-rs is not equal to zero and Zij= Zji  i,j=1,2,…m,l.                   (26)

To find Zli:

The elements of last row-l and last column-l are determined by injecting a current of

1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference

bus-0, as shown in Fig.3. Further, the current in the added element is made zero by

connecting a voltage source, el in series with element p-q, as shown. Since all other

bus currents are zero, we have from (25) that

Ek = Zki Ii = Zki  k = 1, 2,…i.…...p,….m, l (27)

Hence,   el = El = Zli ;   Ep = Zpi ;  Ep = Zpi ………

Also,      el = Ep - Eq - vpq ;

So that Zli = Zpi - Zqi - vpq  i=1,2,…i.…p,...q,….m, ≠l (28)
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To find vpq:

In terms of the primitive admittances and voltages across the elements, the current

through the elements is given by














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

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(29)

p
vpl

q el

l

Ii =1pu

Ref.

Fig.3 Calculation for Zli

where pli is current through element p-q

rsi is vector of currents through elements of the partial network

plv is voltage across element p-q

plply , is self – admittance of the added element

rsply , is the vector of mutual admittances between the added elements p-q and

elements r-s of the partial network.

rsv is vector of voltage across elements of partial network.

plrsy , is transpose of rsply , .

rsrsy , is the primitive admittance of partial network.
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Since the current in the added branch p-l, is zero, 0pli . We thus have from (29),

0,,  rsrsplplplplpl vyvyi (30)

Solving,
plpl

rsrspl
pl y

vy
v

,

, or

 
plpl

srrspl
pl y

EEy
v

,

, 
 (31)

However,

rspqrspl yy ,, 

And pqpqplpl yy ,,  (32)

Using (27), (31) and (32) in (28), we get

 
pqpq

sirirspq
qipili y

ZZy
ZZZ

,

, 
 limi  ;......2,1 (33)

To find Zll:

The element Zll can be computed by injecting a current of 1pu at bus-l, Il = 1.0 pu.  As

before, we have the relations as under:

Ek = Zkl Il = Zkl  k = 1, 2,…i.…...p,…q,….m, l (34)

Hence,   el = El = Zll ;   Ep = Zpl ;

Also,      el = Ep - Eq - vpl ;

So that Zll = Zpl - Zql - vpl  i=1,2,…i.…p,...q,….m, ≠l (35)

Since now the current in the added element is 0.1 lpl Ii , we have from (29)

1,,  rsrsplplplplpl vyvyi

Solving,
plpl

rsrspl
pl y

vy
v

,

,1

 
plpl

srrspl
pl y

EEy
v

,

,1


 (36)

However,

rspqrspl yy ,, 

And pqpqplpl yy ,,  (37)

Using (34), (36) and (37) in (35), we get
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 
pqpq

slrlrspq
qlplll y

ZZy
ZZZ

,

,1 
 (38)

Special Cases Contd….

The following special cases of analysis concerning ZBUS building can be considered

with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of rspqy , are zero. Further, if p

is the reference node, then Ep=0. thus,

limiZZ qili  ;....2,1,

pqpqqlll zZZ , (39)

From (39), it is thus observed that, when a link is added to a ref. bus, then the
situation is similar to adding a branch to a fictitious bus and hence the following steps
are followed:

1. The element is added similar to addition of a branch (case-b) to obtain the new
matrix of order m+1.

2. The extra fictitious node, l is eliminated using the node elimination algorithm.

Case (d): If there is no mutual coupling, then elements of rspqy , are zero. Further, if p

is not the reference node, then

Zli = Zpi - Zqi

Zll = Zpl – Zql – zpq,pq

= Zpp + Zqq – 2 Zpq+ zpq,pq (40)

MODIFICATION OF ZBUS FOR NETWORK CHANGES

An element which is not coupled to any other element can be removed easily. The

Zbus is modified as explained in sections above, by adding in parallel with the element

(to be removed), a link whose impedance is equal to the negative of the impedance of

the element to be removed. Similarly, the impedance value of an element which is not

coupled to any other element can be changed easily. The Zbus is modified again as

explained in sections above, by adding in parallel with the element (whose impedance

is to be changed), a link element of impedance value chosen such that the parallel

equivalent impedance is equal to the desired value of impedance. When mutually

coupled elements are removed, the Zbus is modified by introducing appropriate

changes in the bus currents of the original network to reflect the changes introduced

due to the removal of the elements.
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Examples on ZBUS building

Example 1: For the positive sequence network data shown in table below, obtain
ZBUS by building procedure.

Sl. No. p-q
(nodes)

Pos. seq.
reactance

in pu
1 0-1 0.25
2 0-3 0.20
3 1-2 0.08
4 2-3 0.06

Solution:
The given network is as shown below with the data marked on it. Assume the
elements to be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.

Fig. E1: Example System

Consider building ZBUS as per the various stages of building through the consideration
of the corresponding partial networks as under:

Step-1: Add element–1 of impedance 0.25 pu from the external node-1 (q=1) to
internal ref. node-0 (p=0). (Case-a), as shown in the partial network;

ZBUS
(1) =

1

1 0.25
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Step-2: Add element–2 of impedance 0.2 pu from the external node-3 (q=3) to
internal ref. node-0 (p=0). (Case-a), as shown in the partial network;

ZBUS
(2) =

1 3

1 0.25 0
3 0 0.2

Step-3: Add element–3 of impedance 0.08 pu from the external node-2 (q=2) to
internal node-1 (p=1). (Case-b), as shown in the partial network;

ZBUS
(3) =

1 3 2

1 0.25 0 0.25
3 0 0.2 0
2 0.25 0 0.33

Step-4: Add element–4 of impedance 0.06 pu between the two internal nodes, node-2
(p=2) to node-3 (q=3). (Case-d), as shown in the partial network;
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ZBUS
(4) =

1 3 2 l

1 0.25 0 0.25 0.25
3 0 0.2 0 -0.2
2 0.25 0 0.33 0.33
l 0.25 -0.2 0.33 0.59

The fictitious node l is eliminated further to arrive at the final impedance matrix as
under:

ZBUS
(final) =

1 3 2

1 0.1441 0.0847 0.1100
3 0.0847 0.1322 0.1120
2 0.1100 0.1120 0.1454

Example 2: The ZBUS for a 6-node network with bus-6 as ref. is as given below.
Assuming the values as pu reactances, find the topology of the network and the
parameter values of the elements involved. Assume that there is no mutual coupling of
any pair of elements.

ZBUS =

1 2 3 4 5

1 2 0 0 0 2
2 0 2 0 2 0
3 0 0 2 0 0
4 0 2 0 3 0
5 2 0 0 0 3

Solution:
The specified matrix is so structured that by its inspection, we can obtain the network
by backward analysis through the various stages of ZBUS building and p-networks as
under:
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Thus the final network is with 6 nodes and 5 elements connected as follows with the
impedance values of elements as indicated.

Fig. E2: Resultant network of example-2
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Example 3: Construct the bus impedance matrix for the system shown in the figure
below by building procedure. Show the partial networks at each stage of building the
matrix. Hence arrive at the bus admittance matrix of the system. How can this result
be verified in practice?

Solution: The specified system is considered with the reference node denoted by
node-0. By its inspection, we can obtain the bus impedance matrix by building
procedure by following the steps through the p-networks as under:

Step1: Add branch 1 between node 1 and reference node. (q =1, p = 0)

Step2: Add branch 2, between node 2 and reference node. (q = 2, p = 0).
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Step3: Add branch 3, between node 1 and node 3 (p = 1, q = 3)

Step 4: Add element 4, which is a link between node 1 and node 2. (p = 1, q = 2)
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Now the extra node-l has to be eliminated to obtain the new matrix of step-4, using
the algorithmic relation:

Yij
new = Yij

old – Yin Ynj / Ynn  i,j = 1,2, 3.

Step 5: Add link between node 2 and node 3 (p = 2, q=3)



54

Thus, the new matrix is as under:

Node l is eliminated as shown in the previous step:

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:

As a check, it can be observed that the bus admittance matrix, YBUS can also be
obtained by the rule of inspection to arrive at the same answer.
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Example 4: Form the bus impedance matrix for the network shown below.

Solution:
Add the elements in the sequence, 0-1, 1-2, 2-3, 0-3, 3-4, 2-4, as per the various steps
of building the matrix as under:

Step1: Add element 1, which is a branch between node-1 and reference node.

Step2: Add element 2, which is a branch between nodes 1 and 2.

Step3: Add element 3, which is a branch between nodes 2 and 3

Step4: Add element 4, which is a link from node 3 to reference node.
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Eliminating node l,

Step5: Add element 5, a branch between nodes 3 and 4.

Step 6: Add element 6, a link between nodes 2 & 4.

Eliminating node l we get the required bus impedance , matrix
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Example 5: Form the bus impedance matrix for the network data given below.

Element
Self Impedance Mutual Impedance

Bus
p-q

zpq, pq

(pu)
Bus
r-s

zpq, rs

(pu)
1 1 – 2(1) j0.6
2 1 – 2(2) j0.4 1 – 2(1) j0.2

Solution:
Let bus-1 be the reference. Add the elements in the sequence 1-2(1), 1-2(2). Here, in
the step-2, there is mutual coupling between the pair of elements involved.

