
Introduction to Machine Learning

Mahesh G Huddar
Assistant Professor

Dept. of CSE, HIT, Nidasoshi

• A branch of artificial intelligence, concerned with the
design and development of algorithms that allow
computers to evolve behaviors based on empirical
data.

• As intelligence requires knowledge, it is necessary for
the computers to acquire knowledge.

What is machine learning?

A classic example of a task that requires machine learning:

It is very hard to say what makes a 2

Learning system model

Input
Sample
s

Learning
Method

System

Training

Testing

• Face detection
• Object detection and recognition
• Image segmentation
• Multimedia event detection
• Economical and commercial usage
• Natural Language Processing
• Spam Filtering
• Medical Diagnosis
• Learning to drive vehicles
• Game Playing
• and many more….

Applications

Lecture Notes for E Alpaydın
2004 Introduction to Machine
Learning © The MIT Press
(V1.1)

15

Face Recognition

Training examples of a person

Test images

AT&T Laboratories, Cambridge UK
http://www.uk.research.att.com/facedatabase.html

Training and testing

Training set
(observed)

Universal
set

(unobserved)

Testing set
(unobserved)

Data acquisition Practical
usage

• Training is the process of making the system able to learn.

• No free lunch rule:

– Training set and testing set come from the same distribution

– Need to make some assumptions or bias

Training and testing

• There are several factors affecting the performance:

– Types of training provided

– The form and extent of any initial background knowledge

– The type of feedback provided

– The learning algorithms used

• Two important factors:

– Modeling

– Optimization

Performance

• The success of machine learning system also depends on the
algorithms.

• The algorithms control the search to find and build the
knowledge structures.

• The learning algorithms should extract useful information
from training examples.

Algorithms

• Supervised learning ()
– Prediction

– Classification (discrete labels), Regression (real values)

• Unsupervised learning ()
– Clustering

– Probability distribution estimation

– Finding association (in features)

– Dimension reduction

• Semi-supervised learning

• Reinforcement learning
– Decision making (robot, chess machine)

Algorithms

21

Algorithms

Supervised learning Unsupervised learning

Semi-supervised learning

• Supervised learning

Machine learning structure

• Unsupervised learning

Machine learning structure

• Supervised learning categories and techniques
– Linear classifier (numerical functions)

– Parametric (Probabilistic functions)

• Naïve Bayes, Gaussian discriminant analysis (GDA), Hidden
Markov models (HMM), Probabilistic graphical models

– Non-parametric (Instance-based functions)

• K-nearest neighbors, Kernel regression, Kernel density estimation,
Local regression

– Non-metric (Symbolic functions)

• Classification and regression tree (CART), decision tree

– Aggregation

• Bagging (bootstrap + aggregation), Adaboost, Random forest

Learning techniques

• Techniques:
– Perceptron

– Logistic regression

– Support vector machine (SVM)

– Ada-line

– Multi-layer perceptron (MLP)

Learning techniques

, where w is an d-dim vector (learned)

• Linear classifier

• Unsupervised learning categories and techniques

– Clustering

• K-means clustering

• Spectral clustering

– Density Estimation

• Gaussian mixture model (GMM)

• Graphical models

– Dimensionality reduction

• Principal component analysis (PCA)

• Factor analysis

Learning techniques

1. How many concepts are possible for this instance space?
2. How many hypotheses can be expressed by the hypothesis language
presented in the lecture for this instance space?
3. Apply the FIND-S algorithm by hand on the given training set.
Consider the examples in the specified order and write down your
hypothesis each time after observing an example.

Candidate elimination algorithm: the
idea

 The idea: output a description of the set of all
hypotheses consistent with the training examples
(correctly classify training examples).

 Version space: a representation of the set of
hypotheses which are consistent with D
1. an explicit list of hypotheses (List-Than-Eliminate)

2. a compact representation of hypotheses which
exploits the more_general_than partial ordering
(Candidate-Elimination)

Consistent

• An hypothesis h is consistent with a set of
training examples D iff h(x) = c(x) for each
example in D

 Consistent(h, D) (x, c(x) D) h(x) = c(x))

Version space

• The version space VSH,D is the subset of the
hypothesis from H consistent with the training
example in D

 VSH,D {h H | Consistent(h, D)}

The List-Then-Eliminate algorithm

Version space as list of hypotheses

1. VersionSpace a list containing every hypothesis in H
2. For each training example, x, c(x) Remove from

VersionSpace any hypothesis h for which h(x) c(x)

3. Output the list of hypotheses in VersionSpace

•Problems
– The hypothesis space must be finite
– Enumeration of all the hypothesis, rather inefficient

A compact representation for Version Space

Note:

The output of Find-S is just Sunny, Warm, ?, Strong, ?, ?

