Module 1:
Introduction

1.1.1 Signal definition

A signal is a function representing a physical quantity or variable, and typically it contains
information about the behaviour or nature of the phenomenon.

For instance, in a RC circuit the signal may represent the voltage across the capacitor or the
current flowing in the resistor. Mathematically, a signal is represented as a function of an
independent variable ‘t>. Usually t> represents time. Thus, a signal is denoted by x(t).

1.1.2 System definition

A system is a mathematical model of a physical process that relates the input (or excitation)
signal to the output (or response) signal.

Let x and y be the input and output signals, respectively, of a system. Then the system is
viewed as a transformation (or mapping) of x into y. This transformation is represented by the
mathematical notation

where T is the operator representing some well-defined rule by which x is transformed into y.
Relationship (1.1) is depicted as shown in Fig. 1-1(a). Multiple input and/or output signals are
possible as shown in Fig. 1-1(b). We will restrict our attention for the most part in this text to the
single-input, single-output case.
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1.1 System with single or multiple input and output signals

1.2Classification of signals

Basically seven different classifications are there:

Continuous-Time and Discrete-Time Signals
Analog and Digital Signals

Real and Complex Signals

Deterministic and Random Signals

Even and Odd Signals

Periodic and Nonperiodic Signals

Energy and Power Signals

IS

Continuous-Time and Discrete-Time Signals

A signal x(t) is a continuous-time signal if t is a continuous variable. If t is a discrete
variable, that is, x(t) is defined at discrete times, then x(t) is a discrete-time signal. Since a



discrete-time signal is defined at discrete times, a discrete-time signal is often identified as a
sequence of numbers, denoted by {x,) or x[n], where n = integer. Illustrations of a continuous-
time signal x(t) and of a discrete-time signal x[n] are shown in Fig. 1-2.
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1.2 Graphical representation of (a) continuous-time and (b) discrete-time signals

0

Analog and Digital Signals

If a continuous-time signal x(t) can take on any value in the continuous interval (a, b), where
a may be - oo and b may be +oo then the continuous-time signal x(t) is called an analog signal. If a
discrete-time signal x[n] can take on only a finite number of distinct values, then we call this
signal a digital signal.

Real and Complex Signals

A signal x(t) is a real signal if its value is a real number, and a signal x(t) is a complex signal
if its value is a complex number. A general complex signal x(t) is a function of the form

X (1) = xa(t) + jx2 (1) 1.2

where x; (t) and X, (t) are real signals and j = V-1
Note that in Eq. (1.2) “t’ represents either a continuous or a discrete variable.

Deterministic and Random Signals:

Deterministic signals are those signals whose values are completely specified for any given
time. Thus, a deterministic signal can be modelled by a known function of time “t’.

Random signals are those signals that take random values at any given time and must be
characterized statistically.
Even and Odd Signals

A signal x (t) or x[n] is referred to as an even signal if

X (- 1) = x(t)
R D 1) e — (1.3)

A signal x (t) or x[n] is referred to as an odd signal if

x(-t) =-x(t)

Examples of even and odd signals are shown in Fig. 1.3.
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1.3 Examples of even signals (a and b) and odd signals (c and d).
Any signal x(t) or x[n] can be expressed as a sum of two signals, one of which is even
and one of which is odd. That is,

X(N)=x,()+x,(6) (15)
Where,

1,
x, (1) = 3 (x(1)+x(=1))

1
% (1) =2 (x(t)=x(-1))

----- (L.6)
Similarly for x[n],
Xn]=x,[n]+x [n] (1.7)
Where,
1 .
x,[1]= E(' X[n]+x[-n])
1
Io[”] — —[ .T[H] — .T[_”])
2" (1.8)

Note that the product of two even signals or of two odd signals is an even signal and
that the product of an even signal and an odd signal is an odd signal.

Periodic and Nonperiodic Signals

A continuous-time signal x (t) is said to be periodic with period T if there is a positive
nonzero value of T for which

x(t+T)=x(t) all ¢



An example of such a signal is given in Fig. 1-4(a). From Eq. (1.9) or Fig. 1-4(a) it follows
that

x(t+mT)=x(t) L

for all t and any integer m. The fundamental period T, of x(t) is the smallest positive value of
T for which Eq. (1.9) holds. Note that this definition does not work for a constant
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1.4 Examples of periodic signals.

signal x(t) (known as a dc signal). For a constant signal x(t) the fundamental period is
undefined since x(t) is periodic for any choice of T (and so there is no smallest positive
value). Any continuous-time signal which is not periodic is called a nonperiodic (or
aperiodic) signal.

Periodic discrete-time signals are defined analogously. A sequence (discrete-time
signal) x[n] is periodic with period N if there is a positive integer N for which
x[n+N) =x[n] all n

An example of such a sequence is given in Fig. 1-4(b). From Eq. (1.11) and Fig. 1-4(b) it
follows that

x[n+mN)| =x[n]

for all n and any integer m. The fundamental period N, of x[n] is the smallest positive integer
N for which Eq.(1.11) holds. Any sequence which is not periodic is called a nonperiodic (or
aperiodic sequence.



Note that a sequence obtained by uniform sampling of a periodic continuous-time signal may
not be periodic. Note also that the sum of two continuous-time periodic signals may not be
periodic but that the sum of two periodic sequences is always periodic.

Energy and Power Signals

Consider v(t) to be the voltage across a resistor R producing a current i(t). The
instantaneous power p(t) per ohm is defined as

p(ry= 0D iz

Total energy E and average power P on a per-ohm basis are
E=[ i(t)dt joules

1 .12
P= lim — i%(t)dt watts
T'[—r/z (1)

Tox

For an arbitrary continuous-time signal x(t), the normalized energy content E of x(t) is
defined as

E=[ |x(t) d

The normalized average power P of x(t) is defined as

1 .72 >
P= lim —f | x(1)]* dr
T/ 1,2
(1.16)
Similarly, for a discrete-time signal x[n], the normalized energy content E of x[n] is
defined as

E= ), [.r[n]l2
n=-—a (1.17)

The normalized average power P of x[n] is defined as
M

L |x[n]f

n= — M

P=li
N 2N+ 1

(1.18)

Based on definitions (1.15) to (1.18), the following classes of signals are defined:

1. x(t) (or x[n]) is said to be an energy signal (or sequence) if and only if 0 < E <m, and
soP=0.

2. X(t) (or x[n]) is said to be a power signal (or sequence) if and only if 0 <P < m, thus
implying that E = m.

3. Signals that satisfy neither property are referred to as neither energy signals nor power
signals.

Note that a periodic signal is a power signal if its energy content per period is finite, and

then the average power of this signal need only be calculated over a period
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Basic Operations on signals

The operations performed on signals can be broadly classified into two kinds

Operations on dependent variables
Operations on independent variables

Operations on dependent variables

The operations of the dependent variable can be classified into five types: amplitude scaling,
addition, multiplication, integration and differentiation.

= sin(2x3t)
o

X(t)

1
N

sin(2x4t)

x(t)

1.6

Amplitude scaling

Amplitude scaling of a signal x(t) given by equation 1.19, results in amplification of
X(t) if a >1, and attenuation if a <1.

AVAVAV

0.5 1
t (time in seconds)

0

y(t) =ax(t)......
2
0
3
0 0.5 1

t (time in seconds)

(1.20)
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1.5 Amplitude scaling of sinusoidal signal

Addition

The addition of signals is given by equation of 1.21.

0.5 1
t (time in seconds)

y(t)=1.25

y(t) = x1(t) +x2 (1)

t (time in seconds)

0.5 1

x(t) + y(t)

0.5 1
t (time in seconds)

Example of the addition of a sinusoidal signal with a signal of constant amplitude

(positive constant)



Physical significance of this operation is to add two signals like in the addition of the
background music along with the human audio. Another example is the undesired addition of
noise along with the desired audio signals.

sin(2x8t)

x(t)

Multiplication

The multiplication of signals is given by the simple equation of 1.22.
y(t) = x1(t).x2 (t)........ (1.22)
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1.7 Example of multiplication of two signals

Differentiation
The differentiation of signals is given by the equation of 1.23 for the continuous.

n=d
T 123

The operation of differentiation gives the rate at which the signal changes with
respect to time, and can be computed using the following equation, with At being a
small interval of time.

ix(s‘) = Lim X+ AN~ x(0)
dt A0 At

...1.24

If a signal doesn®t change with time, its derivative is zero, and if it changes at a fixed
rate with time, its derivative is constant. This is evident by the example given in
figure 1.8.
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1.8 Differentiation of Sine - Cosine



Integration

The integration of a signal x(t) , is given by equation 1.25
t

v = [ x()dz

-t 1.25
2 2
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() (b)
1.9 Integration of x(t)

Operations on independent variables

Time scaling

Time scaling operation is given by equation 1.26
yt) = x@t) coveeveeee 1.26

This operation results in expansion in time for a<1 and compression in time for a>1, as
evident from the examples of figure 1.10.
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1.10 Examples of time scaling of a continuous time signal

An example of this operation is the compression or expansion of the time scale that results in
the ,,fast-forward’ or the ,,slow motion’ in a video, provided we have the entire video in some

stored form.
Time reflection

Time reflection is given by equation (1.27), and some examples are contained in figl.11.

Y(O) = X(—1) e 1.27
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1.11 Examples of time reflection of a continuous time signal
Time shifting

The equation representing time shifting is given by equation (1.28), and examples of this
operation are given in figure 1.12.



y(t) =x(t-t0)...cccvrennn 1.28
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1.12 Examples of time shift of a continuous time signal

Time shifting and scaling

The combined transformation of shifting and scaling is contained in equation (1.29),
along with examples in figure 1.13. Here, time shift has a higher precedence than time scale.

y(t) =x(at = t0 )evverrrierree 1.29

x(2t-4)=y(2t)
(=]

-5 0 5 -5 0 5 -5 0 5
t (time in seconds) t (time in seconds) t (time in seconds)

(@)



x(t)
o
y(t)=x(t+3)

: o
x(3t+3)=y(3t)

0 s % 0 % *x 5§ 3

t (time in seconds) t (time in seconds) t (time in seconds)
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1.13  Examples of simultaneous time shifting and scaling. The signal has to be shifted first
and then time scaled.

Elementary signals

Exponential signals:
The exponential signal given by equation (1.29), is a monotonically increasing function if

a >0, and is a decreasing function if a < 0.

~ — )ﬂf
(=€ (1.29)
It can be seen that, for an exponential signal,
x(t+a')=ex(t)
- — _1 j— _1 " A
X(f—a)=e x() (1.30)

Hence, equation (1.30), shows that change in time by +1/ a seconds, results in change in
magnitude by ex1 . The term 1/ a having units of time, is known as the time-constant. Let us
consider a decaying exponential signal

x(t)y=¢e“

for t = 0.