Step1: Add element 1 from bus 1 to 2, element 1-2(1). ( p=1, q=2, p is the reference
node)

Step2: Add element 2, element 1-2(2), which is a link from bus1 to 2, mutually
coupled with element 1, 1-2(1).
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Consider the primitive impedance matrix for the two elements given by

Thus the primitive admittance matrix is obtained by taking the inverse of [z] as

Thus,

So that we have,

Thus, the network matrix corresponding to the 2-node, 1-bus network given, is
obtained after eliminating the extra node-l  as a single element matrix, as under:

-------------------
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ECONOMIC OPERATION OF POWER SYSTEMS

INTRODUCTION

One of the earliest applications of on-line centralized control was to provide a central

facility, to operate economically, several generating plants supplying the loads of the

system. Modern integrated systems have different types of generating plants, such as coal

fired thermal plants, hydel plants, nuclear plants, oil and natural gas units etc. The capital

investment, operation and maintenance costs are different for different types of plants.

The operation economics can again be subdivided into two parts.

i) Problem of economic dispatch, which deals with determining the power

output of each plant to meet the specified load, such that the overall fuel cost

is minimized.

ii) Problem of optimal power flow, which deals with minimum – loss delivery,

where in the power flow, is optimized to minimize losses in the system. In

this chapter we consider the problem of economic dispatch.

During operation of the plant, a generator may be in one of the following states:

i) Base supply without regulation: the output is a constant.

ii) Base supply with regulation: output power is regulated based on system load.

iii) Automatic non-economic regulation: output level changes around a base

setting as area control error changes.

iv) Automatic economic regulation: output level is adjusted, with the area load

and area control error, while tracking an economic setting.

Regardless of the units operating state, it has a contribution to the economic operation,

even though its output is changed for different reasons. The factors influencing the cost

of generation are the generator efficiency, fuel cost and transmission losses. The most

efficient generator may not give minimum cost, since it may be located in a place where

fuel cost is high. Further, if the plant is located far from the load centers, transmission

losses may be high and running the plant may become uneconomical. The economic

dispatch problem basically determines the generation of different plants to minimize total

operating cost.
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Modern generating plants like nuclear plants, geo-thermal plants etc, may require capital

investment of millions of rupees. The economic dispatch is however determined in terms

of fuel cost per unit power generated and does not include capital investment,

maintenance, depreciation, start-up and shut down costs etc.

PERFORMANCE CURVES

INPUT-OUTPUT CURVE

This is the fundamental curve for a thermal plant and is a plot of the input in British

thermal units (Btu) per hour versus the power output of the plant in MW as shown in Fig

1.

Bt
u

/h
r(

In
pu

t)

(output) MW

Fig 1: Input – output curve

HEAT RATE CURVE

The heat rate is the ratio of fuel input in Btu to energy output in KWh. It is the slope of

the input – output curve at any point. The reciprocal of heat – rate is called fuel –

efficiency. The heat rate curve is a plot of heat rate versus output in MW. A typical plot

is shown in Fig .2

(output) MW
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Fig .2 Heat rate curve.

INCREMENTAL FUEL RATE CURVE

The incremental fuel rate is equal to a small change in input divided by the

corresponding change in output.

Incremental fuel rate =
Output

Input




The unit is again Btu / KWh. A plot of incremental fuel rate versus the output is shown in

Fig 3

(output) MW

In
cr

em
en

ta
lf

ue
lr

at
e

Fig 3: Incremental fuel rate curve

Incremental cost curve

The incremental cost is the product of incremental fuel rate and fuel cost (Rs / Btu or $ /

Btu). The curve in shown in Fig. 4. The unit of the incremental fuel cost is Rs / MWh or

$ /MWh.
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(output) MW

approximate linear cost

actual cost

R
s

/M
w

hr

Fig 4: Incremental cost curve

In general, the fuel cost Fi for a plant, is approximated as a quadratic function of the

generated output PGi.

Fi = ai + bi PGi + ci PGi
2 Rs / h

The incremental fuel cost is given by

Gi

i

dP

dF
= bi + 2ci PGi Rs / MWh

The incremental fuel cost is a measure of how costly it will be produce an increment of

power. The incremental production cost, is made up of incremental fuel cost plus the

incremental cost of labour, water, maintenance etc. which can be taken to be some

percentage of the incremental fuel cost, instead of resorting to a rigorous mathematical

model. The cost curve can be approximated by a linear curve. While there is negligible

operating cost for a hydel plant, there is a limitation on the power output possible. In any

plant, all units normally operate between PGmin, the minimum loading limit, below which

it is technically infeasible to operate a unit and PGmax, which is the maximum output

limit.

ECONOMIC GENERATION SCHEDULING NEGLECTING
LOSSES AND GENERATOR LIMITS

The simplest case of economic dispatch is the case when transmission losses are

neglected. The model does not consider the system configuration or line impedances.

Since losses are neglected, the total generation is equal to the total demand PD.
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Consider a system with ng number of generating plants supplying the total

demand PD. If Fi is the cost of plant i in Rs/h, the mathematical formulation of the

problem of economic scheduling can be stated as follows:

Minimize FT = 


gn

i
iF

1

Such that D

n

i
Gi PP

g


1

where FT =  total cost.
PGi =  generation of plant i.
PD =  total demand.

This is a constrained optimization problem, which can be solved by Lagrange’s method.

LAGRANGE METHOD FOR SOLUTION OF ECONOMIC SCHEDULE

The problem is restated below:

Minimize 



gn

i
iT FF

1

Such that 0
1




gn

i
GiD PP

The augmented cost function is given by











 


gn

i
GiD PP

1
TF£ 

The minimum is obtained when

0
£





GiP
and 0

£






0
P

£

Gi










Gi

T

P

F

0
£

1



 



gn

i
GiD PP


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The second equation is simply the original constraint of the problem. The cost of a plant

Fi depends only on its own output PGi, hence

Gi

i

Gi

i

Gi

T

dP

dF

P

F

P

F









Using the above,





Gi

i

Gi

i

dP

dF

P

F
; i = 1……. ng

We can write

bi + 2ci PGi =  i = 1……. ng

The above equation is called the co-ordination equation. Simply stated, for economic

generation scheduling to meet a particular load demand, when transmission losses are

neglected and generation limits are not imposed, all plants must operate at equal

incremental production costs, subject to the constraint that the total generation be equal

to the demand. From we have

i

i
Gi c

b
P

2






We know in a loss less system

D

n

i
Gi PP

g


1

Substituting (8.16) we get

D

n

i i

i P
c

bg




1 2



An analytical solution of λ  is obtained from (8.17) as












g

g

n

i i

n

i i

i
D

c

c

b
P

1

1

2
1

2


It can be seen that  is dependent on the demand and the coefficients of the cost function.

Example 1.

The fuel costs of two units are given by
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F1 = 1.5 + 20 PG1 + 0.1 PG1
2 Rs/h

F2 = 1.9 + 30 PG2 + 0.1 PG2
2 Rs/h

PG1, PG2 are in MW. Find the optimal schedule neglecting losses, when the demand is

200 MW.

Solution:

1
1

1 2.020 G
G

P
dP

dF
 Rs / MWh

2
2

2 2.030 G
G

P
dP

dF
 Rs / MWh

20021  GGD PPP MW

For economic schedule


2

2

1

1

GG dP

dF

dP

dF

20 + 0.2  PG1 = 30 + 0.2 (200 - PG1)

Solving we get, PG1 = 125 MW

PG2 = 75 MW

 = 20 + 0.2 (125) = 45 Rs / MWh

Example 2

The fuel cost in $ / h for two 800 MW plants is given by

F1 = 400 + 6.0 PG1 + 0.004 PG1
2

F2 = 500 + b2 PG2 + c2 PG2
2

where PG1, PG2 are in MW

(a) The incremental cost of power,  is $8 / MWh when total demand is 550MW.

Determine optimal generation schedule neglecting losses.

(b) The incremental cost of power is $10/MWh when total demand is 1300 MW.

Determine optimal schedule neglecting losses.

(c) From (a) and (b) find the coefficients b2 and c2.

Solution:

a) 250
004.02

0.60.8

2 1

1
1 








c

b
PG


MW

30025055012  GDG PPP MW
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b) 500
004.02

610

2 1

1
1 








C

b
PG


MW

800500130012  GDG PPP MW

c)
2

2
2 2c

b
PG






From (a)
2

2

2

0.8
300

c

b


From (b)
2

2

2

0.10
800

c

b


Solving we get b2 = 6.8
c2 = 0.002

ECONOMIC SCHEDULE INCLUDING LIMITS ON GENERATOR
(NEGLECTING LOSSES)

The power output of any generator has a maximum value dependent on the rating of the

generator. It also has a minimum limit set by stable boiler operation. The economic

dispatch problem now is to schedule generation to minimize cost, subject to the equality

constraint.

D

n

i
Gi PP

g


1

and the inequality constraint

PGi (min) ≤ PGi ≤   PGi (max) ; i = 1, ……… ng

The procedure followed is same as before i.e. the plants are operated with equal

incremental fuel costs, till their limits are not violated. As soon as a plant reaches the

limit (maximum or minimum) its output is fixed at that point and is maintained a

constant. The other plants are operated at equal incremental costs.

Example 3

Incremental fuel costs in $ / MWh for two units are given below:

0.201.0 1
1

1  G
G

P
dP

dF
$ / MWh
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6.1012.0 2
2

2  G
G

P
dP

dF
$ / MWh

The limits on the plants are Pmin = 20 MW, Pmax = 125 MW. Obtain the optimal schedule

if the load varies from 50 – 250 MW.

Solution:
The incremental fuel costs of the two plants are evaluated at their lower limits and upper

limits of generation.

At   PG (min) = 20 MW.

