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• A branch of artificial intelligence, concerned with the 
design and development of algorithms that allow 
computers to evolve behaviors based on empirical 
data. 

 

• As intelligence requires knowledge, it is necessary for 
the computers to acquire knowledge. 

What is machine learning? 















A classic example of a task that requires machine learning: 

It is very hard to say what makes a 2         
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• Face detection 
• Object detection and recognition 
• Image segmentation 
• Multimedia event detection 
• Economical and commercial usage 
• Natural Language Processing 
• Spam Filtering 
• Medical Diagnosis 
• Learning to drive vehicles 
• Game Playing 
• and many more…. 

 
 
 

Applications 
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Face Recognition 

Training examples of a person 

Test images 

AT&T Laboratories, Cambridge UK 
http://www.uk.research.att.com/facedatabase.html 



Training and testing 
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(observed) 

Universal 
set 
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Testing set 
(unobserved) 

Data acquisition Practical 
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• Training is the process of making the system able to learn. 

 

• No free lunch rule: 

– Training set and testing set come from the same distribution 

– Need to make some assumptions or bias 

 

Training and testing 



• There are several factors affecting the performance: 

– Types of training provided 

– The form and extent of any initial background knowledge 

– The type of feedback provided 

– The learning algorithms used 

 

• Two important factors: 

– Modeling 

– Optimization 

Performance 



• The success of machine learning system also depends on the 
algorithms.  

 

• The algorithms control the search to find and build the 
knowledge structures. 

 

• The learning algorithms should extract useful information 
from training examples. 

 

 

Algorithms 



• Supervised learning (                                        ) 
– Prediction 

– Classification (discrete labels), Regression (real values) 

• Unsupervised learning (                          ) 
– Clustering 

– Probability distribution estimation 

– Finding association (in features) 

– Dimension reduction  

• Semi-supervised learning 

• Reinforcement learning 
– Decision making (robot, chess machine) 

 

Algorithms 
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Algorithms 

Supervised learning Unsupervised learning 

Semi-supervised learning 





• Supervised learning 

Machine learning structure 





• Unsupervised learning 

Machine learning structure 







• Supervised learning categories and techniques 
– Linear classifier (numerical functions)  

– Parametric (Probabilistic functions)  

• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden 
Markov models (HMM), Probabilistic graphical models   

– Non-parametric (Instance-based functions)  

• K-nearest neighbors, Kernel regression, Kernel density estimation, 
Local regression 

– Non-metric (Symbolic functions)  

• Classification and regression tree (CART), decision tree   

– Aggregation 

• Bagging (bootstrap + aggregation), Adaboost, Random forest 
  

 

 

Learning techniques 



• Techniques:  
– Perceptron 

– Logistic regression  

– Support vector machine (SVM)  

– Ada-line 

– Multi-layer perceptron (MLP) 

Learning techniques 

, where w is an d-dim vector (learned) 

• Linear classifier 



• Unsupervised learning categories and techniques 

– Clustering 

• K-means clustering 

• Spectral clustering   

– Density Estimation   

• Gaussian mixture model (GMM)   

• Graphical models  

– Dimensionality reduction   

• Principal component analysis (PCA)   

• Factor analysis   

 

Learning techniques 











































































































1. How many concepts are possible for this instance space? 
2. How many hypotheses can be expressed by the hypothesis language 
presented in the lecture  for this instance space? 
3. Apply the FIND-S algorithm by hand on the given training set. 
Consider the examples in the specified order and write down your 
hypothesis each time after observing an example. 











Candidate elimination algorithm: the 
idea 

 The idea: output a description of the set of all 
hypotheses consistent with the training examples 
(correctly classify training examples). 

 

 Version space: a representation of the set of 
hypotheses which are consistent with D 
1. an explicit list of hypotheses (List-Than-Eliminate) 

2. a compact representation of hypotheses which 
exploits the more_general_than partial ordering 
(Candidate-Elimination) 



Consistent 

• An hypothesis h is consistent with a set of 
training examples D iff  h(x) = c(x) for each 
example in D 

  

   Consistent(h, D)  ( x, c(x)  D) h(x) = c(x)) 

  



Version space 

• The version space VSH,D is the subset of the 
hypothesis from H consistent with the training 
example in D 

 

  VSH,D {h  H | Consistent(h, D)} 



The List-Then-Eliminate algorithm 

Version space as list of hypotheses 
 

1. VersionSpace  a list containing every hypothesis in H 
2. For each training example, x, c(x) Remove from 

VersionSpace any hypothesis h for which h(x)  c(x) 

3. Output the list of hypotheses in VersionSpace 

 

 

•Problems 
– The hypothesis space must be finite 
– Enumeration of all the hypothesis, rather inefficient 

 



A compact representation for Version Space 

Note:  

The output of Find-S is just Sunny, Warm, ?, Strong, ?, ? 