This signal has an initial value x(0) =1, and a final value x(oc) = 0 . The magnitude of this
signal at five times the time constant is,

x(5/a)=6.7x10"
while at ten times the time constant, it is as low as,

x(10/a) = 4.5x10°7

It can be seen that the value at ten times the time constant is almost zero, the final value of
the signal. Hence, in most engineering applications, the exponential signal can be said to
have reached its final value in about ten times the time constant. If the time constant is 1
second, then final value is achieved in 10 seconds!! We have some examples of the
exponential signal in figure 1.14.
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Fig 1.14 The continuous time exponential signal (a) e-t, (b) et, (c) e—t|, and (d) e[t|

The sinusoidal signal:
The sinusoidal continuous time periodic signal is given by equation 1.34, and examples are
given in figure 1.15

X(8) = ASINR L) oo (1.34)

The different parameters are:

Angular frequency o = 2z f in radians,
Frequency f in Hertz, (cycles per second)
Amplitude A in Volts (or Amperes)
Period T in seconds

Period =T

Asin(2z fi)

— T=1/f ——

time (sec)
The complex exponential:

We now represent the complex exponential using the Euler's identity (equation (1.35)),

e’’ =(cos@+ jsinO)



to represent sinusoidal signals. We have the complex exponential signal given by
equation (1.36)

e’ =(cos(at)+ jsin(er))

e = (cos(ar)— j sin(er))

Since sine and cosine signals are periodic, the complex exponential is also periodic with
the same period as sine or cosine. From equation (1.36), we can see that the real periodic
sinusoidal signals can be expressed as:

ejrfor + e—jmr
cos(an) = >

eja}f _efja)t
sin(wt) = 5
J |

Let us consider the signal x(t) given by equation (1.38). The sketch of this is given in fig 1.15

x(1) = A(t)e’’™”

.......................... (1.38)
x(t) = Ae_mx
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The unit impulse:

The unit impulse usually represented as 6 (t) , also known as the dirac delta function, is
given by,

5(1)=0 for t=0; and ja‘(r)dr:l

From equation (1.38), it can be seen that the impulse exists only at t = 0, such that its area is
1. This is a function which cannot be practically generated. Figure 1.16, has the plot of the
impulse function
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The unit step:

The unit step function, usually represented as u(t) , is given by,

0 I =0
u(r)=
0 t<0
................... (1.39)
2 ...... 2 ......
1.5p: L X T
E;: 1 ?;_.‘ [ 1| TR SRR
0 : ] : :
-2 -1 ] 1 2 -2 -1 o] 1 2
t(sec) t( sec)
(a) (b)
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1.5 : 1.5
Z 4 T | WU S, S
0.5¢ sy i 0.5 —
0 0
2 1 0 1 2 2 1 0 1 2
t (sec) t( sec)
() (d)
Fig 1.17 Plot of the unit step function along with a few of its transformations

The unit ramp:
The unit ramp function, usually represented as r(t) , is given by,
t t=0
"W=10 +<o0
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Fig 1.18 Plot of the unit ramp function along with a few of its transformations

The signum function:

The signum function, usually represented as sgn(t) , is given by

1 =0
sgn(t)=4 0 ¢t=0
-1 t<0
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Fig 1.19 Plot of the unit signum function along with a few of its transformations

System viewed as interconnection of operation:

This article is dealt in detail again in chapter 2/3. This article basically deals with system
connected in series or parallel. Further these systems are connected with adders/subtractor,

multipliers etc.

Properties of system:

In this article discrete systems are taken into account. The same explanation stands for

continuous time systems also.

The discrete time system:

The discrete time system is a device which accepts a discrete time signal as its input,
transforms it to another desirable discrete time signal at its output as shown in figure 1.20

. sulpul
input L¥isrete t1me r
ﬁ ﬁ
syvatemn
xin| y[n]

Fig 1.20 DT system



Stability
A system is stable if ,,bounded input results in a bounded output®. This condition, denoted
by BIBO, can be represented by:

i |.1'[rr]| <o implies i |_‘r[;;]| <oo  for all n

A=—a A=—wa

Hence, a finite input should produce a finite output, if the system is stable. Some examples of
stable and unstable systems are given in figure 1.21

Stable system

2 s
e R _
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Unstable system
8 8
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- =] g
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2 . - 2 ;
= o ~ A 15 5 0 5 10 15
n n
Fig1.21 Examples for system stability

Memory
The system is memory-less if its instantaneous output depends only on the current input.

In memory-less systems, the output does not depend on the previous or the future input.
Examples of memory less systems:

yin] = ax{n]
yin] = ax’[n]

iln]=a, +ayvin]+ (JEI’E[H] + (f31'3[ﬁ] + rrees



Memoryless system
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Memoryless system
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Causality:

A system is causal, if its output at any instant depends on the current and past values of
input. The output of a causal system does not depend on the future values of input. This
can be represented as:

y[n] O OF Ox[m]C Ofor m O COn

For a causal system, the output should occur only after the input is applied, hence,
X[n] OO Oforn [J ) Oimplies y[n] OO Oforn JJ0



All physical systems are causal (examples in figure 7.5). Non-causal systems do not exist.
This classification of a system may seem redundant. But, it is not so. This is because,
sometimes, it may be necessary to design systems for given specifications. When a system
design problem is attempted, it becomes necessary to test the causality of the system, which
if not satisfied, cannot be realized by any means. Hypothetical examples of non-causal

systems are given in figure below.

input: x[n]

Invertibility:

Causal system

DOOOO.T O0coo0COYP

o

A system is invertible if,

5

10
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—i
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System: A

output
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Linearity:

outlput: y[n]
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The system is a device which accepts a signal, transforms it to another desirable signal, and is

available at its output. We give the signal to the system, because the output is s

Amplivmle scaling

if

input
—_— b

x[n]

Svslem: .\

vulpul

nput

-

yinl

ax[m]

—

then

System A

I

output

a y[n]




Supcrposition principle

if
X (1) U] 3,0 ¥,(0
—_— System: A —— —_— System A —r
then
(3,04 %©) (¥4 y,0)
—_ System: A Y

Time invariance:

A system is time invariant, if its output depends on the input applied, and not on the time of

application of the input. Hence, time invariant systems, give delayed outputs for delayed
inputs.

Given input-oulput relation of Time invoriant system
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Recommended Questions

oo

What are even and Odd signals
Find the even and odd components of the following signals
a X(t) =cost+sint +sintcost

b. x(t)+1+3t*+5t°+0ot*

c. x(t)+(1+ t3)cost310t

What are periodic and A periodic signals. Explain for both continuous and discrete cases.
Determine whether the following signals are periodic. If they are periodic find the fundamental
period.

a. x(t) =(cos(2nt))?

b. x(n)=cos(2n)

¢ XxX(n)=cos2rzn

Define energy and power of a signal for both continuous and discrete case.

Which of the following are energy signals and power signals and find the power or energy of the
signal identified.

L, 0<t<1
a. x(t)=32-t, 1<t<2
0 otherwise
(n, 0<n<5
b. x(n)=|10—n,5gn310
0 otherwise
c X(t)=(5C°ST‘t ~0.5<t<0.5
lo

sinzn,
d x(n) _ ( T -4<n<4
10 otherwise






Module 2: Time-domain representations for LTI systems — 1

Time-domain representations for LTI systems — 1: Convolution, impulse response representation,
Convolution Sum and Convolution Integral.
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Module 2
Time-domain representations for LTI systems — 1

2.1 Introduction:
The Linear time invariant (LTI) system:

Systems which satisfy the condition of linearity as well as time invariance are known as linear time
invariant systems. Throughout the rest of the course we shall be dealing with LTI systems. If the
output of the system is known for a particular input, it is possible to obtain the output for a number

of other inputs. We shall see through examples, the procedure to compute the output from a given
input-output relation, for LTI systems.

Example — I:
Given input-output relation of LTT system

5 5

b | T ....................................... 4F- o
=3 =i

: N

B gl A R =
g £

1 ] 5

K] ; -1

5 0 5 10 5 0 5 10

2.1.1 Convolution:

A continuous time system as shown below, accepts a continuous time signal x(t) and gives out
a transformed continuous time signal y(t).

input Continuous time output
t
x(t) system v (O '

Figure 1: The continuous time system

Some of the different methods of representing the continuous time system are:

) Differential equation
i) Block diagram
iii) Impulse response

iv) Freguency response
V) Laplace-transform



Vi) Pole-zero plot

It is possible to switch from one form of representation to another, and each of the representations
is complete. Moreover, from each of the above representations, it is possible to obtain the system
properties using parameters as: stability, causality, linearity, invertibility etc. We now attempt to

develop the convolution integral.

2.2 Impulse Response

The impulse response of a continuous time system is defined as the output of the system when its
input is an unit impulse, o (t) . Usually the impulse response is denoted by h(t) .

o Continuous time h(t)
g system >
unit impulse . impulse response

Figure 2: The impulse response of a continuous time system

2.3 Convolution Sum:

We now attempt to obtain the output of a digital system for an arbitrary input x[n], from
the knowledge of the system impulse response h[n].

input impulse response output
—_— T
X[n] hin] ¥[n]
An input impulse response corrcsponding output
x[n] ¥[n]
."— h[n] >
xrl=... o 1larn i 1] Mu]=...+x[-1jAn+1]
+ x[0]o] ] LTT svstem + x[(]]b[n]
+ 18 n—1] + x{1}A[n—1]
+x[2]é[n - 2]+ ... L x[2)B[ 2]




An input impulse response corresponding ocutput
x[n] ¥In]
- o h[n] - g
xlnl= % x|m|é[n—m vinl= } x[m|hln—m|
7] m;,., e ] LTI system mgm
fime-dmnain analysiy
impulse response
input output
. hi[n] >
sin] yln] = x|n]*Aln]
LTI syvstem

vln]= x{n]*hln]

Methods of evaluating the convolution sum:

Given the system impulse response h[n], and the input x[n], the system output y[n], is
given by the convolution sum:

(el

ylnl= > x{mlhln —ml]

ra

M=—t0

Problem:
To obtain the digital system output y[n], given the system impulse response h[n], and the
system input x[n] as:

h[n]=[1, -1.5, 3]

An]=[-1. 25, 08 1.25]

-1 4 -595 7.55 0525 3.75



1. Evaluation as the weighted sum of individual responses
The convolution sum of equation (...), can be equivalently represented as:

y[n] 00 O

input x[n]
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h[n-1] %[1]-h[n-1]
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Convolution as matrix multiplication:
Given
xnl=[x, x .. x] starting from N,
and
Anl=[h hy .. h,] starting from N,
Step 1: Length of convolved sequence i1s NUM = (L+M-1)
Step 2: The convolved sequence starts at i=N, + N,
Step 3: The convolution is given by the following matrix multiplication

o] _.rl 0 0 h 0 0
yli+1] X, X 01- - | h §h 01 _
. ) h, - L
yli+2] X, X 0 4 h, h 0
i3l |- x ol ™| h, 0|
LY N R O | E N PR 1
yli+35] X, - .. x| h, . . . h
hﬂ-{ rf
0 x . 0 h, -
i 1 L0 0 x, | 0 0 h, |