1

1
(min)1

GdP

dF
 = 0.01x 20+2.0 = 2.2$ / MWh

2

2
(min)2

GdP

dF
 = 0.012 x 20 + 1.6 = 1.84 $ / MWh

At  PG (Max) =125 Mw

1(max) = 0.01 x 125 + 2.0 = 3.25 $ / MWh

2(max) = 0.012 x 125 + 1.6 = 3.1 $ / MWh

Now at light loads unit 1 has a higher incremental cost and hence will operate at its lower

limit of 20 MW. Initially, additional load is taken up by unit 2, till such time its

incremental fuel cost becomes equal to 2.2$ / MWh at PG2 = 50 MW. Beyond this, the

two units are operated with equal incremental fuel costs. The contribution of each unit to

meet the demand is obtained by assuming different values of ; When  = 3.1 $ /  MWh,

unit 2 operates at its upper limit. Further loads are taken up by unit 1. The computations

are show in Table

Table  Plant output and output of the two units

1

1

GdP

dF

$/MWh

2

2

GdP

dF

$/MWh

Plant 

$/MWh

PG1

MW

PG2

MW

Plant Output

MW

2.2

2.2

2.4

2.6

2.8

3.0

3.1

1.96

2.2

2.4

2.6

2.8

3.0

3.1

1.96

2.2

2.4

2.6

2.8

3.0

3.1

20+

20+

40

60

80

100

110

30

50

66.7

83.3

100

116.7

125*

50

70

106.7

143.3

180

216.7

235
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3.25 3.1 3.25 125* 125* 250

For a particular value of , PG1 and PG2 are calculated using (8.16). Fig 8.5 Shows plot of

each unit output versus the total plant output.

For any particular load, the schedule for each unit for economic dispatch can be obtained

.

Example 4.

In example 3, what is the saving in fuel cost for the economic schedule compared to the

case where the load is shared equally. The load is 180 MW.

Solution:

From Table it is seen that for a load of 180 MW, the economic schedule is PG1 = 80 MW

and PG2 = 100 MW. When load is shared equally PG1 = PG2 = 90 MW. Hence, the

generation of unit 1 increases from 80 MW to 90 MW and that of unit 2 decreases from

100 MW to 90 MW, when the load is shared equally. There is an increase in cost of unit

1 since PG1 increases and decrease in cost of unit 2 since PG2 decreases.
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Increase in cost of unit 1 =  






90

80

1
1

1
G

G

dP
dP

dF

=   5.280.201.0
90

80

11  GG dPP $ / h

Decrease in cost of unit 2 = 2

90

100 2

2
G

G

dP
dP

dF
 









=   4.276.1012.0
90

100

22  GG dPP $ / h

Total increase in cost if load is shared equally = 28.5 – 27.4 = 1.1 $ / h

Hence the saving in fuel cost is 1.1 $ / h if coordinated economic schedule is used.

ECONOMIC DISPATCH INCLUDING TRANSMISSION LOSSES

When transmission distances are large, the transmission losses are a significant part of

the generation and have to be considered in the generation schedule for economic

operation. The mathematical formulation is now stated as

Minimize 



gn

i
iT FF

1

Such That LD

n

i
Gi PPP

g


1

where PL is the total loss.

The Lagrange function is now written as

£  = 0
1











 



gn

i
LDGiT PPPF 

The minimum point is obtained when

0
P

1
P

£

Gi

L

Gi


















 P

P

F

Gi

T  ;  i = 1……ng

0
£

1



 


LD

n

i
Gi PPP

g


(Same as the constraint)

Since
Gi

i

Gi

T

dP

dF

P

F





, (8.27) can be written as

 




Gi

L

P

P

dP

dF

Gi

i
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






















Gi

LGi

i

P

PdP

dF
1

1


The term

Gi

L

P
1

1





P

is called the penalty factor of plant i, Li. The coordination

equations including losses are given by

iL
Gi

i

dP

dF
 ; i = 1…….ng

The minimum operation cost is obtained when the product of the incremental fuel cost

and the penalty factor of all units is the same, when losses are considered.

A rigorous general expression for the loss PL is given by

PL = m n PGm Bmn PGn + n PGn Bno + Boo

where Bmn, Bno , Boo called loss – coefficients , depend on the load composition. The

assumption here is that the load varies linearly between maximum and minimum values.

A simpler expression is

PL = m n PGm Bmn PGn

The expression assumes that all load currents vary together as a constant complex

fraction of the total load current. Experiences with large systems has shown that the loss

of accuracy is not significant if this approximation is used.

An average set of loss coefficients may be used over the complete daily cycle in the

coordination of incremental production costs and incremental transmission losses. In

general, Bmn = Bnm and can be expanded for a two plant system as

PL = B11 PG1 + 2 B12 PG1 PG2 + B22 PG2
2
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Example 5

A generator is supplying a load. An incremental change in load of 4 MW requires

generation to be increased by 6 MW. The incremental cost at the plant bus is Rs 30 /

MWh. What is the incremental cost at the receiving end?

Solution:

1

1

GdP

dF
= 30

Fig ; One line diagram of example 5

 PL =  PG -  PD = 2 MW

 at receiving end is given by

45
4

6
30

1

1 




D

G

G P

P

dP

dF
 Rs / MWh

or 45

6

2
1

1
30

P
1

1

G

L1

1 









PdP

dF

G

 Rs / MWh

Example 6

In a system with two plants, the incremental fuel costs are given by

2001.0 1
1

1  G
G

P
dP

dF
Rs / MWh

5.22015.0 2
2

2  G
G

P
dP

dF
Rs / MWh

The system is running under optimal schedule with PG1 = PG2 = 100 MW.

If
G2

L

P
P

= 0.2, find the plant penalty factors and
G1

L

P
P

.

Load

∆PD = 4MW

∆PL = 2MW

∆PG = 6MW

30
1

1 
GdP

dF

G
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Solution:

For economic schedule,

iL
Gi

i

dP

dF
;

Gi

L
i

P
1

1
L






P

;

For plant 2, PG2 = 100 MW

   .
2.01

1
5.22100015.0 




Solving, 30 Rs / MWh

L2 = 25.1
2.01

1




1
1

1 L
dP

dF

G

 (0.01x100+20) L1 = 30

L1 = 1.428

L1 =

G1

L

P
1

1





P

1.428 =

G1

L

P
1

1





P
; Solving

G1

L

P
P

= 0.3

Example 7

A two bus system is shown in Fig. 8.8 If 100 MW is transmitted from plant 1 to the load,

a loss of 10 MW is incurred. System incremental cost is Rs 30 / MWh. Find PG1, PG2 and

power received by load if

0.1602.0 1
1

1  G
G

P
dP

dF
Rs / MWh

0.2004.0 2
2

2  G
G

P
dP

dF
Rs / MWh

G1 G2

Load

PG2
PG1
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Fig  One line diagram of example 7

Solution;

Since the load is connected at bus 2 , no loss is incurred when plant two supplies the

load.
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Consider the simple case of two generating plants connected to an arbitrary number of

loads through a transmission network as shown in Fig a

Fig Two plants connected to a number of loads through a transmission network

Let’s assume that the total load is supplied by only generator 1 as shown in Fig 8.9b. Let

the current through a branch K in the network be IK1. We define

D

K
K I

I
N 1

1 

It is to be noted that IG1 = ID in this case. Similarly with only plant 2 supplying the load

current ID, as shown in Fig 8.9c, we define

D

K
K I

I
N 2

2 

(c)

ID
IG2 = ID

IG1 = 0

1

2
IK2

(b)

ID

IG2 = 0

IG1 = ID

1

2
IK1

(a)

ID
IG2

IG1

1

2
IK
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NK1 and NK2 are called current distribution factors and their values depend on the

impedances of the lines and the network connection. They are independent of ID. When

both generators are supplying the load, then by principle of superposition

IK = NK1 IG1 + NK2 IG2

where IG1, IG2 are the currents supplied by plants 1 and 2 respectively, to meet the

demand ID. Because of the assumptions made, IK1 and ID have same phase angle, as do

IK2 and ID. Therefore, the current distribution factors are real rather than complex. Let

111  GG II and 222  GG II .

where 1 and 2 are phase angles of IG1 and IG2 with respect to a common reference. We

can write

   2222111

2

222111

2
sinsincoscos  GKGKGKGKK ININININI 

=
   

 222111222111

2
2

2
22

2
2

21
2

1
22

1
2

1

sinsincoscos2

sincossincos





GKGKGKGK

GKGK

ININININ

ININ





=  212121

2

2
2

2

2

1
2

1 cos2   GGKKGKGK IINNININ

Now
11

1
1

cos3 V

P
I G

G  and
22

2
2

cos3 V

P
I G

G 

where PG1, PG2 are three phase real power outputs of plant1 and plant 2; V1, V2 are the

line to line bus voltages of the plants and 21 , are the power factor angles.

The total transmission loss in the system is given by

PL = K
K

K RI
2

3
where the summation is taken over all branches of the network and RK is the branch

resistance. Substituting  we get

 
 

  K
K

K
G

KK
K

K
GG

K
K

K
G

RN
V

P

RNN
VV

PP
RN

V

P
P










2
22

2

2

2

2
2

21
2121

21212
12

1

2

1

2
1

L

cos

coscos

cos2

cos








22
2

2122111
2

1L 2 BPBPPBPP GGGG 

where
  K

K
K RN

V
B  2

12
1

2

1

11
cos

1


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 
KK

K
K RNN

VV
B 21

2121

21
12 coscos

cos 





  K
K

K RN
V

B  2
22

2

2

2

22
cos

1



The loss – coefficients are called the B – coefficients and have unit MW-1.

For a general system with n plants the transmission loss is expressed as

     
K

KKn

nn

Gn

K
K

G RN
V

P
N

V

P
P 2

22

2
2

12
1

2

1

2
1

L
cos

........
cos 

 
K

k
KqKP

n

qp
qp qpqp

qpGqGP RNN
VV

PP








1, coscos

cos
2





In a compact form

GqPq

n

p

n

q
Gp PBPP 

 


1 1

L

 





K
KKqKP

qPqp

qp
Pq RNN

VV
B





coscos

cos

B – Coefficients can be treated as constants over the load cycle by computing them at

average operating conditions, without significant loss of accuracy.