Version space represented by its most general members G and its most specific members S 

(boundaries) 

 

 



General and specific boundaries 

 The Specific boundary, S, of version space VSH,D is the set of 
its minimally general (most specific) members 

 S {s  H | Consistent(s, D)(s'  H)[(s gs')  Consistent(s', D)]} 

 Note: any member of S is satisfied by all positive examples, 
but more specific hypotheses fail to capture some 

 The General boundary, G, of version space VSH,D is the set of 
its maximally general members 

 G {g  H | Consistent(g, D)(g'  H)[(g' g g)  Consistent(g', 
D)]} 

 Note: any member of G is satisfied by no negative example 
but more general hypothesis cover some negative example 



Version Space representation theorem 

 G and S completely define the Version Space 

 Theorem: Every member of the version space (h consistent 
with D) is in S or G or lies between these boundaries 

  VSH,D={h  H |(s  S) (g  G) (g g h g s)} 

 where x g y means x is more general or equal to y 

 Sketch of proof: 

 If g g h g s, since s is in S and h g s, h is satisfied by all 
positive examples in D; g is in G and g g h, then h is satisfied 
by no negative examples in D; therefore h belongs to VSH,D 

 It can be proved by assuming a consistent h that does not 
satisfy the right-hand side and by showing that this would 
lead to a contradiction 

 



Candidate elimination algorithm 

S  minimally general hypotheses in H,  

G  maximally general hypotheses in H 

Initially any hypothesis is still possible 

   

      S0 = , , , , ,      

 

       G0 = ?, ?, ?, ?, ?, ?   



Candidate elimination algorithm 
For each training example d, do: 

If d is positive example 

Remove from G any hypothesis h inconsistent with d 

For each hypothesis s in S not consistent with d: 

• Remove s from S 

• Add to S all minimal generalizations of s such that 

• h is consistent with d and some member of G is more general than h 

• Remove from S any hypothesis that is more general than another hypothesis in S 

If d is negative example 

Remove from S any hypothesis h inconsistent with d  

For each hypothesis g in G not consistent with d  

• Remove g from G          

• Add to G all minimal specializations h of g such that 

• h is consistent with d and some member of S is more specific than h 

• Remove from G any hypothesis that is less general than another hypothesis in G 



Example: initially 

, , , , .  S0: 

?,  ?,  ?,  ?,  ?,  ? G0 



Example:  
after seing Sunny,Warm, Normal, Strong, Warm, Same  + 

Sunny,Warm, Normal, Strong, Warm, Same S1: 

 , , , , .  S0: 

?, ?, ?, ?, ?, ? G0, G1 



Example:  
after seing Sunny,Warm, High, Strong, Warm, Same + 

Sunny,Warm, Normal, Strong, Warm, Same S1: 

?, ?, ?, ?, ?, ? G1, G2 

Sunny,Warm, ?, Strong, Warm, Same S2: 



Example:  
after seing Rainy, Cold, High, Strong, Warm, Change  

S2, S3: 

 ?, ?, ?, ?, ?, ? G2: 

Sunny, Warm, ?, Strong, Warm, Same 

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same G3: 



Example:  
after seing  Sunny, Warm, High, Strong, Cool Change  + 

S3 

G3: 

Sunny, Warm, ?, Strong, Warm, Same 

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same 

G4: 

Sunny, Warm, ?, Strong, ?, ? S4 

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? 



Learned Version Space 



Observations 

 The  learned Version Space correctly describes the target 
concept, provided: 

1. There are no errors in the training examples 

2. There is some hypothesis that correctly describes the target 
concept 

 If S and G converge to a single hypothesis the concept is 
exactly learned 

 In case of errors in the training, useful hypothesis are 
discarded, no recovery possible 

 An empty version space means no hypothesis in H is 
consistent with training examples 



Ordering on training examples 

 The learned version space does not change with 
different orderings of training examples 

 Efficiency does 

 Optimal strategy (if you are allowed to choose) 
 Generate instances that satisfy half the hypotheses in 

the current version space. For example: 

  Sunny, Warm, Normal, Light, Warm, Same satisfies 3/6 hyp. 