The dimensions of the above matrices are:
[NUM by l]=[NUM by M][M by ]]=[NUM by L][L by l]

For the given example:
x[n] is of length L=4, and starts at N, = -1

h[n] is of length M=3 and starts at N, =0

Step 1: Length of convolved sequence is NUM = (L+M-1)=6
Step 2: The convolved sequence starts at 1=(-1+0)=(-1)
V-1 [ -1 0 0 -1 ]
v[0] 25 -1 0 | 4
y[1] _ 08 25 -1 152 —5.95
v[2] 1.25 08 25 3 7.55
v[3] 0 125 038 0.525
V4] ] | 0O 0 125 | 3.75 |
or
-1 T 0 0 0 [ -1 ]
v[0] -1.5 1 0 0 |[ -1] 4
yl[1] 3 -15 1 0 2.5 -3.95
M2 1o 3 15 1 |[o8]| |1755
v[3] 0 0 3 -15][1.25] | 0.525
4l | 0 0 0 3 | 375

Evaluation using graphical representation:

Another method of computing the convolution is through the direct computation of each value of the
output y[n]. This method is based on evaluation of the convolution sum for a single value of n, and
varying n over all possible values.

o

y[nl=>" x[mlhln —m]

M=—o

Step 1: Sketch x[m]
Step 2: Sketch h[-m]



Step 3: Compute y[0] using:

y0]= > x{m]h[—m]

n=-—co

which is the ‘sum of the product of the two signals x[m] & h[-m]’

Step 4: Sketch h[1-m], which is right shift of h[-m] by I.
Step 5: Compute y[1] using:
yll= > x[m]h[l—m]

which is the ‘sum of the product of the two signals x[m] & h[I-m]’

Step 6: Sketch h[2-m], which is right shift of h[-m] by 2.
Step 7: Compute y[2] using:
y[2]= i x[m]h[2—m]
which is the ‘sum of the product of the two signals x[m] & h[2-m]’
Step 8: Proceed this way until all possible values of y[n], for positive ‘n’ are
computed
Step 9: Sketch h[-1-m], which is left shift of h[-m] by 1.

Step 10: Compute y[-1] using:

o0

yi=11= > x[m]h[-1-m]

which is the ‘sum of the product of the two signals x[m] & h[-1-m]’

Step 11: Sketch h[-2-m], which is left shift of h[-m] by 2.
Step 12: Compute y[-2] using:

oo

y[-2]= Z x[m]h|-2—m]

m=-—ca

which is the ‘sum of the product of the two signals x[m] & h[-2-m]’

Step 13: Proceed this way until all possible values of y[n], for negative ‘n’ are
computed
x[m] h[-1-m] y[-11=(-1)
10 : 10 : 10 .
£ ? e g~ =
3
5 0 5 5 0 5 -5 a 5
m m m



x[m] h[-m] v[0]=(1.5+2.5)
10 : 10 -

-
[~

4]
o

Mﬁtmm 4

X[m]

;\[-m]

o
L

M0

%
x[l;] h{-m]

a o

X[m]

-5 5 s}
-5 0 5 -5 0 5 -5 0 5
m m m
x[mi] h[1-m] y[1]=(-2-3.75+0.8)
10 : 10 5 10
z
5 . S—— 5 . . e T s 5 ve
E ¥ i = =
= : —3 i = Obwo—l—l—iw
: =
-5 a s -5 O 5 -5 O S
m m m
x[m] h[2-m] y[2]=(7.56-1.2+1.265)
10 10 10
E &
o~ =
me—o-erl—?;le-e-c - M@lﬁe-oo =
: E3
-5 0 5 -5 0 5
m m
x[m] h[3-m] ¥[3]=(2.4-1.875)
10 10 10
5 : — 5 ; oS, 5
Tee 3 1wl & T
0pooo, ! PToop = 0pooocoe 37ep E Opoocooe g°°t
: = :

o ] o | T
5 0 5 5 0 5 -5 a 5
m m m

x[m] h[4-m] vI41=(3.75)
10 . 10 10 v

h[4-m]
X[m].h[4-m]

2o}

3o} -



Qutiput: y[n}=x[-1].h[n+1]+x[0].h[n}+x[1].h[n-1]+x[2].h[n-2]
10 L .' ! L) v v '.

¥in]
N

Evaluation from direct convolution sum:

While small length, finite duration sequences can be convolved by any of the above three methods,
when the sequences to be convolved are of infinite length, the convolution is easier performed by
direct use of the ,,convolution sum’ of equation (...).

0 for m<0

since: M[m]=-'\1 for m>0

[ | |’{} for (n—m)<0

uln—m)=-
|M1 for (n—-m)z=0

B {U for (—m)<n

1 for (—m)zn

_{U for m>n

1 for m=n

Example: A system has impulse response h[n] [J [ exp([] 0.n8)u[n]. Obtain the unit g
response.
Solution:

ylnl= > hlm]x{m]
Mm=—c0

= > {exp(=0.8(m)) ulm]}{uln—m]}

m=—oo



X[n]=u[n]

.
h[n}=u[n]
y[n]=x[n]*h[n]

= i{exp(—().8(»'1))}{11[11—ml}

m=0

- i{exp(—().S(m))}

m=0

= i{exp(—().&m))}

m=0

(1-(-0.8)"")

(1-(-0.8))

y[n]= i {(—0.8)("*'"'11[)1—112]}

m=—oo

= i {exp (—0.8(n—m))uln— m]}

m=0

input:x[n] impulse response: h[n] ouput: y[n]
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input:x[n] impulse response: h[n] ouput: y[n]
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2.4 Convolution Integral:

We now attempt to obtain the output of a continuous time/Analog digital system for an arbitrary
input x(t), from the knowledge of the system impulse response h(t), and the properties of the impulse
response of an LTI system.

The output y(t) is given by, using the notation, y(t)=R{x(t)}.
y(1) = R{x(1)}

= R-{ J .\‘(r)o‘(r—f)dz'JL

= [ x(0)R{S(t-1)}dr

= x(DOh(t—1)dt

= x(1)*h(t)

An input impulse response corresponding output
x(L) ¥
> h(t) g
()= | x()o(t - 1)dz ——— Y= [ x(e)h(t - 1)dr

Methods of evaluating the convolution integral: (Same as Convolution sum)

Given the system impulse response h(t), and the input x(t), the system output y(t), is given by the
convolution integral:

Y )= j.\‘(r)lz(r—r)dr

Some of the different methods of evaluating the convolution integral are: Graphical representation,
Mathematical equation, Laplace-transforms, Fourier Transform, Differential equation, Block
diagram representation, and finally by going to the digital domain.



Recommended Questions

1. Show that if x(n) is input of a linear time invariant system having impulse response h(n), then
the output of the system due to x(n) is

y(n)= > x(k)h(n - k)
k = o0

Use the definition of convolution sum to prove the following properties

x(n) * [h(n)+g(n)]=x(n)*h(n)+x(n)*g(n) (Distributive Property)

x(n) * [h(n)*g(n)]=x(n)*h(n) *g(n) (Associative Property)

x(n) * h(n) =h(n) * x(n) (Commutative Property)

Prove that absolute summability of the impulse response is a necessary condition for stability
of a discrete time system.

4. Compute the convolution y(t)= x(t)*h(t) of the following pair of signals:

wwhEN

{1 —a<t<a _ 1 ~a<l<a
(@ x()= {l] otherwise ' A1) = 1!3 otherwise

_ [t 0<t=T _ 1 O<t=<2T
() x(r) | 0 otherwise ’ h(e) 0 otherwise

(c) x(ey=ult = 1), h(1) =e Y u(t)
5. Compute the convolution sum y[n] =x[n]* h[n] of the following pairs of sequences:

(a) x[n]l=uln], hln]=2"ul—n]
(b) xlnl=uln)l—=uln-=N)hlnl=a"uln), 0 <a<
(¢) x[nl=)uln), hln]=8[n] - 38[n - 1]
6. Show that if y (t) =x(t)* h(t), then
y' (1) =x"(t)*h(t) =x(t)*»h'(1)
7. Lety[n] = x[n]* h[n]. Then show that

x[n=n,)sh[n—n,]=y[n—-n,-n,]

8. Show that
ng+N-1
x((n]®x,[n]= X x,([k]x)[n—-k]
k=n,

for an arbitrary starting point no.






Fourier representation for signals

Introduction:

Fourier series has long provided one of the principal methods of analysis for mathematical
physics, engineering, and signal processing. It has spurred generalizations and applications that
continue to develop right up to the present. While the original theory of Fourier series applies to
periodic functions occurring in wave motion, such as with light and sound, its generalizations often
relate to wider settings, such as the time-frequency analysis underlying the recent theories of wavelet
analysis and local trigonometric analysis.

+ In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent
“any” periodic signal.

* But Lagrange rejected it!

* In 1822, Fourier published a book “The Analytical Theory of Heat” Fouriers main contributions:
Studied vibration, heat diffusion, etc. and found that a series of harmonically related sinusoids is
useful in representing the temperature distribution through a body.

* He also claimed that “any” periodic signal could be represented by Fourier series. These arguments
were still imprecise and it remained for P. L. Dirichlet in 1829 to provide precise conditions under
which a periodic signal could be represented by a FS.

» He however obtained a representation for aperiodic signals i.e., Fourier integral or transform
« Fourier did not actually contribute to the mathematical theory of Fourier series.

« Hence out of this long history what emerged is a powerful and cohesive framework for the analysis
of continuous- time and discrete-time signals and systems and an extraordinarily broad array of
existing and potential application.

The Response of LTI Systems to Complex Exponentials:

We have seen in previous chapters how advantageous it is in LTI systems to represent signals as a
linear combinations of basic signals having the following properties.

Key Properties: for Input to LTI System

1. To represent signals as linear combinations of basic signals.

2. Set of basic signals used to construct a broad class of signals.

3. The response of an LTI system to each signal should be simple enough in structure.
4. It then provides us with a convenient representation for the response of the system.
5. Response is then a linear combination of basic signal.

Eigenfunctions and Values :
 One of the reasons the Fourier series is so important is that it represents a signal in terms of eigen

functions of LTI systems.



* When I put a complex exponential function like x(t) = ejwt through a linear time-invariant system,
the output is y(t) = H(s)x(t) = H(s) ejot where H(s) is a complex constant (it does not depend on
time).

* The LTI system scales the complex exponential ejmt .

Historical background

There are antecedents to the notion of Fourier series in the work of Euler and D. Bernoulli on
vibrating strings, but the theory of Fourier series truly began with the profound work of Fourier on
heat conduction at the beginning of the century. In [5], Fourier deals with the problem of describing
the evolution of the temperature of a thin wire of length X. He proposed that the initial temperature
could be expanded in a series of sine functions:

oo
flz) = Z b, sin nx (1)
=1

2 7
by, = — / flz) sinnzde. (2)
0

The Fourier sine series, defined in Eq.s (1) and (2), is a special case of a more gen-
eral concept: the Fourier series for a periodic function. Periodic functions arise in
the study of wave motion, when a basic waveform repeats itself periodically. Such
periodic waveforms occur in musical tones, in the plane waves of electromagnetic
vibrations, and in the vibration of strings. These are just a few examples. Periodic
effects also arise in the motion of the planets, in ac-electricity, and (to a degree) in
animal heartbeats.