Example 8
Calculate the loss coefficients in pu and MW-1 on a base of 50MVA for the network of

Fig below. Corresponding data is given below.

Ia = 1.2 – j 0.4 pu Za = 0.02 + j 0.08 pu

Ib = 0.4 - j 0.2 pu Zb = 0.08 + j 0.32 pu

Ic = 0.8 - j 0.1 pu Zc = 0.02 + j 0.08 pu

Id = 0.8 - j 0.2 pu Zd = 0.03 + j 0.12 pu

Ie = 1.2 - j 0.3 pu Ze = 0.03 + j 0.12 pu
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Fig : Example 8

Solution:
Total load current

IL = Id + Ie = 2.0 – j 0.5 = 2.061  -14.030A

IL1 = Id = 0.8 - j 0.2 = 0.8246  -14.030 A

;4.0
IL

L1 
I

6.04.00.1
IL

L2 
I

If generator 1, supplies the load then I1 = IL. The current distribution is shown in Fig a.

Fig a : Generator 1 supplying the total load

;0.1
L

1 
I

I
N a

a ;6.0
L

1 
I

I
N b

b ;01 CN ;4.01 dN .6.01 eN

Similarly the current distribution when only generator 2 supplies the load is shown in Fig
b.

I2 = 0

cba

Load 1 Load 2

0.6 IL0.4 IL

IL

IL 0.6 IL Ic = 0

G1 G2

d e

1

I2

cba

Load 1 Load 2

IeId

I1

Ia Ib

v

Ic

G1 G2

d e

Vref = 1.0 00

2
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Fig b: Generator 2 supplying the total load

Na2 =0; Nb2 = -0.4; Nc2 = 1.0; Nd2 = 0.4; Ne2 = 0.6

From Fig 8.10, V1 = Vref + ZaIa

= 1 00 + (1.2 – j 0.4) (0.02 + j0.08)

= 1.06 4.780 = 1.056 + j 0.088 pu.

V2 = Vref – Ib Zb + Ic Zc

= 1.0  00 – (0.4 – j 0.2) (0.08 + j 0.32) + (0.8 – j 0.1) (0.02 + j 0.08)

= 0.928 – j 0.05 = 0.93  -3.100 pu.

Current Phase angles

1 angle of I1(=Ia) = tan-1 043.18
2.1

4.0







 

2 angle of   01
2 13.7

8.0

1.0
tan 






  

cII

  98.0cos 21 
Power factor angles

92.0cos;21.2343.1878.4 1
00

1  

998.0cos;03.410.313.7 2
000

2  

     22

2222

2
1

2

1

2
1

11
920.006.1

03.06.003.04.008.06.002.00.1

cos





V

RN
B K

KK

= 0.0677 pu

= 0.0677 x 2101354.0
50

1  MW-1

 
   KK

K
K RNN

VV

Cos
B 21

2121

21
12 coscos 





IL

cba

Load 1 Load 2

0.6 IL0.4 IL

Ia = 0
0.4 IL IL

G1 G2

d e
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=       03.06.06.003.04.04.008.06.04.0
92.0998.093.006.1

98.0


= - 0.00389 pu

= - 0.0078 x 10-2 MW-1

 2
2

2

2

2
2

22
cosV

RN
B K

KK


 
   22

2222

998.093.0

03.06.003.04.002.00.108.04.0 


= 0.056pu 210112.0  MW-1



 HYDRO THERMAL SCHEDULING  

OPTIMAL SCHEDULING OF HYDROTHERMAL SYSTEM  

No state or country is endowed with plenty of water sources or abundant coal or nuclear fuel.  In 

states, which have adequate hydro as well as thermal power generation capacities, proper co-
ordination to obtain a most economical operating state is essential.  

Maximum advantage is to use hydro power so that the coal reserves can be conserved and 
environmental pollution can be minimized.  

However in many hydro systems, the generation of power is an adjunct to control of flood water or 

the regular scheduled release of water for irrigation. Recreations centers may have developed along 
the shores of large reservoir so that only small surface water elevation changes are possible.  

The whole or a part of the base load can be supplied by the run-off river hydro plants, and the peak  

or the remaining load is then met by a proper mix of reservoir type hydro plants and thermal plants. 

Determination of this by a proper mix is the determination of the most economical operating state of 

a hydro-thermal system.  

 

The hydro-thermal coordination is classified into long term co-ordination and short term 

coordination. The previous sections have dealt with the problem of optimal scheduling of a power 

system with thermal plants only. Optimal operating policy in this case can be completely determined 

at any instant without reference to operation at other times. This, indeed, is the static optimization 

problem. Operation of a system having both hydro and thermal plants is, however, far more complex 

as hydro plants have negligible operating cost, but are required to operate under constraints of water 

available for hydro generation in a given period of time. The problem thus belongs to the realm of 

dynamic optimization. The problem of minimizing the operating cost of a hydrothermal system can 

be viewed as one of minimizing the fuel cost of thermal plants under the constraint of water 

availability (storage and inflow) for hydro generation over a given period of operation.  
For the sake of simplicity and understanding, the problem formulation and solution technique are 

illustrated through a simplified hydrothermal system of Fig. This system consists of one hydro and 

one thermal plant supplying power to a centralized load and is referred to as a fundamental system. 

Optimization will be carried out with real power generation as control variable, with transmission 

loss accounted for by the loss formula. Mathematical Formulation For a certain period of operation T 

(one year, one month or one day, depending upon the requirement), it is assumed that (i) storage of 

hydro reservoir at the beginning and the end of the period are specified, and (ii) water inflow to 

reservoir (after accounting for irrigation use) and load demand on the system are known as functions  

 



of time with complete certainty (deterministic case). The problem is to determine q(t), the water 

discharge (rate) so as to minimize the cost of thermal generation. 

 

under the following constraints: (i) Meeting the load demand 

 

This is called the power balance equation.  

(ii) Water availability 

 

where J(t) is the water inflow (rate), X'(t) water storage, and X‘(0) , X‘ (T) are specified water 

storages at the beginning and at the end of the optimization interval.  

(iii) The hydro generation PGH(t) is a function of hydro discharge and water storage (or head), i.e. 

 

The problem can be handled conveniently by discretization. The optimization interval T is 

subdivided into M subintervals each of time length ΔT. Over each subinterval it is assumed that all 

the variables remain fixed in value. The problem is now posed as  

 
under the following constraints:  

i)Power balance equation 
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POWER SYSTEM STABILITY

INTRODUCTION:

Power system stability of modern large inter-connected systems is a major

problem for secure operation of the system. Recent major black-outs across the globe

caused by system instability, even in very sophisticated and secure systems, illustrate the

problems facing secure operation of power systems. Earlier, stability was defined as the

ability of a system to return to normal or stable operation after having been subjected to

some form of disturbance. This fundamentally refers to the ability of the system to

remain in synchronism. However, modern power systems operate under complex

interconnections, controls and extremely stressed conditions. Further, with increased

automation and use of electronic equipment, the quality of power has gained utmost

importance, shifting focus on to concepts of voltage stability, frequency stability,

inter-area oscillations etc.

The IEEE/CIGRE Joint Task Force on stability terms and conditions have

proposed the following definition in 2004: “Power System stability is the ability of an

electric power system, for a given initial operating condition, to regain a state of

operating equilibrium after being subjected to a physical disturbance, with most system

variables bounded, so that practically the entire system remains intact”.

The Power System is an extremely non-linear and dynamic system, with operating

parameters continuously varying. Stability is hence, a function of the initial operating

condition and the nature of the disturbance. Power systems are continually subjected to

small disturbances in the form of load changes. The system must be in a position to be

able to adjust to the changing conditions and operate satisfactorily. The system must also

withstand large disturbances, which may even cause structural changes due to isolation of

some faulted elements.

A power system may be stable for a particular (large) disturbance and unstable for

another disturbance. It is impossible to design a system which is stable under all
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disturbances. The power system is generally designed to be stable under those

disturbances which have a high degree of occurrence. The response to a disturbance is

extremely complex and involves practically all the equipment of the power system. For

example, a short circuit leading to a line isolation by circuit breakers will cause variations

in the power flows, network bus voltages and generators rotor speeds. The voltage

variations will actuate the voltage regulators in the system and generator speed variations

will actuate the prime mover governors; voltage and frequency variations will affect the

system loads. In stable systems, practically all generators and loads remain connected,

even though parts of the system may be isolated to preserve bulk operations. On the other

hand, an unstable system condition could lead to cascading outages and a shutdown of a

major portion of the power system.

ROTOR ANGLE STABILITY

Rotor angle stability refers to the ability of the synchronous machines of an

interconnected power system to remain in synchronism after being subjected to a

disturbance. Instability results in some generators accelerating (decelerating) and losing

synchronism with other generators. Rotor angle stability depends on the ability of each

synchronous machine to maintain equilibrium between electromagnetic torque and

mechanical torque. Under steady state, there is equilibrium between the input mechanical

torque and output electromagnetic torque of each generator, and its speed remains a

constant. Under a disturbance, this equilibrium is upset and the generators

accelerate/decelerate according to the mechanics of a rotating body. Rotor angle stability

is further categorized as follows:

Small single (or small disturbance) rotor angle stability

It is the ability of the power system to maintain synchronism under small

disturbances. In this case, the system equation can be linearized around the initial

operating point and the stability depends only on the operating point and not on the

disturbance. Instability may result in

(i) A non oscillatory or a periodic increase of rotor angle

(ii) Increasing amplitude of rotor oscillations due to insufficient damping.
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The first form of instability is largely eliminated by modern fast acting voltage regulators

and the second form of instability is more common. The time frame of small signal

stability is of the order of 10-20 seconds after a disturbance.

