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Professor of E&E Engg.,

Malnad College of Engineering, Hassan

Subject: COMPUTER TECHNIQUES IN POWER SYSTEMS
Code: EE72 No. of Hrs.: 33

SUBJECT EXPERTS:

Dr. M S Raviprakasha, Professor of E& EE, MCE, Hassan
Dr. K Umarao, Prof. & HOD of E&EE, RNSIT, Bangalore

LECTURE SCHEDULE:

Dr. M.S. Raviprakasha: Chapters# 1, 3 (Introduction, Linear
graph theory, Zgys Building, Load flow analysis (15 Hrs.): (Plus
2 concluding Sessions)

Dr. K Umarao: Chapter # 2,4,5 (Load frequency control,
economic operation of power systems, transient stability
studies) (15 Hrs.) : (Plus 1 concluding Session)

PROGRAMME SCHEDULE:

17 Hrs. of Classes by Dr. MS Raviprakasha, MCE, Hassan

16 Hrs. of Classesby Dr. K Umarao, RNSIT, Bangalore

3 Classes per week: Wednesday, Thursday and Friday (All
classes at 11am -12 noon)

3 concluding sessions to discuss on solutions to the recent
question papers of VTU, VIIEEE class on the selected subject
of CTPS (EE72).
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CHAPTER-1-A

INCIDENCE AND NETWORK MATRICES

[CONTENTS: Definitions of important terms, Incidence matrices. Element node
incidence matrix and Bus incidence matrix, Primitive networks and matrices,
Performance of primitive networks, Frames of reference, Singular
transformation analysis, Formation of bus admittance matrix, examples]

INTRODUCTION

The solution of a given linear network problem requires the formation of a set of
equations describing the response of the network. The mathematical model so
derived, must describe the characteristics of the individual network components, as
well as the relationship which governs the interconnection of the individual
components. In the bus frame of reference the variables are the node voltages and

node currents.

The independent variables in any reference frame can be either currents or voltages.
Correspondingly, the coefficient matrix relating the dependent variables and the
independent variables will be either an impedance or admittance matrix. The
formulation of the appropriate relationships between the independent and dependent
variables is an integral part of a digital computer program for the solution of power
system problems. The formulation of the network equations in different frames of
reference requires the knowledge of graph theory. Elementary graph theory concepts
are presented here, followed by development of network equations in the bus frame of

reference.

ELEMENTARY LINEAR GRAPH THEORY: IMPORTANT TERMS

The geometrical interconnection of the various branches of a network is called the
topology of the network. The connection of the network topology, shown by replacing
all its elements by lines is called a graph. A linear graph consists of a set of objects
called nodes and another set called elements such that each element is identified with
an ordered pair of nodes. An element is defined as any line segment of the graph

irrespective of the characteristics of the components involved. A graph in which a



direction is assigned to each element is called an oriented graph or a directed graph.
It is to be noted that the directions of currents in various elements are arbitrarily
assigned and the network equations are derived, consistent with the assigned
directions. Elements are indicated by numbers and the nodes by encircled numbers.
The ground node is taken as the reference node. In electric networks the convention
is to use associated directions for the voltage drops. This means the voltage drop in a
branch is taken to be in the direction of the current through the branch. Hence, we

need not mark the voltage polarities in the oriented graph.

Connected Graph : Thisisagraph where at least one path (disregarding orientation)
exists between any two nodes of the graph. A representative power system and its
oriented graph are as shown in Fig 1, with:

e = number of elements =6 | = number of links=e-b=3
n = number of nodes =4 Tree=T(1,2,3) and
b = number of branches=n-1=3 Co-tree=T(4,5,6)

Sub-graph : sG isasub-graph of G if the following conditions are satisfied:

sGisitself agraph

Every node of sG isaso anode of G

Every branch of sGis abranch of G
For eg., sG(1,2,3), sG(1,4,6), sG(2), sG(4,5,6), sG(3,4),.. are al valid sub-graphs of
the oriented graph of Fig.1c.

Loop : A sub-graph L of agraph G is aloop if
L isaconnected sub-graph of G
Precisely two and not more/less than two branches are incident on each node
inL
In Fig 1c, the set{ 1,2,4} forms aloop, while the set{ 1,2,3,4,5} is not avalid, although
the set(1,3,4,5) is a valid loop. The KVL (Kirchhoff’s Voltage Law) for the loop is
stated as follows. In any lumped network, the algebraic sum of the branch voltages

around any of the loops is zero.



.,

¢
'
4y

Fig la. Singleline diagram of a power system

Fig 1c. Oriented Graph
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Cutset : It is a set of branches of a connected graph G which satisfies the following
conditions:
The removal of al branches of the cutset causes the remaining graph to have
two separate unconnected sub-graphs.
The removal of all but one of the branches of the set, leaves the remaining

graph connected.

Referring to Fig 1c, the set { 3,5,6} constitutes a cutset since removal of them isolates
node 3 from rest of the network, thus dividing the graph into two unconnected sub-
graphs. However, the set(2,4,6) is not a valid cutset! The KCL (Kirchhoff’s Current
Law) for the cutset is stated as follows: In any lumped network, the algebraic sum of

all the branch currents traversing through the given cutset branchesis zero.

Tree: It isaconnected sub-graph containing all the nodes of the graph G, but without
any closed paths (loops). There is one and only one path between every pair of nodes
in a tree. The elements of the tree are called twigs or branches. In a graph with n
nodes,

Thenumber of branches: b =n-1 Q)
For the graph of Fig 1c, some of the possible trees could be T(1,2,3), T(1,4,6),
T(2,4,5), T(2,5,6), etc.

Co-Tree : The set of branches of the original graph G, not included in the tree is
called the co-tree. The co-tree could be connected or non-connected, closed or open.
The branches of the co-tree are called links. By convention, the tree elements are
shown as solid lines while the co-tree elements are shown by dotted lines as shown in
Fig.1cfor tree T(1,2,3). With e asthe total number of elements,

Thenumber of links; | =e-b=e-n+1 2
For the graph of Fig 1c, the co-tree graphs corresponding to the various tree graphs
are as shown in the table below:
Tree T(1,23) | T(1,46) | T(245) [ T(25.6)
Co-Tree | T(456) | T(2,35) | T(1,36) | T(1,3,4)

11



Basic loops: When alink is added to a tree it forms a closed path or aloop. Addition
of each subsequent link forms the corresponding loop. A loop containing only one
link and remaining branches is called a basic loop or a fundamental loop. These loops
are defined for a particular tree. Since each link is associated with a basic loop, the
number of basic loopsis equal to the number of links.

Basic cut-sets: Cut-sets which contain only one branch and remaining links are called
basic cutsets or fundamental cut-sets. The basic cut-sets are defined for a particular
tree. Since each branch is associated with a basic cut-set, the number of basic cut-sets

isequal to the number of branches.

Examples on Basicsof L G Theory:

Example-1: Obtain the oriented graph for the system shown in Fig. E1. Select any

four possibletrees. For a selected tree show the basic loops and basic cut-sets.

Fig. E1b. Oriented Graph of Fig. Ela.

12



For the system given, the oriented graph is as shown in figure E1b. some of the valid
Tree graphs could be T(1,2,3,4), T(3,4,8,9), T(1,2,5,6), T(4,5,6,7), etc. The basic cut-
sets (A,B,C,D) and basic loops (E,F,G,H,l) corresponding to the oriented graph of
Fig.Elaand tree, T(1,2,3,4) areasshown in Figure Elc and Fig.E1d respectively.

Fig. Elc. Basic Cutsetsof Fig. Ela.

Fig. E1d. Basic Loopsof Fig. Ela.

13



INCIDENCE MATRICES

~

Element-nodeincidence matrix: A

The incidence of branches to nodes in a connected graph is given by the element-node

incidence matrix, A. An element a; of A is defined as under:
a; = 1if the branch-i isincident to and oriented away from the node-j.
=-1if thebranch-i isincident to and oriented towards the node-j.

= 0if the branch-i isnot at all incident on the node-j.

Thus the dimension of A is € n, where e is the number of elements and n is the
number of nodes in the network. For example, consider again the sample system with
its oriented graph as in fig. 1c. the corresponding element-node incidence matrix, is

obtained as under:

Nodes
Elements 0 ! 2 3

1 1 -1
2 1 -1

A = 3 1 -1
4 1 -1
5 1 -1
6 1 -1

It isto be noted that the first column and first row are not part of the actual matrix and
they only indicate the element number node number respectively as shown. Further,

the sum of every row is found to be equal to zero always. Hence, the rank of the

matrix islessthan n. Thusin general, the matrix A satisfiesthe identity:

n

> a=0 " i=12,...e 3
j=1

14



Busincidence matrix: A

By selecting any one of the nodes of the connected graph as the reference node, the

corresponding column is deleted from A to obtain the bus incidence matrix, A. The
dimensions of A are e (n-1) and the rank is n-1. In the above example, selecting
node-0 as reference node, the matrix A is obtained by deleting the column

corresponding to node-0, as under:

Buses
Elements ! 2 3
1 -1
2 -1 A, | Branches
A= 3 -1 =
4 1 -1
5 1 -1 A Links
6 1 -1

It may be observed that for a selected tree, say, T(1,2,3), the bus incidence matrix can
be so arranged that the branch elements occupy the top portion of the A-matrix
followed by the link elements. Then, the matrix-A can be partitioned into two sub

matrices Ap and A, as shown, where,

(i) Apisof dimension (bxb) corresponding to the branches and

(i) A, is of dimension (Ixb) corresponding to links.

A is arectangular matrix, hence it is singular. Ay is a non-singular square matrix of
dimension-b. Since A gives the incidence of various elements on the nodes with their
direction of incidence, the KCL for the nodes can be written as

AT =0 4
where AT is the transpose of matrix A and i isthe vector of branch currents. Similarly

for the branch voltages we can write,

V=AE, )

15



Examples on Bus I ncidence Matrix:

Example-2: For the sample network-oriented graph shown in Fig. E2, by selecting a
tree, T(1,2,3,4), obtain the incidence matrices A and A. Also show the partitioned

form of the matrix-A.

Fig. E2. Sample Network-Oriented Graph

nodes
ée\n 0 1 2 3 490
€1 1 -1 0 o ol
e u
€2 1 0 -1 0 o0u
€3 1.0 0 0 13
A = Elements € J
€4 0 0 0 -1 140
e u
a5 0 0 1 -1 0y
€6 0 1 -1 0 ou
e u
87 0 0 1 0 -14
buses
ée\b 1 2 3 4y
é a
il -1 0 0 oy
é2 0 -1 0 0
e u
23 0 0 0 -1
A = Elements € 1“
8 4 0 0 -1 140
e u
@5 0O 1 -1 Og
€6 1 -1 0 ou
e u
87 0 1 0 -1§
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Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub-
matrices as under:

buses
\b 1 2 3 4y
é a
él -1 0 O Oa
Ap=branches€ 2 0 -1 0 O0U
é a
(:33 O 0 O -1@
€4 0 0 -1 1§
buses
d\b 1 2 3 4y
é a
=5 1 -1 p
A =links€ 0 Ol;'
€6 1 -1 0 00
€7 0 1 0 -1

Example-3: For the sample-system shown in Fig. E3, obtain an oriented graph. By

selecting a tree, T(1,2,3,4), obtain the incidence matrices A andA. Also show the

partitioned form of the matrix-A.

X

Consider the oriented graph of the given system as shown in figure E3b, below.

Fig. E3a. Sample Example network
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Fig. E3b. Oriented Graph of system of Fig-E3a.

Corresponding to the oriented graph above and a Tree, T(1,2,3,4), the incidence
matrices [] and A can be obtained asfollows:
en{0| 12|34 eb|1]2[3]4
1 (1]-1 1 -1
2 |1 -1 2 -1
A=| 3|1 -1 A= 3 -1
4 |1 -1 4 -1
5 1]-1 5 1]-1
6 1)1 6 111
7 1)-1 711]-1
8 -1 1 8 -1 1
9 -1 1 9 |-1 1
Corresponding to the Tree, T(1,2,3,4), matrix-A can be partitioned into two sub-
matrices as under:
eb|1/2|3]|4 eb| 1|2 3|4
1 (-1 5 1/-1
Ap=| 2 -1 A=|6 1)1
3 -1 7 |1)-1
4 -1 8 -1 1
9 |-1 1
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PRIMITIVE NETWORKS

So far, the matrices of the interconnected network have been defined. These matrices
contain complete information about the network connectivity, the orientation of
current, the loops and cutsets. However, these matrices contain no information on the
nature of the elements which form the interconnected network. The complete
behaviour of the network can be obtained from the knowledge of the behaviour of the
individual elements which make the network, along with the incidence matrices. An
element in an electrica network is completely characterized by the relationship

between the current through the element and the voltage across it.

General representation of a network element: In general, a network element may
contain active or passive components. Figure 2 represents the alternative impedance

and admittance forms of representation of a general network component.

Ec p 4 Ep p
ipgY

(ipg*ipg)Y

Jnd
Zpq

R 4

Inq Inq
Eq ¢ M Eq ¢

Fig.2 Representation of a primitive network element

(a) Impedanceform (b) Admittance form
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The network performance can be represented by using either the impedance or the
admittance form of representation. With respect to the element, p-q, let,

Vpq = Voltage across the element p-q,

€y = Source voltage in series with the element p-q,

ipg= current through the element p-q,

Jpq= source current in shunt with the element p-q,

Z,— self impedance of the element p-q and

Ypq= Self admittance of the element p-q.

Performance equation: Each element p-q has two variables, vpq and ipq. The

performance of the given element p-g can be expressed by the performance equations

as under:
Vpg + €g = Zpgipg (in itsimpedance form)
iog + Jpg = YpqVpg (in its admittance form) (6)

Thus the parallel source current jpq in admittance form can be related to the series

source voltage, epq in impedance form as per the identity:

Jpg =" Ypq€nq (7)

A set of non-connected elements of a given system is defined as a primitive Network
and an element in it is a fundamental element that is not connected to any other
element. In the equations above, if the variables and parameters are replaced by the
corresponding vectors and matrices, referring to the complete set of elements present
in a given system, then, we get the performance equations of the primitive network in
the form as under:

v+e=[Zi

i+ =[ylv ©)

Primitive networ k matrices:

A diagonal element in the matrices, [z] or [y] is the self impedance zpq.pq Or Self
admittance, Ypq.pq- AN off-diagonal element is the mutual impedance, zpq.s Or mutual
admittance, yoqs, the value present as a mutual coupling between the elements p-q

and r-s. The primitive network admittance matrix, [y] can be obtained aso by

20



inverting the primitive impedance matrix, [z]. Further, if there are no mutually
coupled elements in the given system, then both the matrices, [z] and [y] are diagonal.
In such cases, the self impedances are just equal to the reciprocal of the corresponding

values of salf admittances, and vice-versa.

Examples on Primitive Networks:

Example-4: Given that the self impedances of the elements of a network referred by
the bus incidence matrix given below are equal to: Z;=2,=0.2, Z5=0.25, Z,=Zs=0.1
and Zg=0.4 units, draw the corresponding oriented graph, and find the primitive
network matrices. Neglect mutual values between the elements.

-1 0
0 -1

A= O 0 -1
1 -1 0
0 -1
1 0 -1

Solution:

The element node incidence matrix, A can be obtained from the given A matrix, by

pre-augmenting to it an extra column corresponding to the reference node, as under.