A function f is said to have period P if f(x + ) = f(x) for all . For
notational simplicity, we shall restrict our discussion to functions of period 2.
There is no loss of generality in doing so, since we can always use a simple change
of scale x = (/?/27)t to convert a function of period /” into one of period 2.

If the function f has period 27, then its Fourier series is

o
co + E {a, cosnx + b, sinnx} 4)

T2

1
with Fourier coefficients ¢, a,,, and b,, defined by the integrals

l 7

& = m flz)dz ()
LT J 7
L o7

Gy = —/ flz) cos nx dx. (6)
™ J
L .

By = —/ f(z) sinnzdz. (7)
T J o

The following relationships can be readily established, and will be used in subsequent sections for
derivation of useful formulas for the unknown Fourier coefficients, in both time and frequency
domains.



t[sin(kwot)dt = lcos(kwot)dt 1)

=0

[[sin 2 (kwo t)dt = ! cos? (kwat)dt 2

T

2
lcos«wot)sin(gwot)dt =0 3
L[ sin(kw,t) sin(gw,t)dt = 0 (4)
l cos(kw,t)cos(gw,t)dt = 0 ®)

where
W, = 27f (6)
gt .

T (7)

where f and T represents the frequency (in cycles/time) and period (in seconds) respectively. Also,
k and g are integers.
A periodic function f (t) with a period T should satisfy the following equation

f(t+T)=1(t) ®)
Example 1
Prove that

T

1 sin(kwyt) =0

for
Wy= 27f
=t
T
and k is an integer.
Solution
Let
A= [sin(kgt)ot ©)
(1) T
= [coskwyt)],
()
A=|__ [coskw,T)—cos©)] (10)
<%

=| 4o I[cos(k27) -1]

=0



Example 2

Prove that
T
,[sin 2 (kwot) = o
0
for
o= 27f
ol
T

and k is an integer.

Solution
Let

T

B= lsin 2 (kwt)dt

Recall

sin?(a) = cos(Za)

Thus,
B = I - cos(2kw t)

IR

PEE) L2\ 2kw, )

1dt

- sin(2kw T) —[0]

- 0|
2 4kw,
A :

=_ | |sin@ek*2x)

2 \4kw0)
_T
2

Example 3
Prove that

lsin(gwot) coskw,t) =0

for

and k and g are integers.
Solution

Let

T

C= lsin(gwot)cos(kwot)dt

Recall that

iln(kaot) |

(11)

(12)

(13)

(14)

(15)



sin(ae+ B) =sin(a) cos(f) + sin(f) cos(x)
Hence,
C= '[ [sin[(g + k)w,t]—sin(kw,t) cos(gw,t) Jdt
= I[sm[(g + k)w,t]dt —T[sin(kwot)cos(gwot)dt
From Equation (1),

l[sin(g + K)w,t]dt = 0
then

;
C=0- lsin(kwot)cos(gwot)dt

T

Adding Equations (15), (19), 2c = I[sin(gwot)cos(kwot)dt —~ I sin(kwyt) cos(gw,t)dt
0

T T

= l sinf(gw,t)— (kwgt)Jdt = [sin[(g — K)wt ]t

2C =0, since the right side of the above equation is zero (see Equation 1). Thus,

T

C= fsin(gwot)cos(kwot)dt =0

=0
Example 4

Prove that
T

l sin(kw,t) sin(gw,t)dt = 0

for

k, g = integers
Solution
;

|£tD=!gmm%oﬁm@%0m

Since

cos(a+ ) = cos(a) cos(f) —sin()sin(f)
or

sin(@)sin(f) = cos(e) cos(f) —cos(a + f)
Thus,

T

D= I cos(kwyt) cos(gwt)dt — [ cos|(k + g)wt it

From Equation (1)

T

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)



]
! cog(k + g)wyt]dt =0
then

T

D= lcos(kwot)cos(gwot)dt -0
Adding Equations (23), (26)

T

.
2D = lsin(kwot)sin(gwot) + I coskw,t) cos(gw,t)dt
; 0
= !cos[kwot — gw,t[dt
;

= l.cos[(k — g)w,t]dt

2D =0, since the right side of the above equation is zero (see Equation 1). Thus,
T

D = [ sin(kwgt) sin(gw,t)dt =0
Recommended Questions

1. Find x(t) if the Fourier series coefficients are shown in
fig. The phase spectrum is a null spectrum.

2. Prove the following properties of Fourier series. i)
Convolution property ii) Parsevals relationship.

3. Find the DTFS harmonic function of x(n) = A Cos (2nn/No).
Plot the magnitude and phase spectra.

4. Determine the complex Fourier coefficients for the signal.
X(t)= {t+1 for -1 < t< 0; 1-t for 0 <t < 1 which repeats
periodically with T=2 units. Plot the amplitude and phase
spectra of the signal.

5. State and prove the following of Fourier transform. i)
Time shifting property ii) Time differentiation property
iii) Parseval's theorem.






Fourier representation for signals — 2

Fourier representation for signals — 2: Discrete and continuous Fourier transforms(derivations of
transforms are excluded) and their properties.
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Fourier representation for signals
Introduction:

Fourier Representation for four Signal Classes

FS DTES DTFT

5.1 The Fourier transform

5.1.1 From Discrete Fourier Series to Fourier Transform:
Let x [ n ] be a nonperiodic sequence of finite duration. That is, for some positive
integer N ,

x[n] =0 In| > N,

Such a sequence is shown in Fig. 6-1(a). Let x,Jn] be a periodic sequence formed by
repeating x [ n ] with fundamental period No as shown in Fig. 6-I(b). If we let NoO -, m, we
have

lim x, [n] =x[n]

Ny
The discrete Fourier series of XNo[n] is given by
. 2
xNu[n] = ). c ek o= —



1 .
o= L xyfn]e0n
0 n={Ny)

x[n]

Agln

-N, 0 N, N, n

Fig. 6-1 (a) Nonperiodic finite sequence x[n]; (b) periodic sequence formed by periodic extension of
x[n]
1 Ny . * .
o=y L xlnlem= o T xln]eh
NU"=—N|: N!‘.I n=—-x
X(Q)= 2 x[n]e /0

n= —noc
the Fourier coefficients ¢, can be expressed as

1
Cp = Fx(knu)

0

x.«f.,[”] = Z

k=1{Ny?

1

X(kQ Tk Qyn
N, (k€)y)e

1 _
xy[n)=5= Y X(kQy) ety
] 2.”. k={N”}

Properties of the Fourier transform

Periodicity
As a consequence of Eq. (6.41), in the discrete-time case we have to consider values of
R(radians) only over the range0 < Q <2z or © < Q <, while in the continuous-time case we
have to consider values of 0 (radians/second) over the entire range —o < ® < .
X(Q+27)=X(Q)
Linearity:
ax [n] +ayx;[n] > a, X, () +a,X,(Q2)

|



x[n—no] e mX(Q)

My n] - X(Q - Q)
njugation:

x*[n] = X*(—Q)

Time Reversal:

x[=n] > X(-Q)

Time Scaling:

x(at)c——»%‘lX(g)

Duality:

The duality property of a continuous-time Fourier transform is expressed as
X(t)e—2mx(—w)

There is no discrete-time counterpart of this property. However, there is a duality between

the discrete-time Fourier transform and the continuous-time Fourier series. Let

x[n] > X(Q)

e

X(Q)= Y x[n]e’®"
X(Q+27)=X(N)
Since ) is a continuous variable, letting =t and n = —k

X(t)= L x[—k]e*

k= —m

Since X(t) is periodic with period To = 2 7t and the fundamental frequency o, = 2m/To =1,
Equation indicates that the Fourier series coefficients of X(t) will be X [ - k ] . This duality
relationship is denoted by

X(t) ¢, =x[-k]
where FS denotes the Fourier series and c, are its Fourier coefficients.



Differentiation in Frequency:

dX(Q)
mpn]esj=on

Differencing:

x[n] —x[n—1] (1 - ) X(Q)
The sequence X[Nn] -x[n — 1] is called the first difference sequence. Equation is easily obtained
from the linearity property and the time-shifting property .

Accumulation:
n 1
k= —o0

Note that accumulation is the discrete-time counterpart of integration. The impulse term on the
right-hand side of Eq. (6.57) reflects the dc or average value that can result from the
accumulation.

Convolution:
x,[n]* x,[n] = X,(Q)X,(Q)
As in the case of the z-transform, this convolution property plays an important role in the
study of discrete-time LTI systems.
Multiplication:
1
x [n]x;[n] & s=X\(Q) @ X;(2)
™

—

where @ denotes the periodic convolution defined by

X,(2)®X,(2) = [ X,(6)X,(2-6)do
The multiplication propertg/"(6.59) is the dual property of Eq. (6.58).

Parseval's Relations:

Z xi[n]x,[n] ="£‘ﬂ'_ , X\(2)X,(—Q)dd
- 2 _ 0 2
): lx[n]l"= . 217[}&’(ﬂ)i df)



Summary

Frequency

Property x(L), v(L) X(fw) Y(fo)
Linearity axl(t) + byvie) aX(jw) + b Y (jw)
Time Shifting it =t g e X )
Frequency Shifting el oty (1) X(jlw — wy))
Conjugation x'{L) A (—ju)
Time Reversal xi—t) X{—jow)
Time and Frequency xlat) L Jw
Sealing lal” T:'
Convaolution x(t) =+ y(t) X{ja)¥ijw)
Multiphcation y(t)p(t) X{jea) =4 Y (j)
[hfferentiation in Tume [_fr“_i JennX (i)

o G 1
Integration v(de :}" (fuw) + X (0 w)

LE

Differentiation in tx(t) d

;H.I[’,Im.

Recommended Questions

1. Obtain the Fourier transform of the signal e . u(t) and plot spectrum.

2. Determine the DTFT of unit step sequence x(n) = u(n) its magnitude and phase.

3. The system produces the output of yet) = e* u(t), for an input of x(t) = e-2t.u(t). Determine
impulse response and frequency response of the system.
4. The input and the output of a causal LTI system are related by differential equation

div(ty edy()

ar? ar

-+ 8y(t)= 2x(t)

i) Find the impulse response of this system
ii) What is the response of this system if x(t) = te® u(t)?

5. Discuss the effects of a time shift and a frequency shift on the Fourier representation.

6. Use the equation describing the DTFT representation to determine the time-domain
signals corresponding to the following DTFTSs :

i) X (€Y= Cos(Q)+j Sin(Q)

i) X(@H={1, for 1/2<Q< 1; 0 otherwise  and X(e’})=-4 Q

7. Use the defining equation for the FT to evaluate the frequency-domain representations

for the following signals:
i) X(t)= e*'u(t-1)

i) X(t)=e" Sketch the magnitude and phase spectra.