Large-signal rotor angle stability or transient stability

This refers to the ability of the power system to maintain synchronism under large

disturbances, such as short circuit, line outages etc. The system response involves large

excursions of the generator rotor angles. Transient stability depends on both the initial

operating point and the disturbance parameters like location, type, magnitude etc.

Instability is normally in the form of a periodic angular separation. The time frame of

interest is 3-5 seconds after disturbance.

The term dynamic stability was earlier used to denote the steady-state stability in

the presence of automatic controls (especially excitation controls) as opposed to manual

controls. Since all generators are equipped with automatic controllers today, dynamic

stability has lost relevance and the Task Force has recommended against its usage.

MECHANICS OF ROTATORY MOTION

Since a synchronous machine is a rotating body, the laws of mechanics of rotating

bodies are applicable to it. In rotation we first define the fundamental quantities. The

angle θm is defined, with respect to a circular arc with its center at the vertex of the angle,

as the ratio of the arc length s to radius r.

θm =
r

s
(1)

The unit is radian. Angular velocity ωm is defined as

ωm =
dt

d m
(2)

and angular acceleration as

2

2

dt

d

dt

d mm 
  (3)
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The torque on a body due to a tangential force  F at a distance r from axis of rotation is

given by

T = r F (4)

The total torque is the summation of infinitesimal forces, given by

T = ∫ r dF (5)

The unit of torque is N-m. When torque is applied to a body, the body experiences

angular acceleration. Each particle experiences a tangential acceleration ra  , where r

is the distance of the particle from axis of rotation. The tangential force required to

accelerate a particle of mass dm is

dF = a dm = r α dm (6)

The torque required for the particle is

dT = r dF = r2 α dm (7)

and that required for the whole body is given by

T = α ∫ r2dm = I α (8)

Here

I = ∫ r2dm (9)

is called the moment of inertia of the body. The unit is Kg – m2. If the torque is assumed

to be the result of a number of tangential forces F, which act at different points of the

body

T = ∑ r F

Now each force acts through a distance

ds = r dθm

The work done is ∑ F . ds

dW = ∑ F r dθm = dθm T

W = ∫ T dθm (10)

and                  T =
md

Wd


(11)

Thus the unit of torque may also be Joule per radian.

The power is defined as rate of doing work. Using (11)
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P = m
m T

dt

dT

td

Wd



 (12)

The angular momentum M is defined as

M = I ωm (13)

and the kinetic energy is given by

KE = 2

2

1
mI  =

2

1
M ωm (14)

From (14) we can see that the unit of M is seen to be J-sec/rad.

SWING EQUATION:

From (8)

I = T

or T
td

dI m 
2

2
(15)

Here T is the net torque of all torques acting on the machine, which includes the shaft

torque (due to prime mover of a generator or load on a motor), torque due to rotational

losses (friction, windage and core loss) and electromagnetic torque.

Let  Tm = shaft torque or mechanical torque corrected for rotational losses

Te = Electromagnetic or electrical torque

For a generator Tm tends to accelerate the rotor in positive direction of rotation and for a

motor retards the rotor.

The accelerating torque for a generator

Ta = Tm  Te (16)

Under steady-state operation of the generator, Tm is equal to Te and the accelerating

torque is zero. There is no acceleration or deceleration of the rotor masses and the

machines run at a constant synchronous speed. In the stability analysis in the following

sections, Tm is assumed to be a constant since the prime movers (steam turbines or hydro

turbines) do no act during the short time period in which rotor dynamics are of interest in

the stability studies.
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Now (15) has to be solved to determine m as a function of time. Since m is

measured with respect to a stationary reference axis on the stator, it is the measure of the

absolute rotor angle and increases continuously with time even at constant synchronous

speed. Since machine acceleration /deceleration is always measured relative to

synchronous speed, the rotor angle is measured with respect to a synchronously rotating

reference axis. Let

mm    tsm (17)

where sm is the synchronous speed in mechanical rad/s and m is the angular

displacement in mechanical radians.

Taking the derivative of (17) we get

dt

d

dt

d mm 
  sm

2

2

2

2

dt

d

dt

d mm 
 (18)

Substituting (18) in (15) we get

2

2

dt

d
I m

= Ta = Tm  Te N-m (19)

Multiplying by m on both sides we get

2

2

dt

d
I m

m


 = m ( Tm  Te ) N-m (20)

From (12) and (13), we can write

WPP
dt

d
M am

m 
2

2
(21)

where M is the angular momentum, also called inertia constant

Pm = shaft power input less rotational losses

Pe = Electrical power output corrected for losses

Pa = acceleration power
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M depends on the angular velocity m , and hence is strictly not a constant, because m

deviates from the synchronous speed during and after a disturbance. However, under

stable conditions m does not vary considerably and M can be treated as a constant. (21)

is called the “Swing equation”. The constant M depends on the rating of the machine and

varies widely with the size and type of the machine. Another constant called H constant

(also referred to as inertia constant) is defined as

H = MVAMJ
MVAinratingMachine

speedsychronousat
joulesmegainenergykineticstored

/ (22)

H falls within a narrow range and typical values are given in Table 9.1.

If the rating of the machine is G MVA, from (22) the stored kinetic energy is GH

Mega Joules. From (14)

GH = msM
2

1
MJ (23)

or

M =
ms

GH


2

MJ-s/mech rad (24)

The swing equation (21) is written as

G

PP

G

P

td

dH emam

ms


2

22 


(25)

In (.25) m is expressed in mechanical radians and ms in mechanical radians per second

(the subscript m indicates mechanical units). If  and  have consistent units then mec

ema
s

PPP
dt

dH


2

22 


pu (26)

Here s is the synchronous speed in electrical rad/s ( mss

p
 







2
) and Pa is

acceleration power in per unit on same base as H. For a system with an electrical

frequency f Hz, (26) becomes

ema PPP
dt

d

f

H


2

2


pu (27)

when  is in electrical radians and
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ema PPP
dt

d

f

H


2

2

180


pu (28)

when  is in electrical degrees.

(27) and (28) also represent the swing equation. It can be seen that the swing equation is a

second order differential equation which can be written as two first order differential

equations:

em
s

PP
dt

dH




2

pu (29)

sdt

d



 (30)

in which s , and  are in electrical units. In deriving the swing equation, damping

has been neglected.

Table 1 : H constants of synchronous machines

Type of machine H (MJ/MVA)

Turbine generator condensing 1800 rpm

3600 rpm

9 – 6

7 – 4

Non condensing 3600 rpm 4 – 3

Water wheel generator

Slow speed < 200 rpm

High speed > 200 rpm

2 – 3

2 – 4

Synchronous condenser

Large

Small 


1.0
1.25 25% less for hydrogen cooled

Synchronous motor with load varying

from 1.0 to 5.0 2.0

In defining the inertia constant H, the MVA base used is the rating of the machine. In a

multi machine system, swing equation has to be solved for each machine, in which case,

a common MVA base for the system has to chosen. The constant H of each machine must

be consistent with the system base.

Let
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Gmach = Machine MVA rating (base)

Gsystem = System MVA base

In (9.25), H is computed on the machine rating
hmac

GG 

Multiplying (9.25) by
system

mach

G

G
on both sides we get























system

mach

mach

emm

mssystem

mach

G

G

G

PP

dt

dH

G

G
2

22 


(31)

em
m

ms

system PP
dt

dH


2

22 


pu (on system base)

where  H system =
system

mach

G

G
H (32)

In the stability analysis of a multi machine system, computation is considerably

reduced if the number of swing equations to be solved is reduced. Machines within a

plant normally swing together after a disturbance. Such machines are called coherent

machines and can be replaced by a single equivalent machine, whose dynamics reflects

the dynamics of the plant.

Example 1:

A 50Hz, 4 pole turbo alternator rated 150 MVA, 11 kV has an inertia constant of

9 MJ / MVA. Find the (a) stored energy at synchronous speed (b) the rotor acceleration if

the input mechanical power is raised to 100 MW when the electrical load is 75 MW, (c)

the speed at the end of 10 cycles if acceleration is assumed constant at the initial value.

Solution:

(a) Stored energy = GH = 150 × 9 = 1350 MJ

(b) Pa = Pm – Pe = 100 – 75 = 25 MW

M = 15.0
50180

1350

180





f

GH
MJ – s /ºe

2515.0
2

2


td

d 
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Acceleration 6.166
15.0

25
2

2


td

d 
 ºe/s2

= 166.6 ×
P

2
ºm/s2

= 166.6 ×
P

2
× rps

360

1
/s

= 166.6 ×
P

2
×

360

1
× 60 rpm/s

= 13.88 rpm/s

* Note  ºe = electrical degree; ºm = mechanical degree; P=number of poles.

(c) 10 cycles = 2.0
50

10
 s

NS = Synchronous speed = 1500
4

50120



rpm

Rotor speed at end of 10 cycles = NS + α × 0.2

= 1500 + 13.88 × 0.2 = 1502.776 rpm

Example 2:

Two 50 Hz generating units operate in parallel within the same plant, with the

following ratings:

Unit 1: 500 MVA, 0.8 pf, 13.2 kV, 3600 rpm: H = 4 MJ/MVA

Unit 2: 1000 MVA, 0.9 pf, 13.8 kV, 1800 rpm: H = 5 MJ/MVA

Calculate the equivalent H constant on a base of 100 MVA.