1] -1 0
1 0 | -1

A=| 1 0 0 | -1
0 1 | 1] 0
0| o -1
0 1 0 | -1
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Based on the conventional definitions of the elements of A, the oriented graph can be

formed as under:

Fig. E4 Oriented Graph

Thus the primitive network matrices are square, symmetric and diagonal matrices of

order e=no. of elements = 6. They are obtained asfollows.

0.2 0 0 0
0 0.2 0 0
[zZ1=| O 0 0.25 0 0
0 0 0.1 0 0
0 0 0.1 0
0 0 0 04
And
5.0 0 0 0
0 5.0 0 0
[y]=| O 0 4.0 0 0
0 0 10 0 0
0 0 10 0
0 0 0 25
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Example-5: Consider three passive elements whose data is given in Table E5 below.

Form the primitive network impedance matrix.

Table E5
Self impedance (Zpq-pq) Mutual impedance, (Zpq-rs)
Element
Bus-code, Impedancein Bus-code, Impedancein
number
(p-9) p.u. (r-s) p.u.
1 1-2 j 0.452
2 2-3 j 0.387 1-2 j 0.165
3 1-3 j 0.619 1-2 j0.234
Solution:
1-2 2-3 1-3
12| j 0452 |j 0.165 | j 0.234
[zZ] = 2-3|j0.165| j 0.387 0
1-3]j 0.234 0 j 0.619
Note:

Thesizeof [z] ise” e, where e= number of elements,

The diagonal elements are the self impedances of the elements

The off-diagonal elements are mutual impedances between the corresponding

elements.

Matrices[z] and [y] are inter-invertible.
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FORMATION OF Ygys AND Zgys

The bus admittance matrix, Y gys plays a very important role in computer aided power
system analysis. It can be formed in practice by either of the methods as under:

Rule of Inspection

Singular Transformation
Non-Singular Transformation
Zgus Building Algorithms, etc.

ApODE

The performance equations of a given power system can be considered in three
different frames of reference as discussed below:

Frames of Reference;

Bus Frame of Reference: There are b independent equations (b = no. of buses) relating
the bus vectors of currents and voltages through the bus impedance matrix and bus
admittance matrix:

Egus = Zsus lsus
lsus = Ygus Esus 9)

Branch Frame of Reference: There are b independent equations (b = no. of branches
of a selected Tree sub-graph of the system Graph) relating the branch vectors of
currents and voltages through the branch impedance matrix and branch admittance
matrix:

Egr = Zgr Igr
Isr = Ygr Egr (10)

Loop Frame of Reference: There are b independent equations (b = no. of branches of a
selected Tree sub-graph of the system Graph) relating the branch vectors of currents
and voltages through the branch impedance matrix and branch admittance matrix:

ELoop = ZLoor ILoor
lLoor =Y Loor ELoor (11)

Of the various network matrices refered above, the bus admittance matrix (Ygus) and
the bus impedance matrix (Zgys) are determined for a given power system by the rule
of inspection as explained next.

Rule of Inspection

Consider the 3-node admittance network as shown in figureb. Using the basic branch
relation: | = (YV), for all the elemental currents and applying Kirchhoff’s Current
Law principle at the nodal points, we get the relations as under:

Atnodel: 1;=Y1Vi+ Y3 (V]_-Vg) +Ysg (V]_ - V2)
Atnode?2: 1,=Y,Vo+Ys (V2-V3) +Ys (V2 - Vl)
Atnode3: 0=Y; (V3-V1) +Y4V3+Ys (V3 - Vz) (12)
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R4
I\ “\-./i ‘Yq, 72_ 3 5.

|

Fig. 3 Example System for finding Ygus

These are the performance equations of the given network in admittance form and
they can be represented in matrix form as:

1| = |(Y1+Y3+Ye)  -Ye -Ys3 Vq
| = -Ys (Y2+Ys5+Ys)  -Ys V,
0] = -Y3 Y5 (Ya3+Y4+Ys)| | V3 (13

In other words, the relation of equation (9) can be represented in the form
lsus = Ysus Esus (14

Where, Ygus is the bus admittance matrix, lgys & Egus are the bus current and bus
voltage vectors respectively.

By observing the elements of the bus admittance matrix, Y gys of equation (13), it is
observed that the matrix elements can as well be obtained by a simple inspection of
the given system diagram:

Diagonal elements: A diagonal element (Y;) of the bus admittance matrix,
Ysus, IS equal to the sum total of the admittance values of all the elements
incident at the bus/nodei,

Off Diagonal elements: An off-diagonal element (Yj) of the bus admittance
matriX, Ygus, IS equal to the negative of the admittance value of the
connecting element present between the buses| and j, if any.

This is the principle of the rule of inspection. Thus the algorithmic equations for the
rule of inspection are obtained as:

Yii = Syij (J =12,....... n)
Yij = =Y (J =12,....... n) (15)
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Fori=1,2,....n, n=no. of buses of the given system, y;; is the admittance of element
connected between buses i and j and y;; is the admittance of element connected
between busi and ground (reference bus).

Busimpedance matrix

In cases where, the bus impedance matrix is also required, it cannot be formed by
direct inspection of the given system diagram. However, the bus admittance matrix
determined by the rule of inspection following the steps explained above, can be
inverted to obtain the bus impedance matrix, since the two matrices are inter-
invertible.

Note: It is to be noted that the rule of inspection can be applied only to those power
systems that do not have any mutually coupled elements.

Examples on Rule of | nspection:

Example 6: Obtain the bus admittance matrix for the admittance network shown
aside by the rule of inspection

@ 14 @
16 -8 -4 ¥ 8 & 15 ¥4
YBUS:j -8 24 -8 &\5 CUL\LLFftyéf,s
4 -8 16 Adras.)
A
d<__ 3 @ = >O
A~ |® 4
=%

Example 7: Obtain Ygys for the impedance network shown aside by the rule of
inspection. Also, determine Ygys for the reduced network after eliminating the eligible
unwanted node. Draw the resulting reduced system diagram.

'l‘Q - \,
_ C;I :-h\@w»‘)ﬂ u‘_\
@"\ 55 G2)
Ve ] e = = ) A1 ‘L__.
156 10 T PP o
Ygus=j| 5 -16 10 jv2s D k
4 10-14 ¢ ALL ase. b
“Uske dan c_s)

_ 1
Zgus = YBus
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Yeus'® = Ya-YeYp'Ye

YBUS:j -8.66 7.86
7.86 -8.66

SINGULAR TRANSFORMATIONS

The primitive network matrices are the most basic matrices and depend purely on the
impedance or admittance of the individual elements. However, they do not contain
any information about the behaviour of the interconnected network variables. Hence,
it is necessary to transform the primitive matrices into more meaningful matrices

which can relate variables of the interconnected network.

Busadmittance matrix, Y gys and Busimpedance matrix, Zgys

In the bus frame of reference, the performance of the interconnected network is
described by n independent nodal equations, where n is the total number of buses
(n+1 nodes are present, out of which one of them is designated as the reference node).

For example a 5-bus system will have 5 external buses and 1 ground/ ref. bus). The
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performance equation relating the bus voltages to bus current injections in bus frame
of reference in admittance form is given by
lsus = Ysus Esus (17)
Where Eguys = vector of bus voltages measured with respect to reference bus
Isus = Vector of currents injected into the bus
Y sus = bus admittance matrix
The performance equation of the primitive network in admittance formis given by
i+j=[ylv
Pre-multiplying by A® (transpose of A), we obtain
Ali +A'j = Ally] v (18)
However, as per equation (4),
A'i =0,
since it indicates a vector whose elements are the algebraic sum of element currents
incident at a bus, which by Kirchhoff’s law is zero. Similarly, A'j gives the algebraic
sum of all source currents incident at each bus and this is nothing but the total current

injected at the bus. Hence,

A'j =lgus (19)
Thusfrom (18) we have,  lgys=A'[y] v (20)
However, from (5), we have
vV =A Egus
And hence substituting in (20) we get,
leus=A'[y] A Egus (21)
Comparing (21) with (17) we obtain,
Yeus=A'[y] A (22)

The bus incidence matrix is rectangular and hence singular. Hence, (22) gives a
singular transformation of the primitive admittance matrix [y]. The bus impedance
matrix isgiven by ,

Zgus = Ygus' (23)
Note: This transformation can be derived using the concept of power invariance,
however, since the transformations are based purely on KCL and KVL, the

transformation will obviously be power invariant.
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Examples on Singular Transformation:

Example 8: For the network of Fig E8, form the primitive matrices [ & [y] and
obtain the bus admittance matrix by singular transformation. Choose a Tree T(1,2,3).
The data isgiven in Table ES.

&
'
&

...*.._._.-

[
th

&)
|
A

Fig E8 System for Example-8

Table E8: Data for Example-8

Elements | Self impedance | Mutual impedance
1 j0.6 -
2 j0.5 j 0.1(with element 1)
3 j 0.5 -
4 j0.4 j 0.2 (with element 1)
5 j0.2 -

Solution:

The busincidence matrix is formed taking node 1 as the reference bus.
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&1 0 O0u
é u
éO -1 Ol]
A=(:30 1 -ll;l
e u
e—l 0 Ol;l
gl 0 -1

The primitive incidence matrix is given by,

€j06 j01 00 j02 00U
£i0.1 jo5 00 00 00y
[=600 00 j05 00 004
gjo.z 00 00 (04 o.og
800 00 00 00 joO2H

The primitive admittance matrix [y] =[] and given by,

¢ j20833 j04167 00 10417 00 U
§j04167 - j20833 00 - j0.2083 00 4
[yl=¢ 00 00 -j20 00 00 U
§j10417 - j0.2083 00 - j3.0208 00
g 00 0.0 0.0 00 - j5.0H

The bus admittance matrix by singular transformation is obtained as

¢ j8.0208 02083 5.0 U
Yeus=A'[y] A = £j0.2083 - j40833 j20
g j50 j20 - j7.08

€j0.2713 j0.1264 j0.2299
Zaus = Yeus" = §j0.1264 j0.3437 01885
8j0.2299 j0.1885 j0.3609§



SUMMARY

The formulation of the mathematical model is the first step in obtaining the solution
of any electrical network. The independent variables can be either currents or
voltages. Correspondingly, the elements of the coefficient matrix will be impedances

or admittances.

Network equations can be formulated for solution of the network using graph theory,
independent of the nature of elements. In the graph of a network, the tree-branches
and links are distinctly identified. The complete information about the i nterconnection
of the network, with the directions of the currents is contained in the bus incidence

matrixX.

The information on the nature of the elements which form the interconnected network
is contained in the primitive impedance matrix. A primitive element can be
represented in impedance form or admittance form. In the bus frame of reference, the
performance of the interconnected system is described by (n-1) nodal equations,
where n is the number of nodes. The bus admittance matrix and the bus impedance
matrix relate the bus voltages and currents. These matrices can be obtained from the

primitive impedance and admittance matrices.
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Chapter-1-B

FORMATION OF BUSIMPEDANCE MATRIX

[CONTENTS: Node elimination by matrix algebra, generalized algorithms for Zgys
building, addition of BRANCH, addition of LINK, special cases of analysis,
removal of elements, changing the impedance value of an element, examples]

NODE ELIMINATION BY MATRIX ALGEBRA

Nodes can be eliminated by the matrix manipulation of the standard node equations.
However, only those nodes at which current does not enter or leave the network can
be considered for such elimination. Such nodes can be eliminated either in one group

or by taking the eligible nodes one after the other for elimination, as discussed next.

CASE-A: Simultaneous Elimination of Nodes:
Consider the performance equation of the given network in bus frame of reference in

admittance form for a n-bus system, given by:
lsus = Ysus Esus «y

Where Igys and Egys are n-vectors of injected bus current and bus voltages and Y gys

is the square, symmetric, coefficient bus admittance matrix of order n.

Now, of the n buses present in the system, let p buses be considered for node-
elimination so that the reduced system after elimination of p nodes would be retained
with m (= n-p) nodes only. Hence the corresponding performance equation would be

similar to (1) except that the coefficient matrix would be of order m now, i.e.,
lgus= Yeus' " Esus (2

Where Ygus'™ is the bus admittance matrix of the reduced network and the vectors
Isus and Egys are of order m. Itisassumed in (1) that |gys and Egysare obtained with
their elements arranged such that the elements associated with p nodes to be
eliminated are in the lower portion of the vectors. Then the elements of Y gys also get

located accordingly so that (1) after matrix partitioning yields,
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m p
lBusm m‘YA YB‘ Egusm ‘
lgusp |~ p‘Yc YD‘ Esusp ‘
©)
Where the self and mutual values of Y, and Y are those identified only with the
nodes to be retained and removed respectively and Y c=Yg'is composed of only the

corresponding mutual admittance values, that are common to the nodes m and p.

Now, for the p nodes to be eliminated, it is necessary that, each element of the vector

lsusp should be zero. Thus we have from (3):

lsusm = Ya Esusm + Yg Egusp

lsusp = Yc Egusm+ Yo Egusp =0 (4)
Solving, Egusp =- Yo 'Yc Esusm ©)

Thus, by ssimplification, we obtain an expression similar to (2) as,
lsusm ={Ya - YaYo'Yc} Esusm (6)

Thus by comparing (2) and (6), we get an expression for the new bus admittance

matrix in terms of the sub-matrices of the original bus admittance matrix as:
Yeus™ ={Ya-YsYp 'Y} (7)

This expression enables us to construct the given network with only the necessary
nodes retained and all the unwanted nodes/buses eliminated. However, it can be
observed from (7) that the expression involves finding the inverse of the sub-matrix
Yp (of order p). This would be computationally very tedious if p, the nodes to be
eliminated is very large, especially for real practical systems. In such cases, it is more
advantageous to eliminate the unwanted nodes from the given network by considering

one node only at atime for elimination, as discussed next.
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CASE-B: Separate Elimination of Nodes:

Here again, the system buses are to be renumbered, if necessary, such that the node to
be removed always happens to be the last numbered one. The sub-matrix Yp then
would be a single element matrix and hence it inverse would be just equal to its own
reciprocal value. Thus the generalized algorithmic equation for finding the elements

of the new bus admittance matrix can be obtained from (6) as,
Yi"™ =Y = Yin Yo / Yon "ij=12,...... n. (8)

Each element of the original matrix must therefore be modified as per (7). Further,
this procedure of eliminating the last numbered node from the given system of n
nodes is to be iteratively repeated p times, so as to eliminate al the unnecessary p

nodes from the original system.