8. Show that the real and odd continuous time non periodic signal has purely imaginary Fourier

transform. (4 Marks)




Fourier Series and LTI System
» Fourier series representation can be used to construct any periodic signals in

discrete as well as continuous-time signals of practical importance.

* We have also seen the response of an LTI system to a linear combination of
complex exponentials taking a simple form.

* Now, let us see how Fourier representation is used to analyze the response of
LTI System.

Consider the CTFS synthesis equation for x(t) given by
Suppose we apply this signal as an mput to an LTI System with impulse respose h(t).
Then, since each of the complex exponentials in the expression is an eigen function of

the system. Then, with sk = jkwo, it follows that the output 1s
+ co
y(t) — Z akH(ejka)ejkwor
k=—o

Thus y(t) 1s periodic with frequency as x(t). Further, if ak is the set of Fourier series

; 5 y akH (ejka) . . ;
coefficients for the mput x(t), then { } 1s the set of coefficient for the
y(t). Hence in LTI, modify each of the Fourier coefficient of the input by multiplying
by the frequency response at the corresponding frequency.

Example:
Consider a periodic signal x(t), with fundamental frequency 2, that is expressed in

the form
+3

il = z a2t
(1)

k=-3
where, Qao=1, Qi=A1=1/4, AQ2=A2=1/2, A3=A3=1/3,
Suppose that the this periodic signal is mnput to an LTI system with impulse response
To calculate the FS Coeff. Of o/p y(t), lets compute the frequency response.The
impulse response 1s therefore,

H(jw) = fooe“’ e~ 1¥Tdr = —Le'fe'f“” N
0 1 +j(1) 0
and
AU =130
Y(t) at ®o = 2m . We obtain,
+3

(i) = Z bke /2™t
-t with bx = axH (jk2m), so that



, Lo 1 b_1( 1 )b
1_4(1+j2n) T 2\1+jan/)

b __1( 1 )b 1 1
T 4\1 —j2r '2_'2(1——j4n)

bo =1
The above o/p coefficients. Could be substituted in
+3

y(t) = z brelk2mt
K=—3

_1(
3
1

3

1

(

“or)
+ j6ém

1

1—jé6n

)



Finding the Frequencv Response

We can begin to take advantage of this way of finding the output for any input once
we have H(®).
To find the frequency response H(®) for a system, we can:
1. Put the input x(t) = &' into the system definition
2. Put in the corresponding output y(t) = H(®) "
3. Solve for the frequency response H(®). (The terms depending on t will
cancel.)

Example:

Consider a system with impulse response

1
h(t)— 1z fort<[05]

O otherwise
Find the output corresponding to the input x{t) = cos(10 t).

o) 5
y() = [h(x)x(t—tydc= | %cos(10(t _z))de
T——00 =0
y(ty=21 ( L 1 (sin(10t) — sin(10(t — 5)))
5 10 .o 50

Differential and Difference Equation Descriptions

Frequency Response is the system’s steady state response to a sinusoid. In contrast to
differential and difference-equation descriptions for a system, the frequency response
description cannot represent initial conditions, it can only describe a system in a

steady state condition. The differential-equation representation for a continuous-time

system is
Z Y@ = Z bue x(0)

d
since,—g(t) JwG(jw)

dt
Rearranging the equation we get




Y(jw) Yiiob(jw)*
X(w) YN axc(jw)k

The frequency of the response is

H(jw) =

, M A
Y(jw) _ Yi—obx(jw)

. e N .
X(]w) Zk=o ak(]w)k
Hence, the equation implies the frequency response of a system described by a linear
constant-coefficient differential equation is a ratio of polynomials in jo.

The difference equation representation for a discrete-time system 1s of the form.

N M
Z axy[ln — k] = Z bxx[n — kj
k=0 k=0
Take the DTFT of both sides of this equation, using the time-shift property.
gln — k] — =ik G(e®)
To obtain
N N
N, . 5 sfE :

> a(e®) v(er) = ) an(ee) x ()
k=0 k=0

» Rewrite this equation as the ratio
; _—
r(e') S, bu(e™)
X(ei®) o @(ed)k

jw

*  The frequency response is the polynomial in €
; RN «

Y(e]w) w Y=o bx (e]w)

X(ei®) Y o a(elv)k

H(e’®) =

Differential Equation Descriptions

Ex: Solve the following differential Eqn using FT.

2 d d
YO +42y(0) + 5y(t) = 3—-x(0) + x(t)

For all t where, x(t) = (1 +e u(t)

Soln:we have
2

d d d
Y (0) +42y(0) +5y(t) = 3—x(0) + x(0)
FT gives,

[w)? + 4(jw) + 5]Y (jw) = Bjw + DX(jo)



and x(t) = (1 + e Hu(t) x(t) =u(t) + (e Hu(t)

1 1 "
Xjw)=|—+nmd(w) |+ —— ; 1
(jw) <]w ( )) (jw + 1) Since u(t) 5 (w) +jw

1

and(e ")u(t) s
1
X(jjw) = (,—+n6(w))+ -
Hence we have Ja (w+1)

And LU®)? +4(0) + 5]Y o) = GBjw + DX(jw)
i
Bjw+1)
[Gw)? + 4(jw) + 5]

Y(jw) = X(jw)

. Gw+1) 11 1
F)= [Gw+2)?2 + 1] ljw Hsia) (jw + 1)

N Bjw+1) T 1
Y00) = e a0

V(o) =YD +Y(2) +Y(3)

2 Bjw+1) [ Bjow+1)
o) = Gerr+ 1 5 "0 [Gor 2P+ ilGo+ 1)
vu = G0+ D Gj(w = 0) + Dls(0) = 1]
() = [Go+ 27+ 0 [Gw=0)+ 27+ 1Jj@@=0)
Bjw+ 1)
i [(w+2)?2+1](jw+ 1)
o A Bt
(1) =— 9D ya) =4 — -
[+ 2)? + 1]jw jo  [(w+2)%+1]
il e, B I
Performing partial fractionweget ©° 5§’ ~ §'° " 5

1/5, —1/5jw +11/5

)= ¥ Twr 27 1]
Similarly
_ Bjw + 1)
YO = Gor 22 + 1o+ D
Y(3) = R Pjw + Q

+
(ow+1) [(w+2)*+1]
Performing partial fractionwe get R=-1,P=1,0=6



—1 jo+ 6
Go+1)  [Goi2P+1]
—1 jo+6
Go+1)  [Go+2)?+1]Y(w) = Y1) +¥(2) +Y(3)
Hence,we have

Y(1) =

Y(3) =

Y(3) =

/ —1/5]w+11/5
[(]w +2)? + 1]
Y(Z) — 38(0))

Readjusting
_1/5 ~1/5j0+11/5 = ~1 jo+6
L Got22+1] 529 6o D o+ 27+ 1]

. _1 i _; 1 4jw + 41
Y(jw) = 5 [jw + ”5(“’)I Gw+ 1) g [[(jw 2911

_1_/5 = 11/5—1/5jw jo+6 1
¥(w) P 1 Gt IP T Gt D
we know that,

_ Btje

[(B + ) + we]
Wo

[(B +)@)? + we]

e Pt coswo tu(t) <

e Bt sin wo tu(t) <

v

Readjusting the last term,we get

Y(Iw)——[1+1ré’(w)] 1 4[[ ms i,

Fatil & Gw+2)2+1] " 5 [(;w+2)2+1]

Now, taking the inverse Fourier Transform,we get

1 - 33
V() = gu(t) —e fu(t) + E® ~2t cos tu(t) +e 2t sint u(t)

Differential Equation Descriptions

* Ex: Find the frequency response and impulse response of the system described

by the differential equation.
2

d d d
TV +3y() + 2y(1) = 2 x(t) +x(1)



Here we have N=2, M=1. Substituting the coefficients of this differential equation in

Y(jiw M be(jw)*
H(]'a)) - (I )= 21};_0 k(/. )k

X(jw) Xi_oax(w)
Differential Equation Descriptions

2jw + 1
(jw)*+3jw +2

We obtain

H(jw) =

The impulse response is given by the inverse FT of H(jo). Rewrite H(jo)
using the partial fraction expansion.

BE)=
Do+l jo+2

Solving for A and B we get, A=-1 and B=3. Hence

~=1 3
H(jjw) = - . 4
(o) jo+1 jw+?2
The inverse FT gives the impulse response

|h(t) = 3e % u(t)— e‘tu(t)l

Difference Equation

Ex: Consider an LTI system characterized by the following second order
linear constant coefficient difference equation.

y[n] = 1.3433y[n — 1] — 0.9025y[n — 2] + x[n]
—1.4142x[n — 1] + x[n — 2]

Find the frequency response of the system.

y[n] = 1.3433y[n — 1] —?)O.lgnbzsy[n — 2] + x[n]
—1.4142x[n — 1] + x[n — 2]
Y(e/®) = 13433(e /@)Y (e/)
—0.9025(e /2@y (e/®) + X(e’®)
~14142(e7?)X(e’?) + (e772@) X (e/?)

we know, y[n — k] — e~ Tkoy(el@)



Y(ej“’)
X(ei®)
1— 1.4142e77® 4 ¢7J2@
~ 1 —1.3433¢ /% + 0.9025e /2%

H(ef‘") =

Ex: If the unit impulse response of an LTI System is h(n)=c"u[n], find the response of

the system to an input defined by x[n] = gruln], where Bra < landa#(3

Soln:
y[nl = hln] * x[n]
Taking DTFT on both sides of the equation,we get

_ _ _ Jon 1 1
Y(e}w) = H(e}w)X(ejw) v(er) = 1 —aeJ® 1 - ge-J@
1 1 A B

Y jw) = - - = — X -
(e7) 1—ue‘f‘*’xl—ﬁe—1w 1—ae™7* 1—pe /¥

where A and B are constants to be found by using partial fractions

: A B
) Then, Y(ef"’) = X
Let, e /¥ =v 1—av 1-—pv
A= g —F
By performing partial fractions,we get =  a—f  a—f
a —p
a—p a—p

Therefore,Y(ef‘”) = — X :
l—ae o 1—BeJw

Taking inverse DTFT,we get

C(an_ﬁ

a—pf a—pf

yin] = | a'|uin)

Sampling

In this chapter let us understand the meaning of sampling and which are the different
methods of sampling. There are the two types. Sampling Continuous-time signals and
Sub-sampling. In this again we have Sampling Discrete-time signals.

Sampling Continuous-time signals

Sampling of continuous-time signals 1s performed to process the signal using digital
processors. The sampling operation generates a discrete-time signal from a
continuous-time signal DTFT 1s used to analyze the effects of uniformly sampling a
signal Let us see, how a DTFT of a sampled signal 1s related to FT of the continuous-
tume signal.