Solution:

system

mach
machsystem G

G
HH 1

11 

= 20
100

500
4  MJ/MVA

system

mach
machsystem G

G
HH 2

22 

= 50
100

1000
5  MJ/MVA

21 HHH eq  = 20 + 50 = 70 MJ/MVA
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This is the equivalent inertia constant on a base of 100 MVA and can be used

when the two machines swing coherently.

POWER–ANGLE EQUATION:

In solving the swing equation, certain assumptions are normally made

(i) Mechanical power input Pm is a constant during the period of interest,

immediately after the disturbance

(ii) Rotor speed changes are insignificant.

(iii) Effect of voltage regulating loop during the transient is neglected  i.e the

excitation is assumed to be a constant.

As discussed in section 9.4, the power–angle relationship plays a vital role in the

solution of the swing equation.

POWER–ANGLE EQUATION FOR A NON–SALIENT POLE MACHINE:

The simplest model for the synchronous generator is that of a constant voltage

behind an impedance. This model is called the classical model and can be used for

cylindrical rotor (non–salient pole) machines. Practically all high–speed turbo alternators

are of cylindrical rotor construction, where the physical air gap around the periphery of

the rotor is uniform. This type of generator has approximately equal magnetic reluctance,

regardless of the angular position of the rotor, with respect to the armature mmf.

r

The power output of the generator is given by the real part of Eg Ia
* .

da

tg
a jxR

VE
I






0
(38)

Neglecting Ra,
d

tg
a xj

VE
I




0

P =R  



















 





*
9090

d

t

d

g
g x

V

x

E
E



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=
 

d

tg

d

g

x

VE

x

E 

 90cos90cos2

=
d

tg

x

VE sin
(39)

(Note- R stands for real part of)

The maximum power that can be transferred for a particular excitation is given by
d

tg

x

VE

at δ = 90o.

POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE:

Here because of the salient poles, the reluctance of the magnetic circuit in which flows

the flux produced by an armature mmf in line with the quadrature axis is higher than that

of the magnetic circuit in which flows the flux produced by the armature mmf in line with

the direct axis. These two components of armature mmf are proportional to the

corresponding components of armature current. The component of armature current

producing an mmf acting in line with direct axis is called the direct component, Id. The

component of armature current producing an mmf acting in line with the quadrature axis

is called the quadrature axis component, Iq.

Power output cosat IVP 

qqdd IEIE  (40)

sintd VE  (41a)

costq VE  (41b)

  


 sina
d

qg
d I

x

EE
I (41c)

   cosa
q

d
q I

x

E
I (41d)

Substituting (9.41c) and (9.41d) in (9.40), we obtain

 
qd

qdt

d

tg

xx

xxV

x

VE
P

2

2sinsin 2  
 (42)
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(9.42) gives the steady state power angle relationship for a salient pole machine. The

second term does not depend on the excitation and is called the reluctance power

component. This component makes the maximum power greater than in the classical

model. However, the angle at which the maximum power occurs is less than 90o.

TRANSIENT STABILITY:

As defined earlier, transient stability is the ability of the system to remain stable under

large disturbances like short circuits, line outages, generation or load loss etc. The

evaluation of the transient stability is required offline for planning, design etc. and online

for load management, emergency control and security assessment. Transient stability

analysis deals with actual solution of the nonlinear differential equations describing the

dynamics of the machines and their controls and interfacing it with the algebraic

equations describing the interconnections through the transmission network.

Since the disturbance is large, linearized analysis of the swing equation (which

describes the rotor dynamics) is not possible. Further, the fault may cause structural

changes in the network, because of which the power angle curve prior to fault, during the

fault and post fault may be different. Due to these reasons, a general stability criteria for

transient stability cannot be established, as was done in the case of steady state stability

(namely PS > 0). Stability can be established, for a given fault, by actual solution of the

swing equation. The time taken for the fault to be cleared (by the circuit breakers) is

called the clearing time. If the fault is cleared fast enough, the probability of the system

remaining stable after the clearance is more. If the fault persists for a longer time,

likelihood of instability is increased. Critical clearing time is the maximum time

available for clearing the fault, before the system loses stability. Modern circuit breakers

are equipped with auto reclosure facility, wherein the breaker automatically recloses after

two sequential openings. If the fault still persists, the breakers open permanently. Since

most faults are transient, the first reclosure is in general successful. Hence, transient

stability has been greatly enhanced by auto closure breakers.

Some common assumptions made during transient stability studies are as follows:

1. Transmission line and synchronous machine resistances are neglected. Since

resistance introduces a damping term in the swing equation, this gives

pessimistic results.
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2. Effect of damper windings is neglected which again gives pessimistic results.

3. Variations in rotor speed are neglected.

4. Mechanical input to the generator is assumed constant. The governor control

loop is neglected. This also leads to pessimistic results.

5. The generator is modeled as a constant voltage source behind a transient

reactance, neglecting the voltage regulator action.

6. Loads are modeled as constant admittances and absorbed into the bus

admittance matrix.

The above assumptions, vastly simplify the equations. A digital computer program for

transient stability analysis can easily include more detailed generator models and effect of

controls, the discussion of which is beyond the scope of present treatment. Studies on the

transient stability of an SMIB system, can shed light on some important aspects of

stability of larger systems. The figure below shows an example of how the clearing

time has an effect on the swing curve of the machine.
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Modified Euler’s method:

Euler’s method is one of the easiest methods to program for solution of differential

equations using a digital computer . It uses the Taylor’s series expansion, discarding all

second–order and higher–order terms. Modified Euler’s algorithm uses the derivatives at

the beginning of a time step, to predict the values of the dependent variables at the end of

the step (t1 = t0 + Δt). Using the predicted values, the derivatives at the end of the interval

are computed. The average of the two derivatives is used in updating the variables.

Consider two simultaneous differential equations:

),,( tyxf
dt

dx
x

),,( tyxf
dt

dy
y
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Starting from initial values x0, y0, t0 at the beginning of a time step and a step size h we

solve as follows:

Let

Dx = fx(x0,y0,t0) =
0dt

dx

Dy = fy(x0,y0,t0) =
0dt

dy

valuesPredicted
0

0











hDyy

hDxx

y
P

x
P

DxP =
Pdt

dx
= fx(x

P,yP,t1)

DyP =
Pdt

dy
= fy(x

P,yP,t1)

x1 = xo + h
DD xPx 





 

2

y1 = yo + h
DD yPy








 

2

x 1 and y1 are used in the next iteration. To solve the swing equation by Modified Euler’s

method, it is written as two first order differential equations:





dt

d

M

PP

M

P

dt

d ma  sinmax


Starting from an initial value δo, ωo at the beginning of any time step, and choosing a step

size Δt s, the equations to be solved in modified Euler’s are as follows:

0dt

d
= D1 = ωo

0dt

d
= D2 =

M

PPm 0max sin

δP =  δ0 +  D1 Δt

ωP =  ω0 +  D2 Δt
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Pdt

d
= D1P = ωP

Pdt

d
= D2P =

M

PP P
m sinmax

δ1 = δ0 + 





 

2
11 PDD Δt

ω1 = ω0 + 





 

2
22 PDD Δt

δ1 and ω1 are used as initial values for the successive time step. Numerical errors are

introduced because of discarding higher–order terms in Taylor’s expansion. Errors can be

decreased by choosing smaller values of step size. Too small a step size, will increase

computation, which can lead to large errors due to rounding off. The Runge- Kutta

method which uses higher–order terms is more popular.

Example :A 50 Hz, synchronous generator having inertia constant H = 5.2 MJ/MVA and


dx = 0.3 pu is connected to an infinite bus through a double circuit line as shown in

Fig. 9.21. The reactance of the connecting HT transformer is 0.2 pu and reactance of each

line is 0.4 pu. gE = 1.2 pu and V = 1.0 pu and Pe = 0.8 pu. Obtain the swing curve

using modified Eulers method for a  three phase fault occurs at the middle of one of the

transmission lines and is cleared by isolating the faulted line.
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Solution:

Before fault transfer reactance between generator and infinite bus

XI = 0.3 + 0.2 +
2

4.0
= 0.7 pu

Pmax I =
7.0

0.12.1 
=  1.714 pu.

Initial Pe = 0.8 pu = Pm

Initial operating angle δo = sin-1

714.1

8.0
= 27.82o = 0.485 rad.

When fault occurs at middle of one of the transmission lines, the network and its

reduction is as shown in Fig a to Fig c.
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The transfer reactance is 1.9 pu.

Pmax II =
9.1

0.12.1 
= 0.63 pu

Since there is no outage, Pmax III = Pmax I = 1.714

δmax = 
















 

714.1

8.0
sinsin 1

max

1 
III

m

P

P
= 2.656 rad

cos δcr =
 

IIIII

IIIoIIom

PP

PPP

maxmax

maxmaxmaxmax coscos



 

=
     

63.0714.1

656.2cos714.1485.0cos63.0485.0656.28.0




=
084.1

5158.15573.07368.1 
= – 0.3102

δcr = cos-1 (– 0.3102) = 1.886 rad = 108.07o

with line outage

XIII = 0.3 + 0.2 + 0.4 = 0.9 pu

Pmax III =
9.0

0.12.1 
= 1.333 pu

δmax =
333.1

8.0
sin 1 = 2.498 rad
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Modified Eulers method

δo =  27.82o = 0.485 rad

ωo = 0.0 rad / sec ( at t = 00)

Choosing a step size of 0.05 s, the swing is computed. Table a gives the values of the

derivatives and predicted values. Table b gives the initial values δo, ωo and the values at

the end of the interval δ1, ω1. Calculations are illustrated for the time step t = 0.2 s.