 Ideally the VS can be reduced by half at each 
experiment 

 Correct target found in log2|VS| experiments 



Use of partially learned concepts 

Classified as positive by all hypothesis, since satisfies any hypothesis in S 



Classifying new examples 

Classified as negative by all hypothesis, since does not satisfy any hypothesis in G 



Classifying new examples 

Uncertain classification: half hypothesis are consistent, half are not consistent 



Classifying new examples 

         Sunny, Cold, Normal, Strong, Warm, Same 

4 hypothesis not satisfied; 2 satisfied 

Probably a negative instance.  Majority vote? 



Hypothesis space and bias 

• What if H does not contain the target concept? 

• Can we improve the situation by extending the 
hypothesis space? 

• Will this influence the ability to generalize? 

• These are general questions for inductive 
inference, addressed in the context of 
Candidate-Elimination 

• Suppose we include in H every possible 
hypothesis … including the ability to represent 
disjunctive concepts 

 



Extending the hypothesis space 

 No hypothesis consistent with the three examples with the 
assumption that the target is a conjunction of constraints 

 ?, Warm, Normal, Strong, Cool, Change is too general 

 Target concept exists in a different space H', including 
disjunction and in particular the hypothesis 

Sky=Sunny or Sky=Cloudy 

Sky AirTemp Humidity Wind Water Forecast EnjoyS 

1 Sunny Warm Normal Strong Cool Change YES 

2 Cloudy Warm Normal Strong Cool Change YES 

3 Rainy Warm Normal Strong Cool Change NO 



An unbiased learner 

• Every possible subset of X is a possible target 
 |H'| = 2|X|, or 296  (vs |H| = 973, a strong bias) 
• This amounts to allowing conjunction, 

disjunction and negation 
 Sunny, ?, ?, ?, ?, ? V <Cloudy, ?, ?, ?, ?, ?  
 Sunny(Sky) V Cloudy(Sky) 

• We are guaranteed that the target concept 
exists 

• No generalization is however possible!!!  
 Let's see why … 



No generalization without bias! 

• VS after presenting three positive instances x1, x2, x3, and 
two negative instances x4, x5 

S = {(x1 v x2 v x3)}  

G = {¬(x4 v x5)}  

… all subsets including x1 x2 x3 and not including x4 x5 

• We can only classify precisely examples already seen! 

• Take a majority vote? 
– Unseen instances, e.g. x, are classified positive (and negative) by half 

of the hypothesis 

– For any hypothesis h that classifies x as positive, there is a 
complementary hypothesis  ¬h that classifies x as negative 



No inductive inference without a 
bias 

• A learner that makes no a priori assumptions 
regarding the identity of the target concept, 
has no rational basis for classifying unseen 
instances 

• The inductive bias of a learner are the 
assumptions that justify its inductive 
conclusions or the policy adopted for 
generalization 

• Different learners can be characterized by 
their bias 

• See next for a more formal definition of 
inductive bias … 



Inductive bias: definition 

• Given: 
– a concept learning algorithm L for a set of instances X 

– a concept c defined over X 

– a set of training examples for c: Dc = {x, c(x)} 

– L(xi, Dc) outcome of classification of xi after learning  

• Inductive inference ( ≻ ): 

      Dc  xi  ≻  L(xi, Dc)  

• The inductive bias is defined as a minimal set of 
assumptions B, such that (|−  for deduction) 

       (xi  X) [ (B  Dc  xi) |−  L(xi, Dc) ] 

  



Inductive bias of Candidate-
Elimination 

 Assume L is defined as follows: 
 compute VSH,D 

 classify new instance by complete agreement of all the hypotheses 
in VSH,D 

 Then the inductive bias of Candidate-Elimination is simply  

 B  (c  H)  

 In fact by assuming c  H: 
1. c  VSH,D , in fact VSH,D includes all hypotheses in H consistent with 

D 

2. L(xi, Dc) outputs a classification "by complete agreement", hence any 
hypothesis, including c, outputs L(xi, Dc) 

 

 



Inductive system 



Equivalent deductive system 



Each learner has an inductive bias 

• Three learner with three different inductive 
bias: 
1. Rote learner: no inductive bias, just stores 

examples and is able to classify only previously 
observed examples 

2. CandidateElimination: the concept is a 
conjunction of constraints. 

3. Find-S: the concept is in H (a conjunction of 
constraints) plus "all instances are negative 
unless seen as positive examples” (stronger bias) 

– The stronger the bias, greater the ability to 
generalize and classify new instances (greater 
inductive leaps). 

 