* Sampling: Spatial Domain: A continuous signal x(f) 1s measured at fixed
instances spaced apart by an interval “17. The data points so obtained form a
discrete signal x[n]=x[nT]. Here. AT 1s the sampling period and 1/ AT 1s the
sampling frequency Hence, sampling is the multiplication of the signal with an
impulse signal.




* Sampling theory

AN A

Lt 1k -

A AAN

X(t) F(jw)

* Reconstruction theory

Al AAN

*

S111C L
QDZ‘&QQ i .

x(t) Fiw)




Sampling: Spatial Domain

From the Figure we can see

Where x[n] is equal to the —

samples of x(t) at integer xs(t) = Z x(n)8(t — n1)
multiples of a sampling Mt

interval T

... Now substitute x(nT) for x[n]to obtain

xs(t) = Z x(nt) 86(t — n1)

n=—w

since x(t)8(t — nt) = x(n1)d(t — n1)

we may rewrite xs(t) as a product of time functions

xs(t) = x(t)p(t) where, p)= 6(t —n1)
Hence, Sampling is the multiplication of the signal with an impulse train.

The effect of sampling is determined by relating the FT of xs(t) to the FT

x(t) _. o : :
of ( ) Since Multiplication in the time domain corresponds to
convolution in the frequency domain, we have

1
Xs(jw) = Z—X(jm) * P(jw)
T
Substituting the value of P(®) 4 the FT of the pulse train i.e
+o0
p() = Y 8(t—nD)
We get, )
21 <
P(jw) = =2 Z 5(w — kaws)
T =
2T
where, ws = —,is the sampling frequency. Now
T
1 21
T
Xs(w) = —XGw) » — Z 5(w — kaws)
2T T
n=—ao
1~
Xs(jw) = = Z X(j(lw — kws))
m=—0ao

The FT of the sampled signal is given by an infinite sum of shifted version of
the original signals FT and the offsets are integer multiples of mg



Aliasing : an example

Frequency of original signal is 0.5 oscillations per time unit). Sampling
frequency is also 0.5 oscillations per time unit). Original signal cannot be

recovered.

Aliasing Ex:1
Sampling
points x[n]

Original signal

x(t)

ws =0.5cycles/unit

Sampling frequency
time J,

Aliased signal
which is
reconstructed

Aliasing Ex:2

Sampling
points xX[Nn]

Original signal
x(t)

ws =0.7cycles/unit

[ W)
\/

Sampling frequency l

Aliased signal appear like a sine"wave but of
lower frequency, original signal is lost

Non-Aliasing: Ex 3

Sampling
points x[n]

Original signal
Sampling frequency l x(t)

ws =1.0 cycles/unit
time i.e twice the
frequency of the
- MAAAAAANANDND]
Ll O o o B e O e i
| VVVVVUUVVVY
Non-Aliased signal appear like a sine wave but of

lower frequency, original signal is lost




Sampling below the Nyquist rate

x(t) NX(w)

Reconstruction below the Nvquist rate

(1) X(jw)



FT of sampled signal for different sampling frequency

X(w)
(a) Spectrum of continuous-time signal \
-W o w

Xs(Gw) (b) Spectrum of sampled signal, w; =3W

K=-2 K=-1 } K=0 K=1 K=2
w wWe zws

-2w, “wg -W 0

(c) Spectrum of sampled signal, w, =3/2W

-'14095 -{Sws -{2003 -wW 0 w éws éws ‘iws

* Reconstruction problem is addressed as follows.

» Aliasing is prevented by choosing the sampling interval T so that w0 >2W,
where W is the highest frequency component in the signal.

» This implies we must satisfy T<n/W.

* Also, DTFT of the sampled signal is obtained from Xs(jw)

relationship Q= oT, that is

DTFT ]
x[n] X(€) = x(w) o = are
* This scaling of the independent variable implies that ®=wm, corresponds to
Q=2n

using the

Subsampling: Sampling discrete-time signal

* FT is also used in discrete sampling signal.

o Let? [n] = x[qn] be a subsampled version x[n], where q is a positive integer.

* Relating DTFT of y[n] to the DTFT of x[n], by using FT to represent x[n] as a
sampled versioned of a continuous time signal x(t).

» Expressing now y[n] as a sampled version of the sampled version of the same
underlying CT x(t) obtained using a sampling interval q that associated with
x[n]

»  We know to represent the sampling version of x[n] as the impulse sampled CT
signal with sampling interval T.

+ o0

xs(t) = Z x(n)é6(t —n1)

n=—aoo

* Suppose, x[n] are the samples of a CT signal x(t), obtained at integer multiples

of T. That is, x[n]=x[nT]. Let *(©)

X(®) and applying it to obtain

1 —
¥s(jw) = — Z Ka— Tod)

k=—co




- Since y[n] is formed using every qth sample of x[n], we may also express y[n]

yln] = xlgn] = x(nq7)

as a sampled version of x(t).we have

- Hence, active sampling rate for yn] is T°=qT. Hence

vs(t) = x(t) Z d(t — nt") Ya(Gw) = % Z X(U(w — kws"))
n=—oc K=—o=

- Hence substituting T ’=q T, and o= ws'q
“+ oo
. 1 : k
Ys(Gw) = — E XJ(w —— ws))
qT L q

Ys(Gw) and Xs(jw)

- We have expressed both as a function of

- Expressing XGa) as a function ofXSQw) . Let us write k/q as a proper
function, we get
I m
— =1+ ,
q q

Kk
where l is the integer portion ofa, and m is the remainder

allowing k to range from — oo to + oo corresponds

to having [ range from — oo to + coand m from0Oto g — 1
—i

Yo(iw) = %qz: {% i Xs (j (e — tews— % ws))}

m=0 l=—co

Ys(Jw) = é qzi Xs (j (a) — % ws))
m=0

which represents a sum of shifted versions of

Xs(jw) normalized by q.
Converting from the FT representation back to DTFT
and substituting Q0 = wt above

and also X(e’?) = Xs(jR2/71) ,we write this result as

q—1I
Ys(e/?) = 3 Z Xq(e/2-mz2m)
=0

where, Xq(efﬂ) = X(efﬂfq) — a scaled DTFT version




Recommended Questions

1. Find the frequency response of the RLC circuit shown in the figure. Also
find the impulse response of the circuit

-lls\:'] rpiuf} (- _

— P

Fig.Q6(b)

The input and output of causal LTI system are described by the differential equation.
dy 0 +3dy® 12y =x(1)
dt’ dt
1) Find the frequency response of the system
i) Find impulse response of the system
iil) What is the response of the system if x (t) = te™ u (¢). (10 Marks)

3. If x(t)e>X(f). Show that x(t)Coswot«> 1/2[ X(f-fo)+X(f-fo)] where w0=2xf,

The input x (t) = ™' u(t) when applied to a system, results in an output y (t) = ™ u(t). Find
the frequency response and impulse response of the system. (07 Marks)

Find the DTFS co-efficients of the signal shown in figure Q4 (b),

Ly $o . s\ "i"?
qlJmL“;

Y T -e e hh

6. State sampling theorem. Explain sampling of continuous time
signals with relevant expressions and figures.

7. Find the Nyquist rate for each of the following signals:
i) X (t) = sinc(200t) ii) x (t) =sinc? (500t)
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Module 5
Z-Transforms

7.1 Introduction to z-transform:

The z-transform is a transform for sequences. Just like the Laplace transform takes a function
of t and replaces it with another function of an auxiliary variable s. The z-transform takes a sequence
and replaces it with a function of an auxiliary variable, z. The reason for doing this is that it makes
difference equations easier to solve, again, this is very like what happens with the Laplace transform,
where taking the Laplace transform makes it easier to solve differential equations. A difference
equation is an equation which tells you what the k+2th term in a sequence is in terms of the k+1th
and kth terms, for example. Difference equations arise in numerical treatments of differential
equations, in discrete time sampling and when studying systems that are intrinsically discrete, such
as population models in ecology and epidemiology and mathematical modelling of mylinated nerves.
Generalizes the complex sinusoidal representations of DTFT to more
generalized representation using complex exponential signals

Im{z}

rejﬂ

Re{z}

z-plane

« It is the discrete time counterpart of Laplace transform
The z-Plane

« Complex number z = re" “isrepresented as a location in a complex plane (z-plane)
7.2  The z-transform:

e Letz=rejJ [ be acomplex number with magnituder and angle [].

* The signal x[n] = zn is a complex exponential and x[n] = rn cos(LIn)+ jrn sin(CIn)
* The real part of x[n] is exponentially damped cosine

 The imaginary part of x[n] is exponentially damped sine

« Apply x[n] to an LTI system with impulse response h[n], Then

y[n] = H{x[n]} = h[n] * x[n]



“”°2J"ITIT ity -,

M = Z Ak x[n— K]

e [f
x[n] = 2"
we get
Vo = 3 hlKz
J——
M =2" hlkz ¥
J——
e The z-transform is defined as
H(z) = Z hlkz *
J——

we may write as

H(Z"Yy = H(z)Z"

You can see that when you do the z-transform it sums up all the sequence, and so the individual
terms affect the dependence on z, but the resulting function is just a function of z, it has no k in it. It
will become clearer later why we might do this.

« This has the form of an eigen relation, where zn is the eigen function and H(z) is the eigen value.
 The action of an LTI system is equivalent to multiplication of the input by the complex number
H(2).



e If H(z) = |H(2)|e/*® then the system output is
Hn) = |H(2)| /@ 2"
e Using z= re/** we get
An] = |H(re’*)|r" cos(Qn+ ¢(re?)+

JIH(re’*) | rsin(Qn+ o (re/*?)

e Rewriting x{n|
x[n) = 2" = r cos(Qn) + jr'sin(Qn)

e If we compare x[n7] and y[n], we see that the system modifies

— the amplitude of the input by |H(re/?)| and
— shifts the phase by ¢(re/<?)