δo =  0.761

ωo = 2.072

Pm = 0.8

M = 







 50

2.5
= 0.0331 s2 / rad

Pmax (after fault clearance) = 1.333 pu

D1 = 2.072

D2 =
0331.0

)761.0(sin333.18.0 
= – 3.604

δP = 0.761 + ( 2.072  0.05) = 0.865

ωP = 2.072 + (– 3.604  0.05) = 1.892

D1P = 1.892

D2P =
0331.0

)865.0(sin333.18.0 
= – 6.482

δ1 = 0.761 + 05.0
2

892.1072.2






 

= 0.860

ω1 = 2.072 + 05.0
2

482.6604.3






 

= 1.82

δ1, ω1 are used as initial values in next time step.

Table a : Calculation of derivatives in modified Euler’s method
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t D1 D2 δP ωP D1P D2P

0+ 0.0 15.296 0.485 0.765 0.765 15.296

0.05 0.765 14.977 0.542 1.514 1.514 14.350

0.10 1.498 14.043 0.636 2.200 2.200 12.860

0.15 2.17 - 0.299 0.761 2.155 2.155 - 3.600

0.20 2.072 - 3.604 0.865 1.892 1.892 - 6.482

0.25 1.820 - 6.350 0.951 1.502 1.502 - 8.612

0.30 1.446 - 8.424 1.015 1.025 1.025 - 10.041

0.35 0.984 - 9.827 1.054 0.493 0.493 - 10.843

0.40 0.467 - 10.602 1.065 - 0.063 - 0.063 - 11.060

0.45 - 0.074 - 10.803 1.048 - 0.614 - 0.614 - 10.720

0.50 - 0.612 - 10.46 1.004 - 1.135 - 1.135 - 9.800

Table b : calculations of δo, ωo and δ1, ω1 in modified Euler’s method

T Pmax
(pu) δo

rad

ωo

rad / sec

δ1

rad

ω1

rad / sec

δ1

deg

0- 1.714 0.485 0.0 – – -

0+ 0.630 0.485 0.0 0.504 0.765 28.87

0.05 0.630 0.504 0.765 0.561 1.498 32.14

0.10 0.630 0.561 1.498 0.653 2.170 37.41

0.15 1.333 0.653 2.170 0.761 2.072 43.60

0.20 1.333 0.761 2.072 0.860 1.820 49.27

0.25 1.333 0.860 1.820 0.943 1.446 54.03

0.30 1.333 0.943 1.446 1.005 0.984 57.58

0.35 1.333 1.005 0.984 1.042 0.467 59.70

0.40 1.333 1.042 0.467 1.052 - 0.074 60.27

0.45 1.333 1.052 - 0.074 1.035 - 0.612 59.30

0.50 1.333 1.035 - 0.612 0.991 - 1.118 56.78
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Runge - Kutta method
In Range - Kutta method, the changes in dependent variables are calculated from

a given set of formulae, derived by using an approximation, to replace a truncated

Taylor’s series expansion. The formulae for the Runge - Kutta fourth order

approximation, for solution of two simultaneous differential equations are given below;

Given
dt

dx
= fx (x, y, t)

dt

dy
= fy (x, y, t)

Starting from initial values x0, y0, t0 and step size h, the updated values are

x1 = x0 +
6

1
(k1 + 2k2 + 2k3 + k4)

y1 = y0 +
6

1
(l1 + 2l2 + 2l3 + l4)

where k1 = fx (x0, y0 ,t0) h

k2 = fx 





 

2
,

2
,

2 0
1

0
1

0

h
t

l
y

k
x h

k3 = fx 





 

2
,

2
,

2 0
2

0
2

0

h
t

l
y

k
x h

k4 = fx (x0 + k3, y0 + l3, t0 + h) h

l1 = fy (x0, y0, t0) h

l2 = fy 





 

2
,

2
,

2 0
1

0
1

0

h
t

l
y

k
x h

l3 = fy 





 

2
,

2
,

2 0
2

0
2

0

h
t

l
y

k
x h

l4 = fy (x0 + k3, y0 + l3, t0 + h) h

The two first order differential equations to be solved to obtain solution for the swing

equation are:

dt

d = ω



23

M

PP

M

P

dt

d ma  sinmax


Starting from initial value δ0, ω0, t0 and a step size of Δt the formulae are as follows

k1 = ω0 Δt

l1 = 



 

M

PPm 0max sin
Δt

k2 = 





 

2
1

0

l
 Δt

l2 =
























 

M

k
PPm 2

sin 1
0max 

Δt

k3 = 





 

2
2

0

l
 Δt

l3 =
























 

M

k
PPm 2

sin 2
0max 

Δt

k4 = (ω0 + l3) Δt

l4 =
 





 

M

kPPm 30max sin  Δt

δ1 = δ0 +
6

1
[k1 + 2k2 + 2k3 + k4]

ω1 = ω0 +
6

1
[l1 + 2l2 + 2l3 + l4]

Example

Obtain the swing curve for previous example using Runge - Kutta method.

Solution:

δ0 = 27.820 = 0.485 rad.

ω0 = 0.0 rad / sec. ( at t = 0-)
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Choosing a step size of 0.05 s, the coefficient k1, k2, k3, k4 and l1, l2, l3, and l4 are

calculated for each time step. The values of δ and ω are then updated. Table a gives the

coefficient for different time steps. Table b gives the starting values δ0, ω0 for a time step

and the updated values δ1, ω1 obtained by Runge - Kutta method. The updated values are

used as initial values for the next time step and process continued. Calculations are

illustrated for the time step t = 0.2 s.

δ0 = 0.756

M = 0.0331 s2 / rad

ω0 = 2.067

Pm = 0.8

Pmax = 1.333 (after fault is cleared)

k1 = 2.067 × 0.05 = 0.103

l1 = 05.0
0331.0

)756.0(sin333.18.0




 

= – 0.173

k2 = 



 

2

173.0
067.2 0.05 = 0.099

l2 = 05.0
0331.0

2

103.0
756.0sin333.18.0


























 

= – 0. 246

k3 = 



 

2

246.0
067.2 0.05 = 0.097

l3 = 05.0
0331.0

2

099.0
756.0sin333.18.0


























 

= – 0. 244

k4 =  (2.067 – 0.244) 0.05 = 0.091

l4 =
 

05.0
0331.0

097.0756.0sin333.18.0




 

= – 0. 308

δ1 =  0.756 +
6

1
[0.103 + 2 × 0.099 + 2 × 0.097 + 0.091] = 0.854
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ω1 = 2.067 +
6

1
[– 0.173 + 2 × – 0. 246 + 2 × – 0. 244 – 0. 308] = 1.823

Now δ = 0.854 and ω = 1.823 are used as initial values for the next time step. The

computations have been rounded off to three digits. Greater accuracy is obtained by

reducing the step size.

Table a : Coefficients in Runge - Kutta method

T k1 l1 k2 l2 k3 l3 K4 l4

0.0 0.0 0.764 0.019 0.764 0.019 0.757 0.038 0.749

0.05 0.031 0.749 0.056 0.736 0.056 0.736 0.075 0.703

0.10 0.075 0.704 0.092 0.674 0.091 0.667 0.108 0.632

0.15 0.108 – 0.010 0.108 – 0.094 0.106 – 0.095 0.103 – 0.173

0.20 0.103 – 0.173 0.099 – 0.246 0.097 – 0.244 0.091 – 0.308

8.25 0.091 – 0.309 0.083 – 0.368 0.082 – 0.363 0.073 – 0.413

0.30 0.073 – 0.413 0.063 – 0.455 0.061 – 0.450 0.050 – 0.480

0.35 0.050 – 0.483 0.038 – 0.510 0.037 – 0.504 0.025 – 0.523

0.40 0.025 – 0.523 0.012 – 0.536 0.011 – 0.529 – 0.001 – 0.534

0.45 – 0. 001 – 0.534 – 0.015 – 0.533 – 0.015 – 0.526 – 0.027 – 0.519

0.50 – 0.028 – 0.519 – 0.040 – 0.504 – 0.040 – 0.498 – 0.053 – 0.476

Table b: δ, ω computations by Runge - Kutta method

t

(sec)

Pmax

(pu)

δ0

(rad)

ω0

rad/sec

δ1

rad

ω1

rad/sec

δ1

deg

0- 1.714 0.485 0.0

0+ 0.630 0.485 0.0 0.504 0.759 28.87

0.05 0.630 0.504 0.756 0.559 1.492 32.03

0.10 0.630 0.559 1.492 0.650 2.161 37.24

0.15 1.333 0.650 2.161 0.756 2.067 43.32

0.20 1.333 0.756 2.067 0.854 1.823 48.93
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0.25 1.333 0.854 1.823 0.936 1.459 53.63

0.30 1.333 0.936 1.459 0.998 1.008 57.18

0.35 1.333 0.998 1.008 1.035 0.502 59.30

0.40 1.333 1.035 0.502 1.046 – 0.029 59.93

0.45 1.333 1.046 – 0.029 1.031 – 0.557 59.07

0.50 1.333 1.031 – 0.557 0.990 – 1.057 56.72

Note: δ0, ω0 indicate values at beginning of interval and δ1, ω1 at end of interval. The

fault is cleared at 0.125 seconds.  Pmax = 0.63 at t = 0.1 sec and Pmax = 1.333 at t = 0.15

sec, since fault is already cleared at that time. The swing curves obtained from modified

Euler’s method and Runge - Kutta method are shown in Fig. It can be seen that the two

methods yield very close results.

Fig: : Swing curves with Modified Euler’ and Runge-Kutta methods
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Milne’s Predictor Corrector method:

The Milne’s formulae for solving two simultaneous differential equations are

given below.