Examples on Node elimination:

Example-1: Obtain Ygys for the impedance network shown below by the rule of
inspection. Also, determine Ygys for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.
® i @
; L6 i s SO

So— | | &2
Qd -‘_('m\l Lm o

o C (= z’_’n = X
O L B e 1 &ca.l*; @ EO"‘- %l.o

é}\-:)_e;”

The admittance equivalent network is as follows:




The bus admittance matrix is obtained by Rol as:

-98 5 4
YBUSZ ] 5 -16 10
4 10-14

The reduced matrix after elimination of node 3 from the given system is determined
as per the equation:

Yeus'® = Ya-YeYplYc

n/n 1 2
Youl™= 1-j8.66](7.86
,|j7.86 | -j8.66
Alternatively,
Yi"™ = Y% - YisYg /Y " ij=12

Y11= Y11-Y13Y31/ Y33 = -j 8.66
Y22 = Y22 - Y23Y32/ Y33 = -j 8.66
Yi2=Y21=Y12—Y13Y3/Y33=]7.86

Thus the reduced network can be obtained again by the rule of inspection as shown
be low.
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Example-2: Obtain Ygys for the admittance network shown below by the rule of
inspection. Also, determine Ygys for the reduced network after eliminating the eligible

unwanted node. Draw the resulting reduced system diagram.

nn 1 2 3 4

1[50 0 [j20]j10

Yeus=

3/j20| o |-j72] 50 Ye YD‘

YBUSNEW = YA'YBYD-lYC

n/n 1 2
Yaud®™= 13212 j10.32

51j10.32 | -j51.36

Thus the reduced system of two nodes can be drawn by the rule of inspection as

under:
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Zgus building
FORMATION OF BUSIMPEDANCE MATRI X

The bus impedance matrix is the inverse of the bus admittance matrix. An alternative
method is possible, based on an algorithm to form the bus impedance matrix directly
from system parameters and the coded bus numbers. The bus impedance matrix is
formed adding one element at a time to a partia network of the given system. The
performance equation of the network in bus frame of reference in impedance form

using the currents as independent variablesis given in matrix form by

Ebus = [Zbus]l_bus (9)
When expanded so as to refer to a n bus system, (9) will be of the form

E,=Z,l, +Zply + et Zy ¥ 2,1

E =Z 1, +Z ¥4 Z |, o4 Z, 1 (10)

Now assume that the bus impedance matrix Zy,s is known for a partial network of m
buses and a known reference bus. Thus, Zy,s of the partial network is of dimension
m~ m. If now a new element is added between buses p and q we have the following

two possibilities:
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(1) p is an existing bus in the partial network and q is a new bus; in this case
p-q isabranch added to the p-network as shown in Fig 1a, and

(i) both p and g are buses existing in the partial network; in this case p-qisa
link added to the p-network as shown in Fig 1b.

e
21
Partial
Networ k
P ¢ ® q
ZBUS |
mo—
0 [ R

Figla. Addition of branch p-q

-
21
Partial
Networ k
o
Zgus g4
mo—
0 | —E_ R

Fig 1b. Addition of link p-q
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If the added element ia a branch, p-q, then the new bus impedance matrix would be of
order m+1, and the analysis is confined to finding only the elements of the new row
and column (corresponding to bus-q) introduced into the original matrix.

If the added element ia a link, p-q, then the new bus impedance matrix will remain
unaltered with regard to its order. However, al the elements of the original matrix are
updated to take account of the effect of the link added.

ADDITION OF A BRANCH

Consider now the performance equation of the network in impedance form with the
added branch p-q, given by

gE1H (?211 Z12 le Zlm Zlq U§|1u
~ - € ue, u
?Ez U &n Zn v Ly Zom  Zaqgal 2y
e ué: Gé:
e u_é g8 G
?Eplilzézpl Zoo = Ly o L Z@log (11)
e ueé Gé: u
e u ¢ e’ u
?EmL’j ezml Zm2 Zmp me quue|mu
U é e u
éEq g &a Zo v Lo v L Zaodlal

It is assumed that the added branch p-q is mutually coupled with some elements of the
partial network and since the network has bilateral passive elements only, we have

Vector ypqrsisnot equal tozeroand Z;=2;; " ij=1,2,...m,q (12)

Tofind Zg;:

The elements of last row-q and last column-q are determined by injecting a current of
1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference
bus-0, as shown in Fig.2. Since all other bus currents are zero, we have from (11) that
Ex=2Z4 li = Z " k=120, (13)
Hence, Eq=Zq ; Ep=2Zp .........

Also, Eq=Ep -Vpq; sothat Zgi = Zpi - Vpg " =1, 2,...0....... p,....m, #q (14)

Tofind vpq:
In terms of the primitive admittances and voltages across the elements, the current
through the elements is given by
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pé

a/pq pa ypqrsL,B/pqlﬁ

~

poll_
g W
u

.

(15

) -

Vrspg  Yrsrs (BVs(

P
2
Partial
Networ k
< qu >
p ® o
q
ZBUS

Fig.2 Calculation for Z

where i, iscurrent through element p-q
i .isvector of currents through elements of the partial network
v, Is voltage across element p-q
is self — admittance of the added element

ypqqu
Y oqrs1S the vector of mutual admittances between the added elements p-g and

elementsr-s of the partial network.

v, is vector of voltage across elements of partial network.

Yis.pq IStransposeof y,, ..

Y.ss 1S the primitive admittance of partial network.

Since the current in the added branch p-q, is zero, i, =0. We thus have from (15),

ipq = ypqququ + ypq,rs\_/rs =0 (16)
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_ ypq,rsvrs

Solving, Vo = or
ypq,pq
y rs Er - Es
Vg =- =2 ( ) 17)
ypq,pq
Using (13) and (17) in (14), we get
V. |\Z. -Z.
z,=2, +—yp‘”5( r S‘) i=12..mitq (18)

pa. pq

Tofind zqq:
The element Zq, can be computed by injecting a current of 1pu at bus-g, 1 = 1.0 pu.

As before, we have the relations as under:
Ex=Zkqlq=Ziq " k=1,2,...0....... p,....M, q (29

Since now the current in the added element is i, = - I, =- 1.0, we have from (15)

Ipq - ypq,pqqu + quJ’SVrs =-1

YoarsV,
Solving, v, =- 1+ 22
yp(]qu
Y..ro\E, - E.
Vy, =- 1+M o
ypqqu
Using (19) and (21) in (20), we get
1+y rs(zr .7 )
LZog =Lyt At = 22
prvaq
Special Cases

The following special cases of analysis concerning Zgysbuilding can be considered

with respect to the addition of branch to a p-network.

Case (a): If there is no mutual coupling then elements of y . are zero. Further, if p
is the reference node, then E,=0. thus,

Z;=0 i=12...m:itq
And Zpq=0.
Hence, from (18) (22) Z4i=0 i=12...mitq
And qu = qu,pq \ (23)
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Case (b): If there is no mutual coupling and if p is not the ref. bus, then, from (18)
and (22), we again have,

Z.=Z,, i=12.mitq

aql pr?

Zo=ZptZ (24)

pa, pa

ADDITION OF A LINK

Consider now the performance equation of the network in impedance form with the

added link p-I, (p-1 being afictitious branch and | being afictitious node) given by

gEla ézn Z12 le Z1m Zlq @élll;'
e ue, u
é=2 1 éZZl Ly = Loy v Lom Ly ﬂélzﬂ
8 U @: té: u
e_u_=aé ué u
?Epl}_ &n Lo v Ly o L Zlen (25)
e ue: ge: u
¢ 0 ¢ &'
?Eml;l &m Lo Zmp L qu el mi
u @ e U
& 0o &, Z, -~ Zy - Zn Z,gehd

It is assumed that the added branch p-q is mutually coupled with some elements of the
partia network and since the network has bilateral passive elements only, we have

Vector ypqrsisnot equal to zeroand Zj= Z; " 1,j=1,2,...m,. (26)

Tofind Zj;:
The elements of last row-| and last column-I are determined by injecting a current of
1.0 pu at the bus-i and measuring the voltage of the bus-q with respect to the reference
bus-0, as shown in Fig.3. Further, the current in the added element is made zero by
connecting a voltage source, g in series with element p-g, as shown. Since al other
bus currents are zero, we have from (25) that

Ev=2Z li = Z " k=12, 0y, | (27)
Hence, e=E=2;; E=2n,; Ep=2Z5 .........
Also, @=Ey-Eq-Vpq;
Sothat Zj = Zpi- Zgi- Vpq " 1=1,2,...1....p,...q,....m, Z (28)
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Tofind vpq:

In terms of the primitive admittances and voltages across the elements, the current
through the elementsis given by

E:‘plg_éyp' pl yphrsl;é/pll;'
g u—c VA=Y u (29)
rsU rspl rsrsUE¥rsU
1
2 _|
Partial |
Networ k P
Vil
— e
i
ZBus

Fig.3 Calculation for Z;;

where i, iscurrent through element p-q

i, isvector of currents through elements of the partial network

v, isvoltage across element p-q
Yo 1S Self — admittance of the added element

Ya.rs 1S the vector of mutual admittances between the added elements p-q and

elementsr-s of the partial network.
v, is vector of voltage across elements of partial network.

Yis.p iStransposeof y, ..

Y.srs 1S the primitive admittance of partial network.
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Since the current in the added branch p-l, is zero, i, = 0. We thus have from (29),
ipI = ypl,plvpl + ypl,rs\_/rs = 0 (30)

_ ypl ,rsvrs

ypl ,pl

) ypl,rs(Er - Es)
ypl,pl

Solving, v, = or

Vpl =

(31)

However,

Yoirs = Yars
And Yoo = Yoapq (32
Using (27), (31) and (32) in (28), we get

Vours\Zii = Zg
z, =zpi-zqi+w i=12...mit | (33)
ypq,pq
Tofind Z;;:
The element Z;, can be computed by injecting a current of 1pu at bus-l, I = 1.0 pu. As

before, we have the relations as under:

Ex=Zu |1 = Zu " k=12, e,y | (34)
Hence, e=E=2; Ey=2Z, ;

Also, e=E;,-E4-vp;

Sothat Z) = Zp - Zg - vp " 1=1,2,...1....p,...0,....m, Zl (35)

Since now the current in the added element is i, =- 1, =- 1.0, we have from (29)
ipI = ypl,plvpl + ypl,rs_rs =-1

V..V
Solving, v, = -4 Yot

Yoi,p
v, =- 1+—y‘"'fs(Er E) (36)
Yo
However,
Yoirs = Yoars
And Yoo = Yoo (37)

Using (34), (36) and (37) in (35), we get



1+ ypq,rs(zrl - Zsi)

ypq, pa

Z,=2,-Zy+

pl al

(38)

Special Cases Contd....

The following special cases of analysis concerning Zgysbuilding can be considered
with respect to the addition of link to a p-network.

Case (c): If there is no mutual coupling, then elements of Y, . are zero. Further, if p
is the reference node, then Ep=0. thus,

Z,=-Z i=12..mi?t|

ai?

ZII =- qu + qu,pq (39)
From (39), it is thus observed that, when a link is added to a ref. bus, then the
situation is similar to adding a branch to afictitious bus and hence the following steps
are followed:
1. Theelement isadded similar to addition of a branch (case-b) to obtain the new
matrix of order m+1.
2. Theextrafictitious node, | is eliminated using the node elimination algorithm.

Case (d): If thereis no mutual coupling, then elements of Yy, . are zero. Further, if p
is not the reference node, then

2y =Zpi- Zyi

2y = Zp = Zg = Zpgpq
=Zppt Zaq— 2 Zpqt+ Zpgpq (40)

MODIFICATION OF Zgys FOR NETWORK CHANGES

An element which is not coupled to any other element can be removed easily. The
Zns ismodified as explained in sections above, by adding in parallel with the element
(to be removed), a link whose impedance is equal to the negative of the impedance of
the element to be removed. Similarly, the impedance value of an element which is not
coupled to any other element can be changed easily. The Zy,s is modified again as
explained in sections above, by adding in parallel with the element (whose impedance
is to be changed), a link element of impedance value chosen such that the parallel
equivalent impedance is equal to the desired value of impedance. When mutually
coupled elements are removed, the Zy, is modified by introducing appropriate
changes in the bus currents of the original network to reflect the changes introduced

due to the removal of the elements.
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Exampleson Zgys building

Example 1. For the positive sequence network data shown in table below, obtain

Zgys by building procedure.

i Pos. seq.
Sl. No. P-q r eactance
(nodes) .

in pu
1 0-1 0.25
2 0-3 0.20
3 1-2 0.08
4 2-3 0.06

Solution:

The given network is as shown below with the data marked on it. Assume the
elements to be added as per the given sequence: 0-1, 0-3, 1-2, and 2-3.

®

0.06

2

0.20

I

3

1

(.08

b

©

0.25

@

Fig. E1: Example System

Consider building Zgus as per the various stages of building through the consideration
of the corresponding partial networks as under:

Step-1: Add element-1 of impedance 0.25 pu from the external node-1 (g=1) to
internal ref. node-0 (p=0). (Case-a), as shown in the partial network;

P-networlk

0
Zens™ =

[] 025

©

(1)

1
Zous = 1
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Step-2: Add element-2 of impedance 0.2 pu from the externa node-3 (g=3) to

internal ref. node-0 (p=0). (Case-a), as shown in the partial network;

P-networls

13

Z B’

2)

Zgus'

Step-3: Add element-3 of impedance 0.08 pu from the external node-2 (g=2) to
internal node-1 (p=1). (Case-b), as shown in the partial network;

)

P-networl:

0,
10}
Z g5 _®

0.08

3

2

=

0.25

0

0.25

Zous? = 3

0

0.2

0

2

0.25

0

0.33

Step-4: Add element—4 of impedance 0.06 pu between the two internal nodes, node-2
(p=2) to node-3 (g=3). (Case-d), as shown in the partial network;
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P-network @ 0.06

Zeus” | {

1 3 2 |
025| 0 1025|025

1
3/ 0 |02] O |-0.2
2
[

4)

7 (
BUS 025 0 |033]0.33

0.25]-0.2]0.33 | 0.59

The fictitious node | is eliminated further to arrive at the final impedance matrix as
under:

1 3 2
_ 1[0.1441 [ 0.0847 | 0.1100
Zeu™ = 30,0847 | 0.1322 | 0.1120
210.1100 | 0.1120 | 0.1454

Example 2: The Zgys for a 6-node network with bus-6 as ref. is as given below.
Assuming the values as pu reactances, find the topology of the network and the
parameter values of the elements involved. Assume that there is no mutual coupling of
any pair of elements.

1 2 3 4 5
112]0]0]0|2
210]2]|0]2]|0

ZBUS: 3|0|{0|2|0|0
4/0/2]0[3]|0
5/2/0]0/0|3

Solution:

The specified matrix is so structured that by its inspection, we can obtain the network
by backward analysis through the various stages of Zgys building and p-networks as
under:
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@ 1.0 pu @
Zpus™ @
p- Wetwork @
R;f.
Zpu® @ 1.0 pu @
p- Network @
Zpus™ —
p- Wetwork @
@ 2.0 pu @
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1
Z gus™ @

p- Network
@ 2.0 pu @

Zpus =11
Sl @ 2.0 pu @

Thus the final network iswith 6 nodes and 5 elements connected as foll ows with the

impedance values of elements as indicated.

2.0 pu

lw
1.0 pu

@ @ 1.0 pu@)

()
@)

2.0 pu

Fig. E2: Resultant network of example-2
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Example 3: Construct the bus impedance matrix for the system shown in the figure
below by building procedure. Show the partial networks at each stage of building the
matrix. Hence arrive at the bus admittance matrix of the system. How can this result
be verified in practice?

jo.4 jo0.4

2
jo.1 j0.6 jo.1

Solution: The specified system is considered with the reference node denoted by
node-0. By its inspection, we can obtain the bus impedance matrix by building
procedure by following the steps through the p-networks as under:

Stepl: Add branch 1 between node 1 and reference node. (g =1, p=0)

Zus =[]

p-network @ @

1
Tt = 1[70.1]

Step2: Add branch 2, between node 2 and reference node. (g =2, p=0).