DTFT and the z-transform

e Put the value of z in the transform then we get

H(re/?) = i Al (re/?) ="

oo

= Z (hln]r—™)e /20

e We see that H(re/?) corresponds to DTFT of h[n]r—".
e The inverse DTFT of H(re/*) must be h[n|r—".

e We can write

Tt P -
Alnlr "= i/ H(re’?)e/*dQ
2T — 7T
The ztransform contd..
e Multiplying A[n|r— " with r” gives

- ,m ) )
h[n] = ;—n/_nH(I‘e/Q)e/Q”dQ

1 n ; :
Aln] = —— / H(re/?)(re/?)1qQ
2T 7
e We can convert this equation into an integral over zby putting o= e

e Integration is over 2, we may consider r as a constant



o We have
dz= jredQ = jzdQ

dQ :1, Lz
J

e Consider limits on integral

— Q varies from —mtto

— ztraverses a circle of radius r in a counterclockwise direction

e We can write A[n| as h[n] = %ﬁ H(z)7" 'dz

where ¢ is integration around the circle of radius |z| = r in a counter

clockwise direction

e The z-transform of any signal x{n] is

X(z) = i x[njz7"

)— —co

e The inverse z-transform of is
x[n] = = ?{X(z)z”*ldz
- 2mj
e [nverse z-transform expresses x[n] as a weighted superposition of com-
plex exponentials z’
e The weights are (ﬁj))((z)zf1 dz

e This requires the knowledge of complex variable theory



Convergence

e Existence of z-transform: exists only if 3. _ x[n|z~" converges

e Necessary condition: absolute summability of x[n]z—"

, since |x[n]z7 7| =
|x[n]r—"|, the condition is

oo

> |x[ar 7| < eo

n—=-—co

e The range r for which the condition is satisfied is called the range of

convergence (ROC) of the z-transform
e ROC is very important in analyzing the system stability and behavior

e We may get identical z-transform for two different signals and only

ROC differentiates the two signals

The z-transform exists for signals that do not have DTFT.

existence of DTFT: absolute summability of x[n]

by limiting restricted values for r we can ensure that x{n|r—" is abso-

lutely summable even though x[n] is not

e Consider an example: the DTFT of x[n] = o”u[n| does not exists for

o] > 1

If r > o, then r~" decays faster than x[n] grows

Signal x[n]r—" is absolutely summable and z-transform exists

x|n]
auln]
a=|
1 ¢ I 3
——— OO L1 n
-2 0 3 <4 6
r—rr
|
[]
| -TTTIT????q--- o
-z al > a4
x[n}r—

r>a

—— ]O T_IJI_TTJJT‘L? S

¥




z=e
< Re{z}
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0 1
z-plane

Figure 1.31: DTFT and z-transform
The zPlane and DTFT
e If x[n] is absolutely summable, then DTFT is obtained from the z-
transform by setting r = 1 (z= /%), ie. X(e/*) = X(2)|,— 00 as shown

in Figure ??

Poles and Zeros

e Commonly encountered form of the ztransform is the ratio of two
polynomials in z~!
X(2) bo+biz ' +...+ bMZ_M
T)i=
ag+ayz1+...+byz N

e It is useful to rewrite X(z) as product of terms involving roots of the

numerator and denominator polynomials

_ B (1 —cz™)
MY (1—dez 1)

X(2)

where b = bo / ao

Poles and Zeros contd..
e Zeros: The ¢ are the roots of numerator polynomials
e Poles: The dj are the roots of denominator polynomials

e [ ocations of zeros and poles are denoted by "()” and " x” respectively

Example 1:



e The ztransform and DTFT of x[n] = {1,2,—1,1} starting at n = —1

o X(2) =Y. Aur =35  alfleT=ptd gVt

o X(e®) = X(2)| e = &+ 2 — R4 /20
e The ztransform and DTFT of x[n] = {1,2,—1,1} starting at n = —1
o X(2) =33 _oXnz"=32 xnz"=z4+2—z1427"2

o X(ef?) = X(2)|,mon = &/ 42— 2 o720

Example 2

e Find the ztransform of x{n] = o”u[n], Depict the ROC and the poles

and zeros

e Solution: X(2) =X .o ulnz "=3; ((Z)"
The series converges if |z| > |0
1
X(2) = =01 = 7o 2| > |o.
Hence pole at z= o and a zero at z= 0

e The ROC is
Im{z}
P | =
7 N

/ b

4 N\
/ \
/ \
/ \ Re(z]
| Yol X e{z
\ 0 e
\ /
\ Y.

\ A

B 7

'\\ //
z-plane




e ROC is related to characteristics of x[z1]
e ROC can be identified from X(z) and limited knowledge of x{r]

e The relationship between ROC and characteristics of the x[71] is used to

find inverse z-transform

Property 1

ROC can not contain any poles
e ROC is the set of all z for which z-transform converges
e X(z) must be finite for all z

e If pis a pole, then |H(p)| = o= and ztransform does not converge at

the pole
e Pole can not lie in the ROC

Property 2
The ROC for a finite duration signal includes entire z-plane except z= 0

or/and z = o

e | et x{n] be nonzero on the interval m < n < nz. The ztransform is

X(z) = i x[n|z— "

n=m

The ROC for a finite duration signal includes entire z-plane except z = 0

or/and z = oo

ies of Reaion of _



e Ifasignal is causal (n, > 0) then X(z) will have a term containing z~ !,

hence ROC can not include z= 0

e If a signal is non-causal (177 < 0) then X(z) will have a term containing

powers of z, hence ROC can not include z= =

The ROC for a finite duration signal includes entire z-plane except z= 0

or/and z = oo

e If n, < 0 then the ROC will include z= 0
e If n; > 0 then the ROC will include z= =

e This shows the only signal whose ROC is entire z-plane is x[n] = ¢d[n],

where ¢ is a constant

Finite duration signals

e The condition for convergence is | X(z)| < o

co

(X(2)| =] X xnz™"

n—=—co

oo

< X |xnz7"|

n—=—co
magnitude of sum of complex numbers < sum of individual magni-

tudes

e Magnitude of the product is equal to product of the magnitudes

oo oo

D Kz = X |xln]l|z7"

n=-—co n=—co

e split the sum into negative and positive time parts

e Let
—1

I (2)= 2, |x[a]llz""

1——co

L (2) = ﬁbmnmz\*”



e Note that X(z) = [_(2) + [+ (2). If both /_(z) and [ (z) are finite, then
X(z) if finite

e If x|n] is bounded for smallest +ve constants A_, A, r_ and r such
that
Ix[n]| <A_(r-)", n<0

|x[n]| < A+(r4)", n>0

e The signal that satisfies above two bounds grows no faster than ()"

for +venand (r_)"” for —ven

e If the n < 0 bound is satisfied then

—1
L@D<A 3 ()"

n=—oo

e Sum converges if |z] < r_

e If the n > 0 bound is satisfied then

co

L(z)=Ay Y (£)|A™"

n=0
ALY (TEym
+n§0(,zl)

e Sum converges if |z| > r

e Ifr. < |zl <r_,thenboth I, (z) and /_(z) converge and X(z) converges

Properties of Z — transform:



— Linearity

— Time reversal

— Time shift

— Multiplication by o
— Convolution

— Differentiation in the z~domain
The z-transform

» The z-transform of any signal x[n] is

X(2)= D, x{nz"

n—=—co
» The inverse z-transform of X(z) is
1 1
x[n] = %%X(Z)Z" dz
e We assume that
An <% X(z), withROC Ry

y[n] <% Y(z),  with ROC Ry

e General form of the ROC is a ring in the z-plane, so the effect of an

operation on the ROC is described by the a change in the radii of ROC
P1: Linearity
o The ztransform of a sum of signals is the sum of individual z-transforms
ax{n) + byln) <%= aX(z) + bY(2),

with ROC at least RyN Ry

e The ROC is the intersection of the individual ROCs, since the z-transform

of the sum is valid only when both converge
P1: Linearity

e The ROC can be larger than the intersection if one or more terms in

x[n] or y{n| cancel each other in the sum.

e Consider an example: x[n] = (%)”u[n] — (%)"u[—n— 1]

o We have x[n] < X(2)



P2: Time reversal

e Time reversal or reflection corresponds to replacing z by z~!. Hence,
if Ry is of the form a < |z| < b then the ROC of the reflected signal is
a = 1f|g = berl/bx |2l <1 /a
If x{n] % X(2), with ROC Ry

Then x[—n] <% X(l). with ROC %
z

X

Proof: Time reversal

e Let y[n = x[—n]
Y(2)=3n x[—n|z "
Let /= —n, then
Y(2) = TE _.x1]7

Y(2) =3g _.x0(3)~!
Y(2) = X(3)

P3: Time shift

e Time shift of n, in the time domain corresponds to multiplication of

z o in the z~domain
If x{n] TN X(z); with ROC R,

Then x[n— n,] <2 z "% X(2),
with ROC R, except z=0or |z| =<
P3: Time shift, n, > 0
e Multiplication by z~ " introduces a pole of order n, at z= 0
e The ROC can not include z= 0, even if Ry does include z= 0

e If X(z) has a zero of at least order n, at z= 0 that cancels all of the

new poles then ROC can include z= 0
P3: Time shift, n, < 0
e Multiplication by z " introduces 1, poles at infinity

e If these poles are not canceled by zeros at infinity in X(z) then the ROC

of z ™ X(z) can not include |z| = o=



Proof: Time shift

e Let yin] = x[n— ny)
Y(z) =3, _x[n—nylz"
Let / = n— n,, then
Y(2) =37 x[l|z U+m0)
Y(z2) =z %37 _x[llz!
Y(z) =z X(2)

P4: Multiplication by o”

e [ et o be a complex number

If x{n <<= X(2),

with ROC Ry

Then o”x[r] éX(é), with ROC |0 Ry

|ot| Ry indicates that the ROC boundaries are multiplied by |o].

e If Ryis a < |zl < bthen the new ROC is |o|a < |2] < |o|b

e If X(z) contains a pole d, ie. the factor (z— d) is in the denominator

then X(Z) has a factor (z— ad) in the denominator and thus a pole at

od.

e If X(z) contains a zero c, then X(Z) has a zero at o.c

e This indicates that the poles and zeros of X(z) have their radii changed

by [o

e Their angles are changed by arg{o}

Imj{z}

arg{c]

N 1

arg(d]

z-plane

(a)

Im{z}

arg (] + ang )
&Y

N\
o |

Re{z}

| ||

arg{d) +arg i)

7-plane

Refz}



e If |o| = 1 then the radius is unchanged and if o is +ve real number then

the angle is unchanged

Proof: Multiplication by o”

o Let y[n] = ox[n]
Yig) = i o x[n|
M@= X AN
V@) =X()
o

P5: Convolution

e Convolution in time domain corresponds to multiplication in the z-
domainIf x{n] <= X(z), withROC Ry If y{n]<= Y¥(z), withROC R,
Then x{n] * y[n] <= X(2)Y(2),

with ROC at least RyN R,

e Similar to linearity the ROC may be larger than the intersection of Ry
and R,

Proof: Convolution

e Let c[n| = x[n] * y[n]

Clz)— 2 (x[n] = y[n)z"

n——co

C(2) = Z 2 «yln—k))z "

nN——oco k—_ oo

oo

C@= 3 xS n—K)z @0 )z*

k=—oco =29

Y(z)
C@=( Y AHz5Y (2
k=—oco
X(2)
C(z) =X(2)Y(2)



P6: Differentiation in the z domain

e Multiplication by n in the time domain corresponds to differentiation

with respect to zand multiplication of the result by —zin the z~-domain

If x[n] <% X(z), withROC R, Then nx[n] —— —zdig( (z) with ROC Ry

e ROC remains unchanged

Proof: Differentiation in the z domain

e We know

d . S - i —n_—1
—Zd—ZX(Z)— > —(—n)x[n)z "z 'z

nm——oco
d < —n
_ZFZX (z) = n:z_'oo nx(n|z

Then nx[n] <2 ——Z%X (z) with ROC Ry



Example 1

Use the ztransform properties to determine the z-transform
e x[n] = 11((_71)”11[11]) * (i—)_”u[—n]

e Solution is:

ali) = ()l o A2) = b, 1> 3
b[n] = na[n] <%= B(z) = —ZdzA(Z) —ZdZ 1+%r1 ) %
bln] = naln] <2 B(z) = W 14> 1

cn] = (1)"uln] <= C(z) = Tlrl 2| > &

Use the z-transform properties to determine the ztransform

e x[n] = n((=)"u[n]) * (3) "u[—n]
d[n] = c[—n] = (%)”[f]%uo(z) C()——4 |zl < 4
x{n] = (b[n] = d[n]) = X (2) = B(2) D(2), <zl <4
x[n] = (b[n] = d[n)) <= (I—I—T%ZZ)Z (l—léz)" l<ld<4
x[n] = (bn] * d[n]) <= 24 1<l <4