Consider
dt

dx
= fx (x, y, t)

dt

dy
= fy (x, y, t)

With values of x and y known for four consecutive previous times, the predicted value for

n + 1th time step is given by

 nnnn
P
n xxx

h
xx   22

3

4
1231

 nnnn
P
n yyy

h
yy   22

3

4
1231

Where x and y are derivatives at the corresponding time step. The corrected values are

xn+1 =  111 4
3   nnnn xxx
h

x

yn+1 =  111 4
3   nnnn yyy
h

y

where  1111 ,,   n
P
n

P
nxn tyxfx

 1111 ,,   n
P
n

P
nyn tyxfy

To start the computations we need four initial values which may be obtained by

modified Euler’s method, Runge - Kutta method or any other numerical method which is

self starting, before applying Milne’s method. The method is applied to the solution of

swing equation as follows:

Define
n

n dt

d
  n

n
n dt

d
 

M

PP nm sinmax


 nnnn
P
n

t
 


  22

3

4
1231
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 nnnn
P
n

t
 


  22

3

4
1231

δn+1 = δn-1 +  11 4
3  


nnn

t


ωn+1 = ωn-1 +  11 4
3  


nnn

t


where P
nn 11   

M

PP P
nm

n
1max

1

sin 








Example

Solve example using Milne’s method.

Solution:

To start the process, we take the first four computations from Range Kutta method

t = 0.0 s δ1 = 0.504 ω1 = 0.759

t = 0.05 s δ2 = 0.559 ω2 = 1.492

t = 0.10 s δ3 = 0.650 ω3 = 2.161

t = 0.15 s δ4 = 0.756 ω4 = 2.067

The corresponding derivatives are calculated using the formulae for n  and n . We get

1  = 0.759 1 = 14.97

2  = 1.492 2 = 14.075

3  = 2.161 3 = 12.65

4  =2.067 4 = – 3.46

We now compute δ5 and ω5, at the next time step i.e  t = 0.2 s.

 43215 22
3

4
 




tP

= 0.504 +  067.22161.2492.12
3

05.04



= 0.834

P
5  4321 22

3

4
 




t
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= 0.759 +  )46.3(265.12075.142
3

05.04



= 1.331

5  = 1.331

0331.0

)834.0(sin333.18.0
5


 = – 5.657

δ5 = δ3 +  543 4
3

 
 t

= 0.65 +  331.1067.24161.2
3

05.0
 = 0.846

ω5 = ω3 +  543 4
3

 
 t

= 2.161 +  657.546.3465.12
3

05.0
 = 2.047

5  = ω5 = 2.047

0331.0

)846.0(sin333.18.0
5


 = – 5.98

The computations are continued for the next time step in a similar manner.

MULTI MACHINE TRANSIENT STABILITY ANALYSIS

A typical modern power system consists of a few thousands of nodes with heavy

interconnections. Computation simplification and memory reduction have been two

major issues in the development of mathematical models and algorithms for digital

computation of transient stability. In its simplest form, the problem of a multi machine

power system under going a disturbance can be mathematically stated as follows:

  0))((  ttxftx I

  ceII tttxftx  0))((

   tttxftx ceIII ))((

 tx is the vector of state variables to describe the differential equations

governing the generator rotor dynamics, dynamics of flux decay and associated generator
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controller dynamics (like excitation control, PSS, governor control etc). The function fI

describes the dynamics prior to the fault. Since the system is assumed to be in steady

state, all the state variable are constant. If the fault occurs at t = 0, fII describes the

dynamics during fault, till the fault is cleared at time tcl. The post–fault dynamics is

governed by fIII. The state of the system xcl at the end of the fault-on period (at t = tcl)

provides the initial condition for the post–fault network described which determines

whether a system is stable or not after the fault is cleared. Some methods are presented in

the following sections to evaluate multi machine transient stability. However, a detailed

exposition is beyond the scope of the present book.

REDUCED ORDER MODEL

This is the simplest model used in stability analysis and requires minimum data.

The following assumptions are made:

 Mechanical power input to each synchronous machine is assumed to be

constant.

 Damping is neglected.

 Synchronous machines are modeled as constant voltage sources behind

transient reactance.

 Loads are represented as constant impedances.

With these assumptions, the multi machine system is represented as in Fig. 9.26.
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Fig 9.26 Multi machine system

Nodes 1, 2 …… n are introduced in the model and are called internal nodes (the

terminal node is the external node connected to the transmission network). The swing

equations are formed for the various generators using the following steps:

Step 1: All system data is converted to a common base.

Step 2: A prefault load flow is performed, to determine the prefault steady state voltages,

at all the external buses. Using the prefault voltages, the loads are converted into

equivalent shunt admittance, connected between the respective bus and the reference

node. If the complex load at bus i is given by

LiLii QPS 

the equivalent  admittance is given by

YLi =
22

*

Li

LiLi

Li

iL

V

jQP

V

S 


Step 3: The internal voltages are calculated from the terminal voltages, using
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iidiii IxjVE 

=
i

iG
dii V

S
xjV

*



=
 

i

iGiG
idi V

QjP
xjV


 '

i  is the angle of Ei with respect to Vi. If the angle of Vi is βi, then the angle of

Ei, with respect to common reference is given by iii   . PGi and QGi are obtained

from load flow solution.

Step4: The bus admittance matrix Ybus formed to run the load flow is modified to include

the following.

(i)    The equivalent shunt load admittance given by, connected between the

respective load bus and the reference node.

(ii)   Additional nodes are introduced to represent the generator internal nodes.

Appropriate values of admittances corresponding to dx , connected between

the internal nodes and terminal nodes are used to update the Ybus.

(iii) Ybus corresponding to the faulted network is formed. Generally transient

stability analysis is performed, considering  three phase faults, since they are

the most severe. The Ybus during the fault is obtained by setting the elements

of the row and column corresponding to the faulted bus to zero.

(iv)  Ybus corresponding to the post–fault network is obtained, taking into account

line outages if any. If the structure of the network does not change, the Ybus

of the post-fault network is same as the prefault network.

Step 5: The admittance form of the network equations is

I = Ybus V

Since loads are all converted into passive admittances, current injections are present only

at the n generator internal nodes. The injections at all other nodes are zero. Therefore, the

current vector I can be partitioned as

I = 





0
nI
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where In is the vector of current injections corresponding to the n generator internal

nodes. Ybus and V are also partitioned appropriately, so that























t

nn

V

E

Y

Y

Y

YI

4

2

3

1

0

where En is the vector of internal emfs of the generators and Vt is the vector of external

bus voltages. From (9.91) we can write

In = Y1 En + Y2 Vt

0 = Y3 En + Y4 Vt

we get

Vt = nEYY 3
1

4


In =  3
1

421 YYYY  En =


Y En

where 3
1

421 YYYYY 


 is called the reduced admittance matrix and has dimension

nn .


Y gives the relationship between the injected currents and the internal generator

voltages. It is to be noted we have eliminated all nodes except the n internal nodes.

Step 6: The electric power output of the generators are given by

PGi =R [Ei
*
iI .]

Substituting for Ii from (9.94) we get

PGi =  )(cosˆ)(sinˆˆ
1

2

jijijijiji

n

ij
iii GBEEGE  



(This equation is derived in chapter on load flows)

Step 7: The rotor dynamics representing the swing is now given by

2

2

dt

d
M i

i


= PMi - PGi i = 1………..n

The mechanical power PMi is equal to the pre-fault electrical power output, obtained from

pre-fault load flow solution.

Step 8: The n second order differential equations can be decomposed into 2n first order

differential equations which can be solved by any numerical method .
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Though reduced order models, also called classical models, require less

computation and memory, their results are not reliable. Further, the interconnections of

the physical network of the system is lost.

FACTORS AFFECTING TRANSIENT STABILITY:

The relative swing of a machine and the critical clearing time are a measure of the

stability of a generating unit. From the swing equation, it is obvious that the generating

units with smaller H, have larger angular swings at any time interval. The maximum

power transfer Pmax =
d

g

x

VE


, where V is the terminal voltage of the generators. Therefore

an increase in dx , would reduce Pmax. Hence, to transfer a given power Pe, the angle δ

would increase since Pe = Pmax sin δ, for a machine with larger dx . This would reduce the

critical clearing time, thus, increasing the probability of losing stability.

Generating units of present day have lower values of H, due to advanced cooling

techniques, which have made it possible to increase the rating of the machines without

significant increase in the size. Modern control schemes like generator excitation control,

Turbine valve control, single-pole operation of circuit breakers and fast-acting circuit

breakers with auto re-closure facility have helped in enhancing overall system stability.

Factors which can improve transient stability are

(i) Reduction of transfer reactance by using parallel lines.

(ii) Reducing transmission line reactance by reducing conductor spacing and

increasing conductor diameter, by using hollow cores.

(iii) Use of bundled conductors.

(iv) Series compensation of the transmission lines with series capacitors. This

also increases the steady state stability limit. However it can lead to problem

of sub-synchronous resonance.

(v) Since most faults are transient, fast acting circuit breakers with rapid

re-closure facility can aid stability.

(vi) The most common type of fault being the single-line-to-ground fault,

selective single pole opening and re-closing can improve stability.

(vii) Use of braking resistors at generator buses. During a fault, there is a sudden

decrease in electric power output of generator. A large resistor, connected at
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the generator bus, would partially compensate for the load loss and help in

decreasing the acceleration of the generator. The braking resistors are

switched during a fault through circuit breakers and remain for a few cycles

after fault is cleared till system voltage is restored.

(viii) Short circuit current limiters, which can be used to increase transfer

impedance during fault, there by reducing short circuit currents.

(ix) A recent method is fast valving of the turbine where in the mechanical

power is lowered quickly during the fault, and restored once fault is cleared.