- 1D

Zrus =

p-network @ @
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1 2
1] 701 0
Eﬂw = Jr ,
2| o jo1s

Step3: Add branch 3, between node 1 and node3 (p=1,q=23)

Zpus™?

&

p-network

1@
()

1 2 3
101 o jou
Z,, =2 0 015 0
3ljo1 0 jOS

Step 4: Add element 4, which isalink between node 1 and node 2. (p=1,q=2)

()

AT 5(3)

p-network

O



1 2 3 i
1jo1 o o1 jo1]
2l 0 015 0 - j015
3101 0 o5 01
I jo1 -j015 jo1  joss |

Now the extra node-l has to be eliminated to obtain the new matrix of step-4, using
the algorithmic relation:

Y™ = YiJOId —Yin Yo/ Yo "ij=12 3.

1 2 3

7008823 j0.01765 0.08823
Z.. =| 001765 ;012353 j0.01765
7008823 7001765 0.48323

Step 5: Add link between node 2 and node 3 (p = 2, g=3)

O

Zpus™ @
p-network @

[0
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Zy=Zy —Z, = j0.01765— j0.08823 = - j0.07058
2, =2, -2, = 012353~ j001765 = j0.10588

g
Zo =2y Iy = j0.01765- j0.48823 = — j0.47058
Zyp=Zy—Zy+Zyqy

= j0.10588 - (— j0.47058 1+ jO.4 = j0O.97646

Thus, the new matrix is as under:

1 2 3 1

1[ jo0s823  j0.01765 j0.08823 - j0.07058
2| jO.O1765  j0.12353  jO.01765 010588
T3 j0.08823 001765 048823 — j0.47058
[|-j0.07058 j0.10588 - j0.47058 jO.97646

s

Node | is eliminated as shown in the previous step:

1 2 3

1] j0.08313  FOOZ530 FO.05421
Lye = 2| jO02530  jO11205  jO06863
3| 005421 jOO6868  jO.26145

Further, the bus admittance matrix can be obtained by inverting the bus impedance
matrix as under:

1 2 3

[~ 141667  jl.6667  j2.5

v, =|Z,, ]t =2 jl6667 -, 108334 25
3| 25 25 =450

As a check, it can be observed that the bus admittance matrix, Y gys can aso be
obtained by the rule of inspection to arrive at the same answer.



Example 4. Form the bus impedance matrix for the network shown below.

Solution:
Add the elements in the sequence, 0-1, 1-2, 2-3, 0-3, 3-4, 2-4, as per the various steps
of building the matrix as under:

Stepl: Add element 1, which is a branch between node-1 and reference node.
1
Z o = 11.25]

Step2: Add element 2, which isa branch between nodes 1 and 2.

1 2

1125 125
2|25 1

s

Step3: Add element 3, which is a branch between nodes 2 and 3

1 2 3
1125 ;125 j1.25
Z, =2|j125 j15 j15
31125 15 1.9

Step4: Add element 4, which isalink from node 3 to reference node.
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s

Eliminating node,

Z

s

1[ 1.25
2| 125
3] 125

1 j1.25

1

2

3

f

125 j125 j1.25

15 15 15

15 18 19

15 19 j3.15
2 3

JRI53%7 06547 jO49603

Juesdle  jO7Es71

J0.59524

J049803  jO59524  jO775397

Step5: Add element 5, a branch between nodes 3 and 4.

1
[ j0.75397

Jesdie
J0.49603

| j0.49603

2
J0.e5476

J0e5476
J0.55524
JO59524

3
J049603

J0.59524
JO75397
JU75397

Step 6: Add element 6, alink between nodes 2 & 4.

1
2
Zoe=3
4
I

4
J0.45603

J0.59524
JO75397

JUS5397

[ j0.75397
j0.63476
/049603
049603

| 015873

70.65476
J0.65476
7059524
/0.59524
70.19047

J0.45603
JU.59524
JOIS397
JUI5397
- J0.15873

70.49603
7059524
075397
70.95397

~ j0.35873

Eliminating node | we get the required bus impedance , matrix

- j0.15873
=S ORTS

015873 ]
019047

jO.67421 |
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1 ) 3 4
JjO7166 06099 705334 0.5805

1
2| j06099 j07319 jO.6401 06966
w730 j05334  j0.6401 07166 J0.6695
4| jO.5805 06966 jO.6695 [O7631

Example 5. Form the bus impedance matrix for the network data given below.

Self Impedance | Mutual | mpedance
Element | Bus | Zyqg pq Bus Zpg, rs
p-q | (pu) r-s (pu)
1 1-2(1) | jo.6
2 1-2(2) | jo4 | 1-2() j0.2

Solution:
Let bus-1 be the reference. Add the elements in the sequence 1-2(1), 1-2(2). Here, in
the step-2, there is mutual coupling between the pair of elementsinvolved.

1-2(1) 2=j06
(0 Jio: (2
Ref 1-2(2) 2=j04

Stepl: Add element 1 from bus 1 to 2, element 1-2(1). ( p=1, g=2, p isthe reference
node)

-

T = 2 [10.6]

Step2: Add element 2, element 1-2(2), whichisalink from busl to 2, mutually
coupled with element 1, 1-2(1).

2 i
Zmzzjaézn
I B 2y

Where,
Yo@uen'fn —£n !

Fra(a)z(z)
Z, =2, =0(asbus 1 15 reference)

Zz; = Z.::; = _Zzz +
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Consider the primitive impedance matrix for the two elements given by

B b M oy
1-2(1 '[Jrﬂ.ﬁ jD.Z}

[z]= . .
1-202)| jo2 jo4

Thus the primitive admittance matrix is obtained by taking the inverse of [Z] as

i Belo))
1—2n1n[—;2.@ jl.[}}

= o) T D

Thus,

viza iz = 110, vz ixm = 3.0

So that we have,
| j1.OI= jO&
Rl e s S SRR
ST e
7, =z, 4 @ e THUULO04)
yn[z),u(zj _JB-D
2 {
2[ joe - jo4
Ly = _ _
[=-,j04  jo6

Thus, the network matrix corresponding to the 2-node, 1-bus network given, is

obtained after eliminating the extranode-l asa single element matrix, as under:

2
Z e = 2] j0.3333]
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ECONOMIC OPERATION OF POWER SYSTEMS

INTRODUCTION

One of the earliest applications of on-line centralized control was to provide a central
facility, to operate economically, severa generating plants supplying the loads of the
system. Modern integrated systems have different types of generating plants, such as coa
fired thermal plants, hydel plants, nuclear plants, oil and natural gas units etc. The capital

investment, operation and maintenance costs are different for different types of plants.

The operation economics can again be subdivided into two parts.

i) Problem of economic dispatch, which deals with determining the power
output of each plant to meet the specified load, such that the overall fuel cost
is minimized.

i) Problem of optimal power flow, which deals with minimum - loss delivery,
where in the power flow, is optimized to minimize losses in the system. In
this chapter we consider the problem of economic dispatch.

During operation of the plant, a generator may be in one of the following states:

i) Base supply without regulation: the output is a constant.

i) Base supply with regulation: output power is regulated based on system load.

iii)  Automatic non-economic regulation: output level changes around a base
setting as area control error changes.

iv) Automatic economic regulation: output level is adjusted, with the area load

and area control error, while tracking an economic setting.

Regardless of the units operating state, it has a contribution to the economic operation,
even though its output is changed for different reasons. The factors influencing the cost
of generation are the generator efficiency, fuel cost and transmission losses. The most
efficient generator may not give minimum cost, since it may be located in a place where
fuel cost is high. Further, if the plant is located far from the load centers, transmission
losses may be high and running the plant may become uneconomical. The economic
dispatch problem basically determines the generation of different plants to minimize total

operating cost.



Modern generating plants like nuclear plants, geo-thermal plants etc, may require capital
investment of millions of rupees. The economic dispatch is however determined in terms
of fuel cost per unit power generated and does not include capital investment,

mai ntenance, depreciation, start-up and shut down costs etc.
PERFORMANCE CURVES

INPUT-OUTPUT CURVE

This is the fundamental curve for a thermal plant and is a plot of the input in British
thermal units (Btu) per hour versus the power output of the plant in MW as shown in Fig
1

A

Btu / hr (Input)

— (output) MW

Fig 1: Input — output curve

HEAT RATE CURVE

The heat rate is the ratio of fuel input in Btu to energy output in KWh. It is the slope of
the input — output curve at any point. The reciprocal of heat — rate is called fuel —
efficiency. The heat rate curve is a plot of heat rate versus output in MW. A typical plot

isshownin Fig .2
A

(Heat rate) Btu / kw-hr

(output) MW 2



Fig .2 Heat rate curve.

INCREMENTAL FUEL RATE CURVE

The incremental fuel rate is equal to a small change in input divided by the
corresponding change in output.

Incremental fuel rate :m
AQutput

The unit isagain Btu/ KWh. A plot of incremental fuel rate versus the output is shown in
Fig3
A

Incremental fuel rate

(output) MW

Fig 3: Incremental fuel rate curve

I ncremental cost curve

The incremental cost is the product of incremental fuel rate and fuel cost (Rs/ Btuor $/
Btu). The curve in shown in Fig. 4. The unit of the incremental fuel cost is Rs/ MWh or
$/MWh.



approximate linear cost

actual cost

Rs / Mwhr ——»

>
(output) MW = —»

Fig 4: Incremental cost curve
In general, the fuel cost F; for a plant, is approximated as a quadratic function of the
generated output Pg;.

F=a+bPs +c PGi2 Rs/h

The incremental fuel cost is given by

=
d L =P + 2¢ Pgi Rs/ MWh
dr;,

The incremental fuel cost is a measure of how costly it will be produce an increment of
power. The incremental production cost, is made up of incremental fuel cost plus the
incremental cost of labour, water, maintenance etc. which can be taken to be some
percentage of the incremental fuel cost, instead of resorting to a rigorous mathematical
model. The cost curve can be approximated by a linear curve. While there is negligible
operating cost for a hydel plant, there is alimitation on the power output possible. In any
plant, all units normally operate between Pgmin, the minimum loading limit, below which
it is technically infeasible to operate a unit and Pgmax, Which is the maximum output

limit.

ECONOMIC GENERATION SCHEDULING NEGLECTING
LOSSESAND GENERATOR LIMITS

The simplest case of economic dispatch is the case when transmission losses are
neglected. The model does not consider the system configuration or line impedances.

Since losses are neglected, the total generation is equal to the total demand Pp.



Consider a system with ng number of generating plants supplying the total
demand Pp. If F is the cost of plant i in Rgh, the mathematical formulation of the

problem of economic scheduling can be stated as follows:

Minimize Fr=>F
i=1
Such that P, =P,
i=1
where Fr = tota cost.
Psi = generation of planti.

Pp = total demand.

This is a constrained optimization problem, which can be solved by Lagrange’s method.

LAGRANGE METHOD FOR SOLUTION OF ECONOMIC SCHEDULE

The problem is restated below:

Ng

M
_|
Il

Minimize Fi

i=1

Ng

Such that PD = Z PGi =0

i=1

The augmented cost function is given by
Ny

E=F +|| P, =Y Py

i=1

The minimum is obtained when

ok _ 0 and ok _ 0
P ol

ot _ oF; R
oP; 0Py
% =R - Z Pe =0
al =



The second equation is smply the original constraint of the problem. The cost of a plant
F depends only on its own output Pg;, hence

oF,  oF,
P, 0P, drR,

Using the above,
oF, dF,
—= =l ; 1=1... Ng
oP; dP;
We can write
bi+2c Pgi= A i=1....... Ng

The above equation is called the co-ordination equation. Simply stated, for economic
generation scheduling to meet a particular load demand, when transmission losses are
neglected and generation limits are not imposed, all plants must operate at equal
incremental production costs, subject to the constraint that the total generation be equal
to the demand. From we have

| —-b

P, = !
Gi 20

We know in aloss less system

Substituting (8.16) we get

ngl_h_
Z ZCI _PD

i=1

An analytical solution of A is obtained from (8.17) as

It can be seen that A is dependent on the demand and the coefficients of the cost function.

Example 1.
The fuel costs of two units are given by



F1=15+20Pg; +0.1Ps® Reh

F,=19+30Pg;+0.1Ps’ Reh

Ps1, Ps2 are in MW. Find the optimal schedule neglecting losses, when the demand is
200 MW.

Solution:
dF,
Gl

dr,

=20+0.2P;;, Rs/MWh

=30+02P,, Rs/MWh

G2
P, = P, + P, = 200 MW
For economic schedule
df, _dF, _
dP;, dP;,
20+ 0.2 Pg; =30+ 0.2 (200 - Pgy)
Solving we get, Ps1 =125 MW
Ps2 =75 MW

A=20+0.2(125) =45 Rs/ MWh
Example 2
The fuel costin $/ h for two 800 MW plantsis given by
F1 =400 + 6.0 Pg; + 0.004 Pg;”
F» =500 + b, Ps, + ¢, Pay”
where P, Pez arein MW
(8 The incremental cost of power, A is $8 / MWh when total demand is 550MW.
Determine optimal generation schedule neglecting losses.
(b) The incremental cost of power is $10/MWh when total demand is 1300 MW.
Determine optimal schedule neglecting losses.
(c) From (@) and (b) find the coefficients b, and c,.

Solution:
I -b, 80-6.0

a P,= = = 250 MW
2c, 2x0.004

P., = P, — Ps, =550 250 = 300 MW



o Py 1076 g0 mw
2C. _ 2x0.004

P., = P, — Ps, =1300-500 = 800 MW

| -b
c P, = 2
) °2 2c,

From (@  300= 80-b,

CZ
From (b) 800= 100-b,

CZ
Solving we get b,=6.8

¢, =0.002

ECONOMIC SCHEDULE INCLUDING LIMITS ON GENERATOR
(NEGLECTING LOSSEYS)

The power output of any generator has a maximum value dependent on the rating of the
generator. It also has a minimum limit set by stable boiler operation. The economic
dispatch problem now is to schedule generation to minimize cost, subject to the equality

constraint.
Ng
Z PGi = PD
i=1

and the inequality constraint
Pai (min) < Pgi < Pgi (max) 1 i=1,........ Ng

The procedure followed is same as before i.e. the plants are operated with equa
incremental fuel costs, till their limits are not violated. As soon as a plant reaches the
limit (maximum or minimum) its output is fixed at that point and is maintained a
constant. The other plants are operated at equal incremental costs.

Example 3

Incremental fuel costsin $/ MWh for two units are given below:

drF,

Gl

=0.01P,, + 2.0 $/ MWh



dr,

=0.012P,, +1.6$/ MWh

G2
The limits on the plants are Prin = 20 MW, Pra = 125 MW. Obtain the optimal schedule
if the load varies from 50 — 250 MW.