(1+32)%(2—4)’

Example 2

Use the ztransform properties to determine the z-transform
e x[n] = a"cos(L2,n)u[n], where a is real and +ve

e Solution is:

b[n] = a"u[n] < B(z) = m |zl > a
Put cos(Q,n) = %efQO”—F %P_JQO", so we get
x{n] = Je/%Mb[n] + Le /%[ n]

Use the z-transform properties to determine the z-transform
e x[n] = a”cos(Q,n)uln|, where a is real and +ve

e Solution continued

x[n] <<= X(2) = lB(e’noz) - lB( e Kz) |z >a

1 Li
X[”] *—_’ X(Z) 21 ae/foz1 5N 2 1—ae—Aoz1" |Zl i

I Qo —1 —jQo
X <—>X<z) e )
1 cos (€2,
X[H] / X(Z) s 1—2acc:?s(§2‘f)r)li—azr2" |Z| > a



Inverse Z transform:

Three different methods are:
1. Partial fraction method
2. Power series method
3. Long division method
4,

Partial fraction method:

e In case of LTI systems, commonly encountered form of z-transform is

Cbytbiz by M
 agtaiz 4. +ayz N

Usually M < N
e If M > N then use long division method and express X(z) in the form

Y B(2)
_ —k P2
X(2) = kZZb frz +A(z)

where B(z) now has the order one less than the denominator polyno-

mial and use partial fraction method to find z-transform

e The inverse z-transform of the terms in the summation are obtained

from the transform pair and time shift property

1 <% §[n]

—1,

z %% 2, §[n— ny)

e If X(z) is expressed as ratio of polynomials in z instead of z~! then

convert into the polynomial of z !

e Convert the denominator into product of first-order terms

- bo+blz_1+...+sz_M

X a0 [T (1— diz 1)

where dy are the poles of X(2)
For distinct poles

e For all distinct poles, the X(z) can be written as

=1 (1 —de_l)

e Depending on ROC, the inverse z-transform associated with each term

is then determined by using the appropriate transform pair

o We get
g i

n . Z
Ag(dyg)"uln] - P———




with ROC z> di OR
Ag

1— de_l ?

with ROC =z < dy

—Ap(di)"u[—n — 1] <<=

e For each term the relationship between the ROC associated with X(Zz)
and each pole determines whether the right-sided or left sided inverse
transform is selected

For Repeated poles
e If pole d; is repeated r times, then there are r terms in the partial-
fraction expansion associated with that pole
Ai] Aiz Air
l—djfli(l—djfl)z ..... (l—djfl)r

e Here also, the ROC of X(z) determines whether the right or left sided

inverse transform is chosen.

A

A(n—i— 1)...(n4+m—
(1 —diz 1)’

(m—1)!

. (di)"uln] with ROC|z| > d;

e If the ROC is of the form |z| << d;, the left-sided inverse z-transform is

chosen, ie.

\ A
(1 — d,-z*l)’".

_A(n+ 1)...(n+m—

1 z
(m—1)! )(di)"ll[—n—l]

with ROC|z| < d;

Deciding ROC
e The ROC of X(z) is the intersection of the ROCs associated with the

individual terms in the partial fraction expansion.

e In order to chose the correct inverse z-transform, we must infer the
ROC of each term from the ROC of X(z).

e By comparing the location of each pole with the ROC of X(z).

e Chose the right sided inverse transform: if the ROC of X(z) has the

radius greater than that of the pole associated with the given term

e Chose the left sided inverse transform: if the ROC of X(z) has the

radius less than that of the pole associated with the given term

Partial fraction method
e It can be applied to complex valued poles
e Generally the expansion coefficients are complex valued

e If the coefficients in X(z) are real valued, then the expansion coeffi-
cients corresponding to complex conjugate poles will be complex con-

jugate of each other



Here we use information other than ROC to get unique inverse trans-

form
We can use causality, stability and existence of DTFT

If the signal is known to be causal then right sided inverse transform is

chosen

e If the signal is stable, then t is absolutely summable and has DTFT

e Stability is equivalent to existence of DTFT, the ROC includes the unit

circle in the z-plane, ie. |z =1

e The inverse z-transform is determined by comparing the poles and the

unit circle

e Ifthe pole is inside the unit circle then the right-sided inverse ztransform

is chosen

e Ifthe pole is outside the unit circle then the left-sided inverse z-transform

is chosen

: : hod

1

Express X(z) as a power series in z~* or zas given in z-transform equa-

tion
The values of the signal x{n] are then given by coefficient associated

with z7"7
Main disadvantage: limited to one sided signals

Signals with ROCs of the form |z > aor |z| < a

If the ROC is |z| > a, then express X(z) as a power series in z ! and

we get right sided signal

If the ROC is |z| < a, then express X(z) as a power series in zand we

get left sided signal



Long division method:

e Find the ztransform of

2 —1
X(2) = +—lz,with ROC |2 > :
1-1z1 2

e Solution is: use long division method to write X(z) as a power series

in z~!, since ROC indicates that x{n] is right sided sequence

o We get
X(2) :2+22_1+z_2—|—%z_3—}—...

e Compare with ztransform

X(z) = i xn]z

oo

o We get
x{n] = 28[n] + 28[n— 1]+ 6[n— 2]

+%5[n—3]—|—...

e If we change the ROC to |7 < % then expand X(z) as a power series

in zusing long division method

e We get
X(z2)=—2—8z—162—-322+ ...

e We can write x{n| as
x[n| = —298[n] —83[n+ 1] — 163[n+ 2]

BP0 3] e



e Find the ztransform of

X(2) = @zz.with ROC all zexcept |z] = o

e Solution is: use power series expansion for e? and is given by

&
a R
k=0
e We can write X(z) as
Y
X(2)= > —
i—0 K
o 2k
k=0 .
e We can write x[n1] as
0 n >0 or nis odd
x[n] = i
= otherwise
!

Recommended Questions

1. Using appropriate propertes find the Z-transform of x(n)=n?(1/3)"u(n-2)
2. Determine the inverse Z- transform of X(z)=1/(2-z* +2 z® by long division method

3. Determine all possible signals of x(n) associated with Z- transform
X(2)= (1/4) z* 1 [1-(1/2) 1 ][ 1-(1/4) 7 ]

4. State and prove time reversal property. Find value theorem of Z-transform. Using suitable
properties, find the Z-transform of the sequences
i) (n-2)(1/3)" u(n-2)
ii) (n+1)(1/2)™* Cos wo(n+1) u(n+1)

5. Consider a system whose difference equation is y(n - 1) + 2y(n) = x(n)
i) Determine the zero-input response of this system, if y(-1) = 2.
il) Determine the zero state response of the system to the input x(n)=(114t u(n).
iil) What is the frequency response of this system
Find the unit impulse response of this system.

8.1 Transform analysis of LTI systems:



e We have defined the transfer function as the z-transform of the impulse

response of an LTI system

H(%) = i h[k)z*

k=—co
e Then we have y[n| = x[n] « h[n] and Y(z) = X(2)H(=z)
e This is another method of representing the system

e The transfer function can be written as

e This is true for all z in the ROCs of X(z) and Y(z) for which X(z) in

nonzero
e The impulse response is the z-transform of the transfer function

e We need to know ROC in order to uniquely find the impulse response

e [f ROC is unknown, then we must know other characteristics such as

stability or causality in order to uniquely find the impulse response

System identification

e Finding a system description by using input and output is known as

system identification

e Ex1: find the system, if the input is x{n] = (—1//3)"u[n] and the out is
yin] = 3(—1)"u[n] + (1/3)"u[n]



e Solution: Find the z-transform of input and output. Use X(z) and Y(2)

to find H(z), then find A(n) using the inverse z-transform

1

M Ty

with ROC |z > %

¥(z) = with ROC |z| > 1

1
A+z0 " a-@z’
e We can write Y(z) as

4

= i , withROC |z > 1
(I+z 1) (1= (3)z 1)

Y(2)

e We know H(z) = Y(z)/X(z), so we get

41+ 3z Y

= ith ROC e |
a+zHa-GzH &

H(z)

e We need to find inverse z-transform to find x[n|, so use partial fraction
and write H(z) as

24
Izt " .

oo

H(Z)— with ROC |z > 1

)7~

W=

e Impulse response x|n] is given by
h[n] = 2(—1)"u[n] 4+ 2(1/3)"u[n]
Relation between transfer function and difference equation

e The transfer can be obtained directly from the difference-equation de-

scription of an LTI system

e We know that

N M
> apn—k = k—zb byxx[n— K]

k=0
e We know that the transfer function H(z) is an eigen value of the system

associated with the eigen function 77, ie. if x[n] = Z” then the output of
an LTI system y[n] = Z7H(z)

e Put x[n— k] = 2" ¥ and y[n— k] = 2" ¥H(z) in the difference equation,



we get

N M
o Z axz ¥H(z) = " 2 bz X
k=0 k=0

e We can solve for H(z)

M .
_ 2p—0bkz 5

Hiz) =
) SN pakzk

e The transfer function described by a difference equation is a ratio of

polynomials in z ! and is termed as a rational transfer function.

e The coefficient of z ¥ in the numerator polynomial is the coefficient

associated with x[n— 4] in the difference equation

e The coefficient of z~¥ in the denominator polynomial is the coefficient

associated with y[n— 4] in the difference equation

e This relation allows us to find the transfer function and also find the

difference equation description for a system, given a rational function



Transfer function:

e The poles and zeros of a rational function offer much insight into LTI
system characteristics
e The transfer function can be expressed in pole-zero form by factoring

the numerator and denominator polynomial

e If c; and dj are zeros and poles of the system respectively and b =

bo/ ap is the gain factor, then

M (1-q2 )

HE) =y 1 a

e This form assumes there are no poles and zeros at z= 0

e The p'” order pole at z= 0 occurs when by = by =...=b, | =0
e The /" order zero at z= 0 occurs when ag = a; = ... = a;_; =

e Then we can write H(z) as

B 132_1’['[21_1‘0(1 = eyz 1)
Z =
MY (1 -z Y)

where b= bp/a;
e In the example we had first order pole at z=0

e The poles, zeros and gain factor b uniquely determine the transfer func-

tion
e This is another description for input-output behavior of the system

e The poles are the roots of characteristic equation