Solution:
The incremental fuel costs of the two plants are evaluated at their lower limits and upper

limits of generation.
At Ps (min =20 MW.

| o= 1 = 0,01 20+2.0 = 2.2/ MWh
P,
| s = P2 = 0,012x 20+ 1.6 = 184/ MWh
dP,

G2

At Pg (max) =125 Mw

Mmaxy =0.01x125+2.0=3.25%/MWh

Aomaxy =0.012x 125+ 1.6 = 3.1 $/ MWh

Now at light loads unit 1 has a higher incremental cost and hence will operate at its lower
limit of 20 MW. Initially, additional load is taken up by unit 2, till such time its
incremental fuel cost becomes equal to 2.2$ / MWh at Pg, = 50 MW. Beyond this, the

two units are operated with equal incremental fuel costs. The contribution of each unit to
meet the demand is obtained by assuming different values of A; WhenA =3.1$/ MWh,
unit 2 operates at its upper limit. Further loads are taken up by unit 1. The computations
are show in Table

Table Plant output and output of the two units

dF, dr, Plant A Po1 Pc2 Plant Output

dr, dr,

$/I\/GIiNh $/I\/IG\2Nh ¥Mwh | MW MW o
2.2 1.96 1.96 20° 30 50
2.2 2.2 2.2 20" 50 70
24 24 24 40 66.7 106.7
2.6 2.6 2.6 60 83.3 143.3
2.8 2.8 2.8 80 100 180
30 30 3.0 100 116.7 216.7
31 31 31 110 125* 235




3.25 3.1 3.25 125* 125* 250

For a particular value of A, Ps; and Pg; are calculated using (8.16). Fig 8.5 Shows plot of

each unit output versus the total plant output.

Fig 8.5 : Example 8.4
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For any particular load, the schedule for each unit for economic dispatch can be obtained

Example 4.

In example 3, what is the saving in fuel cost for the economic schedule compared to the
case where the load is shared equally. The load is 180 MW.

Solution:

From Tableit is seen that for aload of 180 MW, the economic schedule is Pg; = 80 MW
and Ps; = 100 MW. When load is shared equally Ps; = Ps; = 90 MW. Hence, the
generation of unit 1 increases from 80 MW to 90 MW and that of unit 2 decreases from
100 MW to 90 MW, when the load is shared equally. There is an increase in cost of unit

1 since Pg1 increases and decrease in cost of unit 2 since Pg, decreases.

10




T( dF, j
Increaseincost of unitl = — |dR,
80 dPGl e

90
= [(0.01R,, +2.0)dP;, = 285%/h
80

90
f{ dr, J 0P
100 dPGZ

[(0.012R,, +1.6)dP;, =—27.48/h

100

Total increasein cost if load is shared equally =285-27.4=1.1%/h

Hence the saving in fuel costis 1.1 $/ hif coordinated economic schedule is used.

Decrease in cost of unit 2

ECONOMIC DISPATCH INCLUDING TRANSMISSION LOSSES

When transmission distances are large, the transmission losses are a significant part of
the generation and have to be considered in the generation schedule for economic
operation. The mathematical formulation is now stated as

Minimize Fr=>F
i=1

Ng

SUCh That z PGi = PD —+ PL
i=1
where P_ isthe total |oss.

The Lagrange function is now written as

£=F -l [ZPGi_PD_PLJ:O

i=1

The minimum point is obtained when

0f _OF | [1_ 0P,

oP; 0Py P
0 & .
il > Py-P,+P =0 (Sameasthe constraint)
i=1
Since oF, _ dF, , (8.27) can be written as
oP; dPy
doF R _
dr;, OPg

11



G| 1

T dP, | 1-0P,
Py
The term is called the penalty factor of plant i, L;. The coordination
1_ L
OPg

equations including losses are given by

drF
= ci=1.. Ng

I
dP,

The minimum operation cost is obtained when the product of the incremental fuel cost

and the penalty factor of all unitsis the same, when losses are considered.

A rigorous general expression for the loss P is given by
P.= ZmZnPem Bmn Pen +Zn Pon Bno+ Boo

where Bin, Bro , Boo Called loss — coefficients , depend on the load composition. The
assumption here is that the load varies linearly between maximum and minimum values.
A simpler expression is

P.= Zm 2n Pom Bmn Pan

The expression assumes that all load currents vary together as a constant complex
fraction of the total load current. Experiences with large systems has shown that the loss

of accuracy is not significant if this approximation is used.

An average set of loss coefficients may be used over the complete daily cycle in the
coordination of incremental production costs and incremental transmission losses. In
general, By, = B and can be expanded for atwo plant system as

P_ = Bu1 Pe1 + 2 B1p Pe1 Poz + B2 Py

12



Example 5

A generator is supplying a load. An incremental change in load of 4 MW requires

generation to be increased by 6 MW. The incremental cost at the plant bus is Rs 30 /
MWh. What is the incremental cost at the receiving end?

Solution:

dF, — 30
dP.,

oF _ 4

drP,,

AP = 2MW
| — Load

° ]

AP = 6MW APp = 4AMW

Fig; Oneline diagram of example 5

APL = APG - APD =2MW

A atreceiving end is given by

AP
=9 AR 55,8 45 Re/ MW
dPGl AP, 4
or |l = dF, X 1 =30><i=45 Rs/ MWh
dPGl 1— AR 1_3
AP, 6
Example 6

In a system with two plants, the incremental fuel costs are given by
dF,
dr;,

= 0.01P,, + 20 Rs/ MWh

dr,

=0.015F;, + 22.5 Rs/ MWh

G2

The system is running under optimal schedule with Ps; = Pgz = 100 MW.
oP.

oP,.

If = 0.2, find the plant penalty factors and

G2 G1

13



Solution:
For economic schedul e,

dFiLi:I; L = 1 ;
dr; 1- oP,
OP;
For plant 2, P2 =100 MW
. (0.015% 100+ 22.5)L =1.
1-0.2
Solving, | =30Rs/ MWh
L, = L =125
1-0.2
dF,
—L, =1 = (0.01x100+20) L, = 30
dr;,
L, =1.428
1
L=
! LR
0P,
1.428 = L ; Solving R =03
1- oP. »
0P,
Example 7

A two bus system is shown in Fig. 8.8 If 100 MW is transmitted from plant 1 to the load,
aloss of 10 MW isincurred. System incremental cost is Rs 30/ MWh. Find Pg;, Ps, and
power received by load if

dr, =0.02P;, +16.0 Rs/ MWh
Gl
dr,
=0.04P;, + 20.0 Rs/ MWh
dr;,
—> For < Psz
G c
Load

14



Fig Onelinediagram of example 7

Solution;
Since the load is connected at bus 2 , no loss is incurred when plant two supplies the
load.

15



Consider the simple case of two generating plants connected to an arbitrary number of

loads through a transmission network as shown in Fig a
le1
o=
lc2

: : ) Ik I5)

lc1=1Ip
O=
Ik1 Io
N I
|(32=0

(b)
|G1=O
N
lc2=1Ip -
Ik2 Ip
(©

Fig Two plants connected to a number of loads through a transmission network

Let’s assume that the total load is supplied by only generator 1 as shown in Fig 8.9b. Let
the current through a branch K in the network be 1x;. We define
I K1
Ny, =+

Ip

It isto be noted that Is; = Ip in this case. Similarly with only plant 2 supplying the load

current Ip, as shown in Fig 8.9c, we define

16



Nk1 and Nk, are called current distribution factors and their values depend on the
impedances of the lines and the network connection. They are independent of 1. When
both generators are supplying the load, then by principle of superposition
Ik = Nk1le1+ Nk2la2
where lgi, lg2 are the currents supplied by plants 1 and 2 respectively, to meet the
demand |p. Because of the assumptions made, Ix; and |p have same phase angle, as do
Ik2 and Ip. Therefore, the current distribution factors are real rather than complex. Let
lor =|lcaf£s, and I, =[lg,|Zs ,.
where s, and s , are phase angles of 1 and | with respect to a common reference. We

can write
L K|2 = (N,<1|Iel|coss1 + Ny o[l | cOSS 2)2 +(N,<1|I61|sins1 +Nyo|l sz|Sins 2)2

2 . 2 .
Nyo’|l el [coszsl+smzsl]+ NP P [coszs ,+dn’s 2]

+ 2[NK1|I 61/€08S |Ny(,[1 65| COSS , + Ny |1 6o[SiNS | Ny, [1 6, |SiNS ]

= NK12|I Gl|2 + NK22|I GZ|2 + 2NK1NK2|IG1”| G2|COS(S 17S 2)

Now |l | =

T Al =
\/§[\/1|cosf e 3 [\/2|cosf

where Pg1, Ps; are three phase real power outputs of plantl and plant 2; V1, V, are the
line to line bus voltages of the plantsand f ,,f , are the power factor angles.
The total transmission loss in the system is given by
2
PL= 31| R
K
where the summation is taken over all branches of the network and Ry is the branch

resistance. Substituting we get

, 2P cos(s, —
N R Gl' G2 1
Z e [\/1|[V2|cosf cosf ;

[\/1| (cosf

P622 2
+——>2 % N ..,'R
[\/2|2(cosf ,) ZK: e
P = P(312 By + 2P Rs, By + P(322822

where B, = ;Z N, ,°R

H V| *(cosf ,)°

17



cos(s , —
B L NN, R¢
2= V, [V, | cosf , cosf Z e

1
Z NKZZRK

[\/2|2(cosf ) K

The loss — coefficients are called the B — coefficients and have unit MW™.

2 =

For a general system with n plants the transmission loss is expressed as

P 2
P=— 6% SN +... +——06 SN, °R
; V|’ (cosf, )ZZ “ [\/n|2(COan)ZZK: oo

Per Fo COS(S B )
+2,)Zq:1 N "\/ ‘cosf cosf Z Nie N

pP#q

In acompact form

n n

R = Z Z PenBeq Feq

p=19=1

cosls , -S )
’V ”V ‘cosf cosf ZNKP

B — Coefficients can be treated as constants over the load cycle by computing them at

average operating conditions, without significant loss of accuracy.

Example 8
Calculate the loss coefficients in pu and MW™ on a base of 50MVA for the network of

Fig below. Corresponding datais given below.

la=1.2-j0.4pu Z,=0.02 +j 0.08 pu
lb=04-j0.2pu Z,=0.08+j 0.32 pu
[c=0.8-j0.1pu Z.=0.02+j0.08 pu
l¢=0.8-j0.2pu Z4=0.03+j0.12 pu
le=1.2-j 0.3 pu Z.=0.03+)0.12 pu

18



Vi =10-0"

1 7
G1 | a | b | c | G2
Q Birs - 7 — 4
— a b c «—
|1 I2

d lld e lle

TLoad 1 TLoad 2

Fig: Example8

Solution:
Total load current

I =lg+1e=20-j0.5=2061 £-14.03°A
l.1=14=0.8-j0.2=0.8246 ~-14.03° A

a4 'Iﬁ ~1.0-04=06

I L L

If generator 1, suppliesthe load then I; = 1. The current distribution is shown in Fig a.
— — -«
= I
I

d [{oan e |06l

TLoad 1 TLoad 2

Fig a: Generator 1 supplying the total load

| |
Ny =15 =10, Ny =-*=06 Ne, =0 N;; =04; N, =06,
L

I L
Similarly the current distribution when only generator 2 supplies the load is shown in Fig
b.

19



@ | = ° IR
IR
d |{oan e | {06l

TLoad 1

TLoad 2

Fig b: Generator 2 supplying the total load

NaZ :0; sz = -0.4; ch = 1.0; Nd2 = 0.4; Ne2 =0.6
FromFig8.10, V1=V g + Zila

=1,0°+(1.2-j 0.4) (0.02 +j0.08)
=1.06 £ 4.78° = 1.056 + j 0.088 pu.

Vo=Vig—lpZp+I1cZc

=1.0 £0°-(0.4—j 0.2) (0.08 +j 0.32) + (0.8 —j 0.1) (0.02 + | 0.08)

=0.928 - 0.05=0.93 ~-3.10° pu.

Current Phase angles

s, =angle of 15(=l,) = tan™ (%J =-18.43°

s, =angleof | (=1 )= tml[%j =-7.13°

coss, -s,)=0.98
Power factor angles
f, =4.78° +18.43=23.21°; cosf , = 0.92

f,=7.13"-3.10° = 4.03% cosf , = 0.998

N.,’R
; K1 TX1.0%%x0.02+ 0.6% x 0.08+ 0.4% x 0.03+ 0.6% x 0.03

B, = =

Y V[ (cost, (1.06) (0.920)°
=0.0677 pu
=0.0677 x 5—](') =0.1354x102MW*

B Cosls, -s,)

= N..N..R
© [\/l|[\/2|(cosfl)(cosf2); K TK2TK

20



~(L06)0 9;))'(%8998)( 0.92) [-0.4x0.6x0.08+0.4x 0.4x 0.03+ 0.6 x 0.6 x 0.03]

=-0.00389 pu
=-0.0078 x 10> MW

Z NK22RK
B — K
& |V2|2icosf ) )

_ (-0.4°0.08+1.0° x0.02+ 0.4% x 0.03+ 0.6” x 0.03
(0.93)°(0.998)°

= 0.056pu = 0.112x102MW™
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HYDRO THERMAL SCHEDULING

OPTIMAL SCHEDULING OF HYDROTHERMAL SYSTEM

No state or country is endowed with plenty of water sources or abundant coal or nuclear fuel. In
states, which have adequate hydro as well as thermal power generation capacities, proper co-
ordination to obtain a most economical operating state is essential.

Maximum advantage is to use hydro power so that the coal reserves can be conserved and
environmental pollution can be minimized.

However in many hydro systems, the generation of power is an adjunct to control of flood water or
the regular scheduled release of water for irrigation. Recreations centers may have developed along
the shores of large reservoir so that only small surface water elevation changes are possible.

The whole or a part of the base load can be supplied by the run-off river hydro plants, and the peak
or the remaining load is then met by a proper mix of reservoir type hydro plants and thermal plants.
Determination of this by a proper mix is the determination of the most economical operating state of
a hydro-thermal system.

The hydro-thermal coordination is classified into long term co-ordination and short term
coordination. The previous sections have dealt with the problem of optimal scheduling of a power
system with thermal plants only. Optimal operating policy in this case can be completely determined
at any instant without reference to operation at other times. This, indeed, is the static optimization
problem. Operation of a system having both hydro and thermal plants is, however, far more complex
as hydro plants have negligible operating cost, but are required to operate under constraints of water
available for hydro generation in a given period of time. The problem thus belongs to the realm of
dynamic optimization. The problem of minimizing the operating cost of a hydrothermal system can
be viewed as one of minimizing the fuel cost of thermal plants under the constraint of water
availability (storage and inflow) for hydro generation over a given period of operation.

For the sake of simplicity and understanding, the problem formulation and solution technique are
illustrated through a simplified hydrothermal system of Fig. This system consists of one hydro and
one thermal plant supplying power to a centralized load and is referred to as a fundamental system.
Optimization will be carried out with real power generation as control variable, with transmission
loss accounted for by the loss formula. Mathematical Formulation For a certain period of operation T
(one year, one month or one day, depending upon the requirement), it is assumed that (i) storage of
hydro reservoir at the beginning and the end of the period are specified, and (ii) water inflow to
reservoir (after accounting for irrigation use) and load demand on the system are known as functions

J (water inflow)

Y
Reservolr y %

(storage) |
Par .P““
| S K
Thermal Hydro
plant : plant

Y

p
o g (water discharge)



of time with complete certainty (deterministic case). The problem is to determine q(t), the water
discharge (rate) so as to minimize the cost of thermal generation.

T ¥
Cr =J; C'(Pgr(t))dt (3.1)

under the following constraints: (i) Meeting the load demand

Pir(t) + Pau(t) — Po(t) — Pp(t) = 0; t £ [0,T] (3.2)

This is called the power balance equation.
(ii) Water availability

. T T
X'(T) — X'(0) —f J(b)de +f q(t)dt =0 (3.3)
0 0

where J(t) is the water inflow (rate), X'(t) water storage, and X‘(0) , X (T) are specified water
storages at the beginning and at the end of the optimization interval.
(iii) The hydro generation PGH(t) is a function of hydro discharge and water storage (or head), i.e.

Pau(t) = fiX'(t).q(t)) (3.4)

The problem can be handled conveniently by discretization. The optimization interval T is
subdivided into M subintervals each of time length AT. Over each subinterval it is assumed that all
the variables remain fixed in value. The problem is now posed as

M M
min AT Z C'(P2) = min Z C(PE) (3.5)
m=1

m=1

under the following constraints:
i)Power balance equation
PO+ P3, —P" P =0

where
PZr= thermal generation in the mth interval
Pii= hydro generation in the mth interval
P =transmission loss in the mth interval

= Brr (PEr)? + 2Bru PEh + Bun(PER)*®
Pi* = load demand in the mth interval

(i1} Water continuity equation

(3.6)



xm _xm=1) _ jmAT 4+ gmAT =0

where
X'™ = water storage at the end of the mth interval
J™ = water inflow (rate) in the mth interval
q" = water discharge (rate) in the mth interval
The above equation can be written as

xm_xm=D_jmgm=0m=12,...,M (3.7)
where X™ =X ™/AT = storage in discharge units.

In Egs. (3.7), X° and X" are the specified storages at the beginning and end of the optimization

interval.

(ii1) Hydro generation in any subinterval can be expressed as

PM = h,{1+ 0.5e(X™ + X™ 1)} (g™ — p) (3.8)
where
h,=9.81 x 107 h’,
h, = basic water head (head corresponding to dead storage)
e = water head correction factor to account for head variation with storage
p = non-effective discharge (water discharge needed to run hydro generator at no load).

In the above problem formulation, it is convenient to choose water discharges in all subintervals
except one as independent variables, while hydro generations, thermal generations and water
storages in all subintervals are treated as dependent variables. The fact, that water discharge in

one of the subintervals is a dependent variable, is shown below:

Adding Eq. (3.7) form = 1, 2, ..M leads to the following equation, known as water availability

equation



Solution Technique

The problem is solved here using non-linear programming technique in conjunction with the first

order gradient method. The Lagrangian £ is formulated by augmenting the cost function of Eq.
(3.5) with equality constraints of Egs. (3.6)-(3.8) through Lagrange multipliers (dual variables)

T, A5 and AT . Thus,

X‘“—X“—Z}“‘+Zq"‘=ﬂ (3.9)

Because of this equation, only (M - 1) gs can be specified independently and the remaining one
can then be determined from this equation and is, therefore, a dependent variable. For

convenience, q] is chosen as a dependent variable, for which we can write

M
ql = 0 _ yM +Z;m_zqm (3.10)
m m=2

L=3,[CPg) — AT (Pgr + PGy - P = Ppt ) + 27 (X™ — X(m=D) — jm 4 gm) +
22 {PZy — hy{1+05e(X™ + X™ 1)} (g™ - p)}] (3.11)

The dual variables are obtained by equating to zero the partial derivatives of the Lagrangian with

respect to the dependent variables yielding the following equations

aL  dc(Pm) apm
aP d P apm

dr apr
apr =4~ A\ 1= 5pm | =0 3.13
3740 =4 (13 a1

aL
(a;{m)m:}u =27 — 23" — 27 (05hee(q™ — p)) — 25+ (0.5h,e(g™ " — p)) = 0 (3.14)
=l

and using Eq. (3.7) in Eq. (3.11), we get



;—;=15—A§h,,(1+u.5e(2x“+jl —2q'+p))=0 (3.15)
The dual variables for any subinterval may be obtained as follows:
(i) Obtain AT* from Eq. (3.12).
(ii) Obtain AT from Eq. (3.13).
(iii) Obtain A} from Eq. (3.15) and other values of 7' (m # 1) from Eq. (3.14).

The gradient vector is given by the partial derivatives of the Lagrangian with respect to the

independent variables. Thus
aL _1
(ﬁq—“‘) =A7 — AT h(1405e (2X™ 1 4™ —2¢™ + p)) (3.16)
m=1

For optimality the gradient vector should be zero if there are no inequality constraints on the

control variables.



POWER SYSTEM STABILITY

INTRODUCTION:
Power system stability of modern large inter-connected systems is a maor

problem for secure operation of the system. Recent major black-outs across the globe
caused by system instability, even in very sophisticated and secure systems, illustrate the
problems facing secure operation of power systems. Earlier, stability was defined as the
ability of a system to return to normal or stable operation after having been subjected to
some form of disturbance. This fundamentally refers to the ability of the system to
remain in synchronism. However, modern power systems operate under complex
interconnections, controls and extremely stressed conditions. Further, with increased
automation and use of eectronic equipment, the quality of power has gained utmost
importance, shifting focus on to concepts of voltage stability, frequency stability,

inter-area oscill ations etc.

The IEEE/CIGRE Joint Task Force on stability terms and conditions have
proposed the following definition in 2004: “Power System stability is the ability of an
electric power system, for a given initial operating condition, to regain a state of
operating equilibrium after being subjected to a physical disturbance, with most system

variables bounded, so that practically the entire system remains intact”.

The Power System is an extremely non-linear and dynamic system, with operating
parameters continuously varying. Stability is hence, a function of the initial operating
condition and the nature of the disturbance. Power systems are continually subjected to
small disturbances in the form of load changes. The system must be in a position to be
able to adjust to the changing conditions and operate satisfactorily. The system must also
withstand large disturbances, which may even cause structural changes due to isolation of

some faulted elements.

A power system may be stable for a particular (large) disturbance and unstable for

another disturbance. It is impossible to design a system which is stable under all



disturbances. The power system is generaly designed to be stable under those
disturbances which have a high degree of occurrence. The response to a disturbance is
extremely complex and involves practically all the equipment of the power system. For
example, ashort circuit leading to alineisolation by circuit breakers will cause variations
in the power flows, network bus voltages and generators rotor speeds. The voltage
variations will actuate the voltage regulators in the system and generator speed variations
will actuate the prime mover governors; voltage and frequency variations will affect the
system loads. In stable systems, practically all generators and loads remain connected,
even though parts of the system may be isolated to preserve bulk operations. On the other
hand, an unstable system condition could lead to cascading outages and a shutdown of a

major portion of the power system.

ROTOR ANGLE STABILITY
Rotor angle stability refers to the ability of the synchronous machines of an

interconnected power system to remain in synchronism after being subjected to a
disturbance. Instability results in some generators accelerating (decelerating) and losing
synchronism with other generators. Rotor angle stability depends on the ability of each
synchronous machine to maintain equilibrium between electromagnetic torque and
mechanical torque. Under steady state, there is equilibrium between the input mechanical
torque and output electromagnetic torque of each generator, and its speed remains a
constant. Under a disturbance, this equilibrium is upset and the generators
accelerate/decel erate according to the mechanics of arotating body. Rotor angle stability

isfurther categorized as follows:

Small single (or small disturbance) rotor angle stability

It is the ability of the power system to maintain synchronism under small
disturbances. In this case, the system equation can be linearized around the initia
operating point and the stability depends only on the operating point and not on the
disturbance. Instability may result in

(i) A non oscillatory or a periodic increase of rotor angle

(i) Increasing amplitude of rotor oscillations due to insufficient damping.



Thefirst form of instability islargely eliminated by modern fast acting voltage regulators
and the second form of instability is more common. The time frame of small signal
stability is of the order of 10-20 seconds after a disturbance.

Large-signal rotor angle stability or transient stability

This refers to the ability of the power system to maintain synchronism under large
disturbances, such as short circuit, line outages etc. The system response involves large
excursions of the generator rotor angles. Transient stability depends on both the initia
operating point and the disturbance parameters like location, type, magnitude etc.
Instability is normally in the form of a periodic angular separation. The time frame of
interest is 3-5 seconds after disturbance.

The term dynamic stability was earlier used to denote the steady-state stability in
the presence of automatic controls (especially excitation controls) as opposed to manual
controls. Since all generators are equipped with automatic controllers today, dynamic
stability haslost relevance and the Task Force has recommended against its usage.

MECHANICS OF ROTATORY MOTION
Since a synchronous machine is arotating body, the laws of mechanics of rotating

bodies are applicable to it. In rotation we first define the fundamental quantities. The
angle 6, isdefined, with respect to acircular arc with its center at the vertex of the angle,

astheratio of the arc length sto radiusr.

S
em = — (1)
r
The unit isradian. Angular velocity wn, isdefined as
dg
Wm = m (2
"ot
and angular acceleration as
2
a :dWm _ d qm (3)

dt  dt?



The torque on a body due to atangential force F at adistance r from axis of rotation is

given by

T=rF (4)
The total torgque is the summation of infinitessimal forces, given by

T=[rdF (5)

The unit of torque is N-m. When torque is applied to a body, the body experiences
angular acceleration. Each particle experiences a tangential accelerationa=ra , where r
is the distance of the particle from axis of rotation. The tangential force required to
accelerate a particle of massdmis

dF=adm=radm (6)

Thetorque required for the particleis

dT =rdF =ra dm (7)
and that required for the whole body is given by

T=afr’dm =1la (8)
Here

| = [r’dm (9)

is called the moment of inertia of the body. The unit is Kg— m?. If the torque is assumed
to be the result of a number of tangential forces F, which act at different points of the
body

T=SrF
Now each force acts through a distance

ds=rdbn
Thework doneis F.ds

dW =3 Frdén=d6y, T

W= [Tdo, (10)
and T= aw (11)
dqg,,

Thus the unit of torque may aso be Joule per radian.
The power is defined as rate of doing work. Using (11)



=W _TdGn 1y, (12)
dt o

The angular momentum M is defined as
M=1wn (13)
and the kinetic energy is given by

1
KE:llme:—l\/lmm (14)
2 2

From (14) we can see that the unit of M is seen to be J-sec/rad.
SWING EQUATION:

From (8)
la =T
ldq
or = 15
e (15)

Here T is the net torque of all torques acting on the machine, which includes the shaft
torque (due to prime mover of a generator or load on a motor), torque due to rotational

losses (friction, windage and core l0ss) and el ectromagnetic torque.

Let T, = shaft torque or mechanical torque corrected for rotational 10sses

T = Electromagnetic or electrical torque

For a generator T, tends to accelerate the rotor in positive direction of rotation and for a

motor retards the rotor.

The accelerating torque for a generator
Ta=Tm [ Te (16)

Under steady-state operation of the generator, Tr, is equal to Te and the accelerating
torque is zero. There is no acceleration or deceleration of the rotor masses and the
machines run at a constant synchronous speed. In the stability analysis in the following
sections, T, is assumed to be a constant since the prime movers (steam turbines or hydro
turbines) do no act during the short time period in which rotor dynamics are of interest in
the stability studies.



Now (15) has to be solved to determine (,, as a function of time. Since q, is

measured with respect to a stationary reference axis on the stator, it is the measure of the
absolute rotor angle and increases continuously with time even at constant synchronous
speed. Since machine acceleration /deceleration is always measured relative to
synchronous speed, the rotor angle is measured with respect to a synchronously rotating

reference axis. Let

d,=q, 0wt (17)
where W__ is the synchronous speed in mechanical rad/s and d_ is the angular

displacement in mechanical radians.
Taking the derivative of (17) we get

dd, dq,
=m0 w_
at at

dd, d7,
dt? dt?
Substituting (18) in (15) we get
I dzd"‘ =Ta=Tm [ T N-m (29)
dt2 a m

Multiplying by W_ on both sides we get
d’d_
w, | —
adt
From (12) and (13), we can write

2
ddtdzm -P,-P, W (21)

where M is the angular momentum, also called inertia constant

(18)

=W_(Tm &) N-m (20)

Pm = shaft power input less rotational losses
Pe = Electrical power output corrected for losses

P, = acceleration power



M depends on the angular velocity W, and hence is strictly not a constant, because W
deviates from the synchronous speed during and after a disturbance. However, under
stable conditions W does not vary considerably and M can be treated as a constant. (21)

is called the *“Swing equation™. The constant M depends on the rating of the machine and
varies widely with the size and type of the machine. Another constant called H constant
(also referred to as inertia constant) is defined as

stored kinetic energy in mega joules
at sychronous speed

Machine rating in MVA

H= MJ / MVA (22)

H falls within a narrow range and typical values are givenin Table 9.1.
If the rating of the machineis G MVA, from (22) the stored kinetic energy is GH
Mega Joules. From (14)

GH = %Mwsm MJ (23)
or
M = 26GH MJ-s/mech rad (24)
w

The swing equation (21) iswritten as
2H d’d, P, PR, R

a

(25)

w_ dt®> G G

In (.25) d,, isexpressed in mechanical radians and w,,, in mechanical radians per second
(the subscript mindicates mechanical units). If d and w have consistent units then mec

2H d*d
w, dt?

= Pa = I:)m_l:)e pu (26)

Here w, is the synchronous speed in electrical rad/s (w, =(§] w,,,) and P, is

acceleration power in per unit on same base as H. For a system with an electrica

frequency f Hz, (26) becomes

H d%d
p_f dtz = Pa = Pm_Pe pu (27)

when d isin éectrica radians and



H dd
_— =P =P-P. pu 28
180f dt> * ™ ° P (28)

when d isin electrical degrees.
(27) and (28) also represent the swing equation. It can be seen that the swing equationisa

second order differential equation which can be written as two first order differentia

equations:
S (29)
% =W-—W, (30)

in which w,w, and d are in electrical units. In deriving the swing equation, damping

has been neglected.

Table 1 : H constants of synchronous machines

Type of machine H (MJMVA)
Turbine generator condensing 1800 rpm | 9-6
3600rpm | 7-4
Non condensing 3600rpm | 4-3

Water wheel generator
Slow speed <200rpm | 2-3
High speed >200rpm | 2-4

Synchronous condenser
Large %35} 25% less for hydrogen cooled
Smal | ™

Synchronous motor with load varying

from1.0t0 5.0 20

In defining the inertia constant H, the MV A base used is the rating of the machine. In a
multi machine system, swing equation has to be solved for each machine, in which case,
acommon MVA base for the system has to chosen. The constant H of each machine must
be consistent with the system base.

Let



Gmach = Machine MV A rating (base)
In (9.25), H is computed on the machinerating G =G

mach

Multiplying (9.25) by g”‘““ on both sides we get

system
2 —
C;malch 2H d d2m — I:)m Pe C-:'mach (31)
Gsystem Wsm dt C:"mach Gwstem
Hogem d2d_
=P,— P, pu(on system base)
w,, dt?
— Gmalch
where H gygem = H —/ (32)
Gyem

In the stability analysis of a multi machine system, computation is considerably
reduced if the number of swing equations to be solved is reduced. Machines within a
plant normally swing together after a disturbance. Such machines are called coherent
machines and can be replaced by a single equivalent machine, whose dynamics reflects
the dynamics of the plant.

Example 1:

A 50Hz, 4 pole turbo alternator rated 150 MV A, 11 kV has an inertia constant of
9 MJ/ MVA. Find the (a) stored energy at synchronous speed (b) the rotor acceleration if
the input mechanical power is raised to 100 MW when the electrica load is 75 MW, (c)
the speed at the end of 10 cyclesif acceleration is assumed constant at the initial value.
Solution:

(@ Stored energy = GH =150 x 9 = 1350 MJ

(b) P.=Pn—Pe =100-75=25 MW

= GH = 1350 =0.15 MJ-s/%
180f 180x50

d*d
dt?

=25
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2
Acceleration a = d*d :£:166.6 og/s?
d 0.15

t2

= 166.6 x% om/s?

=166.6 x 2 X 1 rps/s
P 360

=166.6 x 2 X 1 x 60 rpm/s
P 360

=13.88 rpm/s

* Note % = electrical degree; °m = mechanical degree; P=number of poles.
10
c) 10 cycles= =— =0.2s
(c) 10cy 0

120 x 50

Ns = Synchronous speed = =1500 rpm

Rotor speed at end of 10 cycles=Ngs+ a x 0.2
= 1500 + 13.88 x 0.2 = 1502.776 rpm

Example 2:

Two 50 Hz generating units operate in paralel within the same plant, with the
following ratings:

Unit 1: 500 MV A, 0.8 pf, 13.2 kV, 3600 rpm: H =4 MJMVA

Unit 2: 1000 MVA, 0.9 pf, 13.8 kV, 1800 rpm: H =5 MJMVA
Calculate the equivalent H constant on a base of 100 MVA.
Solution:

Gl mach
1mach X G
system

1system —

= 4x @=ZO MJIMVA
100

G

X
2mach
G

_ 2mach
2system
system

100(?=50 MJIMVA

= Bx

Hg=H;+H,=20+50=70 MJMVA
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This is the equivalent inertia constant on a base of 100 MVA and can be used

when the two machines swing coherently.

POWER-ANGLE EQUATION:

In solving the swing equation, certain assumptions are normally made

(i) Mechanical power input Py is a constant during the period of interest,
immediately after the disturbance

(i) Rotor speed changes are insignificant.

(iii)  Effect of voltage regulating loop during the transient is neglected i.e the
excitation is assumed to be a constant.

As discussed in section 9.4, the power—angle relationship plays a vita role in the

solution of the swing equation.

POWER-ANGLE EQUATION FOR A NON-SALIENT POLE MACHINE:

The simplest model for the synchronous generator is that of a constant voltage
behind an impedance. This model is called the classical model and can be used for
cylindrical rotor (non-salient pole) machines. Practically all high—speed turbo aternators

are of cylindrical rotor construction, where the physical air gap around the periphery of

the rotor is uniform. This type of generator has approximately equal magnetic reluctance,
regardless of the angular position of the rotor, with respect to the armature mmf.
r

The power output of the generator is given by the real part of Eg la .

| _Ezd -V 20
R+ X

_ E, £d -V, £0°
NeglectingRa, |, =

(38)

I Xy

oo [ o202 v

X4 X4



E,” c0s90° E,V, cos(90°+d)

X4 X4

E,V, sind
Xd

(Note- R standsfor real part of)

The maximum power that can be transferred for a particular excitation is given by ——

at = 90°

(39)

POWER ANGLE EQUATION FOR A SALIENT POLE MACHINE:

12

E,V,

t

X4

Here because of the salient poles, the reluctance of the magnetic circuit in which flows

the flux produced by an armature mmf in line with the quadrature axis is higher than that

of the magnetic circuit in which flows the flux produced by the armature mmf in line with

the direct axis. These two components of armature mmf are proportional to the

corresponding components of armature current. The component of armature current

producing an mmf acting in line with direct axis is called the direct component, l4. The

component of armature current producing an mmf acting in line with the quadrature axis

is called the quadrature axis component, |g.
Power output P =V,I, cosq
= Eyly +Egl,
E, =V,snd
E, =V, cosd

_E,-E

g
ly =

=1,sin(d+q)

X4

I :%: |, cos(d +q)
q

Substituting (9.41c) and (9.41d) in (9.40), we obtain
o EgVisind V2 (%, — x,)sin2d
Xq 2%y %q

(40)
(41d)
(41b)

(41c)

(41d)

(42)
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(9.42) gives the steady state power angle relationship for a salient pole machine. The
second term does not depend on the excitation and is called the reluctance power
component. This component makes the maximum power greater than in the classica
model. However, the angle at which the maximum power occurs is less than 90°.
TRANSIENT STABILITY:

As defined earlier, transient stability is the ability of the system to remain stable under

large disturbances like short circuits, line outages, generation or load loss etc. The
evaluation of the transient stability is required offline for planning, design etc. and online
for load management, emergency control and security assessment. Transient stability
analysis deals with actual solution of the nonlinear differential equations describing the
dynamics of the machines and their controls and interfacing it with the algebraic
eguations describing the interconnections through the transmission network.

Since the disturbance is large, linearized analysis of the swing equation (which
describes the rotor dynamics) is not possible. Further, the fault may cause structural
changes in the network, because of which the power angle curve prior to fault, during the
fault and post fault may be different. Due to these reasons, a genera stability criteria for
transient stability cannot be established, as was done in the case of steady state stability
(namely Ps > 0). Stability can be established, for a given fault, by actual solution of the
swing equation. The time taken for the fault to be cleared (by the circuit breakers) is
called the clearing time. If the fault is cleared fast enough, the probability of the system
remaining stable after the clearance is more. If the fault persists for a longer time,
likelihood of instability is increased. Critical clearing time is the maximum time
available for clearing the fault, before the system loses stability. Modern circuit breakers
are equipped with auto reclosure facility, wherein the breaker automatically recloses after
two sequential openings. If the fault still persists, the breakers open permanently. Since
most faults are transient, the first reclosure is in genera successful. Hence, transient
stability has been greatly enhanced by auto closure breakers.

Some common assumptions made during transient stability studies are as follows:
1. Transmission line and synchronous machine resistances are neglected. Since
resistance introduces a damping term in the swing equation, this gives

pessimistic results.
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2. Effect of damper windingsis neglected which again gives pessimistic results.
3. Variationsin rotor speed are neglected.
4. Mechanical input to the generator is assumed constant. The governor control
loop is neglected. This also leads to pessimistic results.
5. The generator is modeled as a constant voltage source behind a transient
reactance, neglecting the voltage regulator action.
6. Loads are modeled as constant admittances and absorbed into the bus
admittance matrix.
The above assumptions, vastly simplify the equations. A digital computer program for
transient stability analysis can easily include more detailed generator models and effect of
controls, the discussion of which is beyond the scope of present treatment. Studies on the
transient stability of an SMIB system, can shed light on some important aspects of
stability of larger systems.  The figure below shows an example of how the clearing

time has an effect on the swing curve of the machine.
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Modified Euler’s method:
Euler’s method is one of the easiest methods to program for solution of differential

equations using a digital computer . It uses the Taylor’s series expansion, discarding all
second-order and higher—order terms. Modified Euler’s algorithm uses the derivatives at
the beginning of atime step, to predict the values of the dependent variables at the end of
the step (t; = to + At). Using the predicted values, the derivatives at the end of the interval
are computed. The average of the two derivatives is used in updating the variables.

Consider two simultaneous differential equations:

dx
—=f (xV,t
Yt p)

dt
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Starting from initial values Xq Yo, to a the beginning of atime step and a step size h we

solve as follows;

Let
dx
Dy = fux(Xo,Yo,t0) = —
x = Tx(Xo,Yo,to) dtl,
dy
D, = fy(Xo,Vo,to) = —
y = fy(Xo,Yo,to) o,
P
X" =%X,+D, h _
o Predicted values
Yy =Y, +D,h
dx P P
Dyp= — =fu(X,y t
xP dtp x( y 1)
Dyr = & = fy(x"y"t0)
dt |,

X1=Xo + (@]h

D,+D
y1:y0+(—y > yPJh

x 1and y; are used in the next iteration. To solve the swing equation by Modified Euler’s
method, it iswritten astwo first order differential equations:

dd

— =W
dt

d_w_i_ P, — P, sind
ad M M

Starting from an initial value d,, W, at the beginning of any time step, and choosing a step

size At s, the equations to be solved in modified Euler’s are as follows:

E =D1=wo

dt |,

dw P, — P SiNd,
= =p,=

dt |, M
8" = 8y + Dy At

W = W+ Dy At
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| =Dip=

ot 1P

aw| _ . _ P, -P,sind”
— =Do2p

at |, M

W1 = Wo + (%) At

d; and w; are used as initial values for the successive time step. Numerical errors are
introduced because of discarding higher—order terms in Taylor’s expansion. Errors can be
decreased by choosing smaller values of step size. Too small a step size, will increase
computation, which can lead to large errors due to rounding off. The Runge- Kutta

method which uses higher—order terms is more popular.

Example :A 50 Hz, synchronous generator having inertia constant H = 5.2 MJMVA and

!

X4 = 0.3 pu is connected to an infinite bus through a double circuit line as shown in
Fig. 9.21. The reactance of the connecting HT transformer is 0.2 pu and reactance of each
line is 0.4 pu. ‘Eg‘ =12 puand V| = 1.0 pu and P = 0.8 pu. Obtain the swing curve

using modified Eulers method for a three phase fault occurs at the middle of one of the

transmission lines and is cleared by isolating the faulted line.
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Solution:
Before fault transfer reactance between generator and infinite bus

Xi= 03+02+0—24 =0.7 pu

1.2x1.0

= 1.714 pu.

I:)maxl -

Initial Pe=0.8 pu = Pn,

Initial operating angle 8, = sin™ 1 08 _ 27.82° = 0.485 rad.
1.714

When fault occurs at middle of one of the transmission lines, the network and its
reductionisas shownin Fig ato Fig c.

\.’ L

03 i}.j 'L' s |II ‘
02 02
N ! e
WAL L r=le f’\\
i ]
i |
{a)
0.1
' rmj\ ‘JW' 0000
()Eg-12 005§ V=10~
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1.9

0000
= 7 f’/,H
= J E.OK\\ v

(c) |

The transfer reactanceis 1.9 pu.

1.2x1.0 - 0.63 pu

Praxn =
Since there is no outage, Pmax 111 = Pmax1 = 1.714

LI p - sinl(ﬂj = 2.656 rad
1.714

Omex = P _Sinl{P

max |11

I:)m (dmax _do)_ I:)maxll COSdo + I:)maxlll COSdmax

COS O¢ = 5 5

max 1l T maxll

_ 0.8(2.656-0.485) — 0.63 c0s(0.485) + 1.714 cos (2.656)
1.714 - 0.63

_1.7368-0.5573-1.5158 _ 0.3102
1.084

e = cos ™t (- 0.3102) = 1.886 rad = 108.07°

with line outage
Xmn=03+02+0.4=0.9pu

1.2x1.0

=1.333pu

Prax i =

., 08
dmax = P — SNt = 2.498 rad
max = P 1.333
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Modified Eulers method
8o = 27.82°=0.485 rad
wo=0.0rad/ sec (att=0°

Choosing a step size of 0.05 s, the swing is computed. Table a gives the values of the
derivatives and predicted values. Table b gives the initial values 4., w, and the values at
the end of the interval 81, w;. Calculations areillustrated for thetime stept =0.2 s.

do= 0.761

wWo =2.072

Pn=0.8

IT x

M = [ 5.2 o}: 0.0331 &/ rad

Pmax (after fault clearance) = 1.333 pu

D1=2.072

_ 0.8-1.333sin(0.761) _
0.0331

5" =0.761 + ( 2.072 x 0.05) = 0.865

w” =2.072 + (- 3.604 x 0.05) = 1.892

D, 3.604

D]_p =1.892

D, 08-1333sin (0865) _ . o,
0.0331

5,=0.761 + [L;mgzj 0.05 = 0.860

0.05 =1.82

0 = 2072 + (— 3.604 — 6.482)

01, w1 are used as initial valuesin next time step.

Table a: Cdculation of derivativesin modified Euler’s method




t D, D, 5" w Dip Dop

0" 0.0 15296 | 0485 | 0.765 | 0.765 | 15.296
0.05 | 0.765 | 14977 | 0542 1514 1514 | 14.350
0.10 | 1498 | 14.043 | 0.636 2.200 2200 | 12.860
0.15 2.17 -0.299 | 0.761 2.155 2155 | -3.600
0.20 | 2072 | -3.604 | 0.865 1.892 1892 | -6.482
025 | 1.820 | -6.350 | 0.951 1.502 1502 | -8.612
0.30 | 1446 | -8424 | 1.015 1.025 1.025 | - 10.041
035 | 0984 | -9.827 | 1.054 | 0493 | 0.493 | -10.843
0.40 | 0467 | -10.602 | 1.065 | -0.063 | -0.063 | -11.060
045 |-0.074 | -10.803 | 1.048 | -0.614 | -0.614 | - 10.720
050 |-0612| -1046 | 1.004 | -1.135 |-1.135| -9.800

Tableb : calculations of &,, W, and 41, w; in modified Euler’s method

T PV do Wo 01 W1 1
rad rad / sec rad rad / sec deg
0) 1714 0.485 0.0 - - -
0" 0.630 0.485 0.0 0.504 | 0.765 28.87
0.05 0.630 0.504 0.765 0.561 1.498 32.14
0.10 0.630 0.561 1.498 0.653 2.170 37.41
0.15 1.333 0.653 2.170 0.761 2.072 43.60
0.20 1.333 0.761 2.072 0.860 1.820 49.27
0.25 1.333 0.860 1.820 0.943 1.446 54.03
0.30 1.333 0.943 1.446 1.005 | 0.984 57.58
0.35 1.333 1.005 0.984 1.042 | 0.467 59.70
0.40 1.333 1.042 0.467 1052 | -0.074 60.27
0.45 1.333 1.052 -0.074 | 1.035 | -0.612 59.30
0.50 1.333 1.035 -0612 | 0991 | -1.118 | 56.78

21



22

Runge - Kutta method
In Range - Kutta method, the changes in dependent variables are calculated from

a given set of formulae, derived by using an approximation, to replace a truncated
Taylor’s series expansion. The formulae for the Runge - Kutta fourth order

approximation, for solution of two simultaneous differential equations are given below;

. dx
Given — =f,(x, vy, t
& x (X, ¥, 1)

Starting from initial values Xo, Yo, to and step size h, the updated values are

X1:Xo+% (k1+2k2 +2k3+k4)

Y1=YO+% (I1+ 2+ 23+ 14)

where ki = fy (Xo, Yo ,to) h

k I h
ko =f +-—2 Yy, +—=2,t,+— | h
2 X(Xo 2 Yo 510 ZJ

k | h
ks=f +—2 Yy, +—2t,+— | h
3 X(Xo 2 Yo 2 0 2)
Kg=Tfx (Xo + K3, Yo+ I3, to+ h) h
l1="fy (X0, Yo, to) h

I h
I, =", (xo +7k1, Yo +El,tO +Ej h

k I h
l3=f +—2 Yy, +—2t,+—|h
3 Y(Xo 2 Yo 5 10 2)

l4=1fy (Xo+ ks, Yo+ 13, to+h)h
Thetwo first order differential equations to be solved to obtain solution for the swing
equation are:

dd
dt



dw P, P, - P, sind

M M
Starting from initial value &0, wo, to and a step size of At the formulae are as follows
k]_ = Wo At

I = [Pm — Pmaxsndo} At

ks = (_(A)O + |3) At
= P, - P, sin(d, + k3)} At

M

61:60+%[k1+2k2+2k3+k4]

w12w0+% [l1+ 205+ 213+ 14]

Example
Obtain the swing curve for previous example using Runge - Kutta method.

Solution:
5o =27.82° = 0.485 rad.
wo=0.0rad/sec. (at=0)

23



Choosing a step size of 0.05 s, the coefficient k1, ko, k3, kg and I4, I, 13, and |, are

24

calculated for each time step. The values of  and w are then updated. Table a givesthe

coefficient for different time steps. Table b gives the starting values &o, wo for atime step

and the updated values 31, w; obtained by Runge - Kutta method. The updated values are

used as initial values for the next time step and process continued. Calculations are

illustrated for thetime stept = 0.2 s.
00 =0.756
M =0.0331¢°/ rad
wWo = 2.067
Pn=0.8

Pmax = 1.333 (after fault is cleared)

ki =2.067 x 0.05=0.103

_ [0.8 —1.333sin (0.756)}
I, = X

0.0331
0.173

0.05 =-0.173

ko= [2.067 - T} 0.05=0.099

0.8-1.333 Sin(0.756 +

0.103

j x 0.05 =-0. 246

I, =
0.0331

0.246

ks = {2.067 - T} 0.05=0.097

0.8-1.333 sin(0.756 +

o.oggj
x 0.05 =- 0. 244

0.0331

ks = (2.067 — 0.244) 0.05 = 0.091

0.8 - 1.333 sin(0.756 + 0.097)

0.0331

} x 0.05 =-0. 308

01 = 0.756 + % [0.103 + 2 x 0.099 + 2 x 0.097 + 0.091] = 0.854
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w1 = 2.067 + % [-0.173+2x-0.246+2x—-0. 244 -0. 308] = 1.823

Now 6 = 0.854 and w = 1.823 are used as initial values for the next time step. The
computations have been rounded off to three digits. Greater accuracy is obtained by

reducing the step size.

Tablea : Coefficients in Runge - Kutta method
T K1 Iy Ko 2 Ks I3 K4 |4
0.0 0.0 0.764 | 0.019 | 0.764 | 0.019 | 0.757 | 0.038 | 0.749
0.05| 0031 | 0749 | 0056 | 0.736 | 0.056 | 0.736 | 0.07/5 | 0.703
010| 0.0/5 | 0704 | 0.092 | 0674 | 0.091 | 0.667 | 0.108 | 0.632
0.15| 0.108 |-0.010| 0.108 |-0.094| 0.106 |-0.095| 0.103 | -0.173
020| 0103 |-0.173| 0.099 |-0.246| 0.097 |-0.244| 0.091 | -0.308
825| 0.091 |-0.309| 0.083 |-0368| 0082 |-0.363| 0.073 |-0.413
0.30| 0.073 |-0413| 0.063 |-0455| 0.061 | -0.450| 0.050 |-0.480
0.35| 0.050 |-0483| 0.038 |-0510| 0037 |-0.504| 0.025 |-0.523
040| 0.025 |-0523| 0012 | -0.536| 0.011 | -0.529 | —0.001 | -0.534
045|-0.001|-0.534 | -0.015 | - 0.533 | - 0.015 | - 0.526 | - 0.027 | — 0.519
050| -0.028 | -0519 | -0.040 | -0.504 | —0.040 | —0.498 | - 0.053 | - 0.476

Tableb: 8, w computations by Runge - Kutta method

t Prax do Wo 01 W1 01
(sec) | (pu) | (rad) | rad/sec | rad | rad/sec | deg
0O |1.714|0.485 0.0
0" | 0630|0485 0.0 |0504| 0.759 | 28.87
0.05 | 0.630 | 0.504 | 0.756 | 0.559 | 1.492 | 32.03
0.10 | 0.630 | 0.559 | 1.492 |0.650 | 2.161 | 37.24
0.15 | 1.333| 0.650 | 2.161 | 0.756 | 2.067 | 43.32
0.20 | 1.333 | 0.756 | 2.067 | 0.854 | 1.823 | 48.93
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0.25]1333|0.854 | 1823 | 0.936| 1459 | 53.63
0.30 | 1.333 | 0.936 | 1459 | 0.998 | 1.008 | 57.18
0.35|1.333|0.998 | 1.008 |1.035| 0.502 | 59.30
0.40 | 1.333 | 1.035| 0.502 | 1.046 | —0.029 | 59.93
0.45 | 1.333 | 1.046 | - 0.029 | 1.031 | — 0.557 | 59.07
0.50 | 1.333 | 1.031 | - 0.557 | 0.990 | - 1.057 | 56.72

Note: 9o, wo indicate values at beginning of interval and 4;, w; a end of interval. The
fault is cleared at 0.125 seconds. .. Pnax = 0.63 at t = 0.1 sec and Pa = 1.333 at t = 0.15
sec, since fault is aready cleared at that time. The swing curves obtained from modified
Euler’s method and Runge - Kutta method are shown in Fig. It can be seen that the two

methods yield very close results.

65 T T T T T
+ - Modified Euler's Method
60~ o - Runge-Kutta Method e T
55 - V4 4
= 50 .*:
3 7
@
=)
8 45
T
]
40
£
35+ —
30+ —
25 | | | | |
0 01 0.2 0.3 0.4 0.5 0.6 0.7

Time {seconds)

Fig: : Swing curves with Modified Euler’ and Runge-Kutta methods
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Milne’s Predictor Corrector method:
The Milne’s formulae for solving two simultaneous differential equations are

given below.

Consider % =fx (X, ¥, 1)

With values of x and y known for four consecutive previous times, the predicted value for

n + 1™ time step is given by

n+l

xP .= xn_3+4—3h [2x;_2 — X, +2X ]

4h ! ! !
Via= Yo st g [2Yes —Yar 2%, ]
Where x" and y' are derivatives at the corresponding time step. The corrected values are

f— h[ ! 4 ! ! ]
Xn+1= Xn—1+§ Xpg 74X, + X

wﬂ:mﬂ+§{w4+4w-+wﬂ]

' P P
where X/, = f, (XM, Yoits tml)

n+l —

Yoa = f, (Xril’ Yoot tn+l)
To start the computations we need four initial values which may be obtained by
modified Euler’s method, Runge - Kutta method or any other numerical method which is
self starting, before applying Milne’s method. The method is applied to the solution of

swing equation as follows:

Define d; _dd =W,
dt |,
,  dw P, - P. sind,
Wn = =
at |, M
47 =0y, + 50 2, + 20



Wnp+1 =W, _3 +% [2Wr’1—2 - Wr'1—1 + 2er1 ]
At 1 ! 1
Ore1 = Oy + 3 [ hqt+4d) + dn+1]

—_ At ’ ’ ’
Wn+1 = Wpg + ? Wy + 4w, +w

i P
Where dn-¢—l =Wn-*—l
i 4P
v I::’m - I:)max sin dn+1
Wn+1 - M
Example

Solve example using Milne’s method.

Solution:

To start the process, we take the first four computations from Range K utta method

t=00s 0:=0504  w;=0.759
t=0.05s 0, =0.559 wy = 1.492
t=0.10s d3 = 0.650 w3 =2.161
t=0.15s 04 =0.756 w4 = 2.067

The corresponding derivatives are calculated using the formulae for d andw/ . We get

d; =0759 w, =14.97
d; =1.492 w, =14.075
d; =2161 w, =12.65
d, =2.067 w, =-346
We now compute s and ws, at the next timestepi.e t=0.2s.

dr :dl+%[2d; —d; +2d; ]

— 0.504 + 4 x 0.05

= Wl+%[2Wé — W, +2W;]

[2x1.492 — 2.161+ 2 x 2.067] = 0.834

28
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4 x 0.05

=0.759 + [2x 14.075 — 12.65 + 2 x (—3.46)] = 1.331

d, =1331

, _ 0.8-1.333sin(0.834) _

w, — 5.657
0.0331

5 = 5 + %[d; +4d; +d: ]

=065+ 9P 2161+ 4x 2067 + 1.331] = 0.846

3
A
oo5:oo3+?t[wg + 4w, +wg]

=2.161 + % [12.65 — 4 x 3.46 — 5.657 | = 2.047

d. =ws=2047

W - 0.8-1.333sin (0.846) _
> 0.0331

The computations are continued for the next time step in asimilar manner.

-5.98

MULTI MACHINE TRANSIENT STABILITY ANALYSIS

A typical modern power system consists of a few thousands of nodes with heavy

interconnections. Computation simplification and memory reduction have been two
major issues in the development of mathematical models and algorithms for digital
computation of transient stability. In its ssmplest form, the problem of a multi machine

power system under going a disturbance can be mathematically stated as follows:

X(t)= f, (x(t)) —0 <t <0
X(t): £, (x(t) O<t<t,

X(t) = fIII (X(t)) tce <t <o

x(t) is the vector of state variables to describe the differential equations

governing the generator rotor dynamics, dynamics of flux decay and associated generator
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controller dynamics (like excitation control, PSS, governor control etc). The function f,
describes the dynamics prior to the fault. Since the system is assumed to be in steady
state, all the state variable are constant. If the fault occurs at t = O, f; describes the
dynamics during fault, till the fault is cleared at time ty. The post—fault dynamics is
governed by fj;. The state of the system X at the end of the fault-on period (at t = tg)
provides the initial condition for the post—fault network described which determines
whether a system is stable or not after the fault is cleared. Some methods are presented in
the following sections to evaluate multi machine transient stability. However, a detailed

exposition is beyond the scope of the present book.

REDUCED ORDER MODEL
Thisisthe ssimplest model used in stability analysis and requires minimum data.

The following assumptions are made:
e Mechanical power input to each synchronous machine is assumed to be
constant.
e Damping is neglected.
e Synchronous machines are modeled as constant voltage sources behind
transient reactance.

e Loads are represented as constant impedances.

With these assumptions, the multi machine system is represented asin Fig. 9.26.



31

Fig 9.26 Multi machine system

Nodes 1, 2 ...... n are introduced in the model and are called internal nodes (the
termina node is the externa node connected to the transmission network). The swing
equations are formed for the various generators using the following steps:

Step 1: All system datais converted to a common base.
Step 2: A prefault load flow is performed, to determine the prefault steady state voltages,
a al the externa buses. Using the prefault voltages, the loads are converted into
equivalent shunt admittance, connected between the respective bus and the reference
node. If the complex load at busi is given by
S =P +Qy

the equivalent admittanceis given by

s, _ R -iQ
Val© Ml

Step 3: Theinternal voltages are calculated from the terminal voltages, using

Yi=
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E|2d] =M|+jx 1,
S
M

iy (PGi_jQGi)
=M I X

= |V|| + )X

d/ istheangle of E; with respect to V;. If the angle of V; is i, then the angle of

Ei, with respect to common reference isgiven by d, =d; + b,. Ps and Qg are obtained
from load flow solution.
Step4: The bus admittance matrix Y pys formed to run the load flow is modified to include
the following.
(i) Theequivalent shunt load admittance given by, connected between the
respective load bus and the reference node.

(i) Additional nodes are introduced to represent the generator internal nodes.

Appropriate values of admittances corresponding to x; , connected between

the internal nodes and terminal nodes are used to update the Y pys.

(ili) Ypus corresponding to the faulted network is formed. Generally transient
stability analysisis performed, considering three phase faults, since they are
the most severe. The Y s during the fault is obtained by setting the elements
of the row and column corresponding to the faulted bus to zero.

(iv) Y us corresponding to the post—fault network is obtained, taking into account
line outages if any. If the structure of the network does not change, the Y s
of the post-fault network is same as the prefault network.
Step 5: The admittance form of the network equationsis
| =YpusV
Sinceloads are al converted into passive admittances, current injections are present only
at the n generator internal nodes. The injections at all other nodes are zero. Therefore, the

current vector | can be partitioned as

[
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where |, isthe vector of current injections corresponding to the n generator internal

nodes. Yys and V are also partitioned appropriately, so that

Gaaa

where E,, isthe vector of internal emfs of the generators and V; is the vector of external

bus voltages. From (9.91) we can write
In:Y]_ En+Y2Vt
0=Ys3E,+YsV;
we get
Vi= - Y, Y,E,
h=(%-Y,Y,'Y,) E.= Y E,
where Y =Y, -Y, Y, 'Y, is caled the reduced admittance matrix and has dimension

nxn. \A( gives the relationship between the injected currents and the internal generator
voltages. It is to be noted we have eliminated all nodes except the n internal nodes.
Step 6: The electric power output of the generators are given by

Psi = R[E Ii* iy
Substituting for I; from (9.94) we get

Pa=|Ef G, + Zn:.|EiHEj‘(éij sn(d, -d,) + G, cos(d, —dj))

j=1=i
(This egquation is derived in chapter on load flows)
Step 7: Therotor dynamics representing the swing is now given by
2
dt

The mechanica power Py; is equal to the pre-fault electrical power output, obtained from

:PMI-PG| |:1 ........... n

pre-fault load flow solution.
Step 8: The n second order differential equations can be decomposed into 2n first order
differential equations which can be solved by any numerical method .
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Though reduced order models, also called classica models, require less
computation and memory, their results are not reliable. Further, the interconnections of
the physical network of the systemislost.

FACTORSAFFECTING TRANSIENT STABILITY:

The relative swing of a machine and the critical clearing time are a measure of the

stability of a generating unit. From the swing equation, it is obvious that the generating

units with smaller H, have larger angular swings at any time interval. The maximum

’ )

E,V
power transfer Ppax = — where V isthe terminal voltage of the generators. Therefore
Xd

an increase in x; , would reduce Pma. Hence, to transfer a given power P, the angle 4

would increase since Pe = Py Sin 8, for a machine with larger x;; . This would reduce the
critical clearing time, thus, increasing the probability of losing stability.

Generating units of present day have lower values of H, due to advanced cooling
techniques, which have made it possible to increase the rating of the machines without
significant increase in the size. Modern control schemes like generator excitation control,
Turbine valve control, single-pole operation of circuit breakers and fast-acting circuit
breakers with auto re-closure facility have helped in enhancing overall system stability.
Factors which can improve transient stability are

(i) Reduction of transfer reactance by using parallel lines.

(i) Reducing transmission line reactance by reducing conductor spacing and
increasing conductor diameter, by using hollow cores.

(iii) Useof bundled conductors.

(iv) Series compensation of the transmission lines with series capacitors. This
also increases the steady state stability limit. However it can lead to problem
of sub-synchronous resonance.

(v) Since most faults are transient, fast acting circuit breakers with rapid
re-closure facility can aid stability.

(vi) The most common type of fault being the single-line-to-ground fault,
selective single pole opening and re-closing can improve stability.

(vii) Use of braking resistors at generator buses. During a fault, there is a sudden

decrease in electric power output of generator. A large resistor, connected at
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the generator bus, would partially compensate for the load loss and help in
decreasing the acceleration of the generator. The braking resistors are
switched during a fault through circuit breakers and remain for afew cycles
after fault is cleared till system voltageis restored.

(viii) Short circuit current limiters, which can be used to increase transfer
impedance during fault, there by reducing short circuit currents.

(ix) A recent method is fast valving of the turbine where in the mechanical
power islowered quickly during the fault, and restored once fault is cleared.