Version space represented by its most general members G and its most specific members S

(boundaries)

General and specific boundaries

 The Specific boundary, S, of version space VSH,D is the set of
its minimally general (most specific) members

 S {s H | Consistent(s, D)(s' H)[(s gs') Consistent(s', D)]}

 Note: any member of S is satisfied by all positive examples,
but more specific hypotheses fail to capture some

 The General boundary, G, of version space VSH,D is the set of
its maximally general members

 G {g H | Consistent(g, D)(g' H)[(g' g g) Consistent(g',
D)]}

 Note: any member of G is satisfied by no negative example
but more general hypothesis cover some negative example

Version Space representation theorem

 G and S completely define the Version Space

 Theorem: Every member of the version space (h consistent
with D) is in S or G or lies between these boundaries

 VSH,D={h H |(s S) (g G) (g g h g s)}

 where x g y means x is more general or equal to y

 Sketch of proof:

 If g g h g s, since s is in S and h g s, h is satisfied by all
positive examples in D; g is in G and g g h, then h is satisfied
by no negative examples in D; therefore h belongs to VSH,D

 It can be proved by assuming a consistent h that does not
satisfy the right-hand side and by showing that this would
lead to a contradiction

Candidate elimination algorithm

S minimally general hypotheses in H,

G maximally general hypotheses in H

Initially any hypothesis is still possible

 S0 = , , , , ,

 G0 = ?, ?, ?, ?, ?, ?

Candidate elimination algorithm
For each training example d, do:

If d is positive example

Remove from G any hypothesis h inconsistent with d

For each hypothesis s in S not consistent with d:

• Remove s from S

• Add to S all minimal generalizations of s such that

• h is consistent with d and some member of G is more general than h

• Remove from S any hypothesis that is more general than another hypothesis in S

If d is negative example

Remove from S any hypothesis h inconsistent with d

For each hypothesis g in G not consistent with d

• Remove g from G

• Add to G all minimal specializations h of g such that

• h is consistent with d and some member of S is more specific than h

• Remove from G any hypothesis that is less general than another hypothesis in G

Example: initially

, , , , . S0:

?, ?, ?, ?, ?, ? G0

Example:
after seing Sunny,Warm, Normal, Strong, Warm, Same +

Sunny,Warm, Normal, Strong, Warm, Same S1:

 , , , , . S0:

?, ?, ?, ?, ?, ? G0, G1

Example:
after seing Sunny,Warm, High, Strong, Warm, Same +

Sunny,Warm, Normal, Strong, Warm, Same S1:

?, ?, ?, ?, ?, ? G1, G2

Sunny,Warm, ?, Strong, Warm, Same S2:

Example:
after seing Rainy, Cold, High, Strong, Warm, Change

S2, S3:

 ?, ?, ?, ?, ?, ? G2:

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same G3:

Example:
after seing Sunny, Warm, High, Strong, Cool Change +

S3

G3:

Sunny, Warm, ?, Strong, Warm, Same

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ? ?, ?, ?, ?, ?, Same

G4:

Sunny, Warm, ?, Strong, ?, ? S4

Sunny, ?, ?, ?, ?, ? ?, Warm, ?, ?, ?, ?

Learned Version Space

Observations

 The learned Version Space correctly describes the target
concept, provided:

1. There are no errors in the training examples

2. There is some hypothesis that correctly describes the target
concept

 If S and G converge to a single hypothesis the concept is
exactly learned

 In case of errors in the training, useful hypothesis are
discarded, no recovery possible

 An empty version space means no hypothesis in H is
consistent with training examples

Ordering on training examples

 The learned version space does not change with
different orderings of training examples

 Efficiency does

 Optimal strategy (if you are allowed to choose)
 Generate instances that satisfy half the hypotheses in

the current version space. For example:

 Sunny, Warm, Normal, Light, Warm, Same satisfies 3/6 hyp.

 Ideally the VS can be reduced by half at each
experiment

 Correct target found in log2|VS| experiments

Use of partially learned concepts

Classified as positive by all hypothesis, since satisfies any hypothesis in S

Classifying new examples

Classified as negative by all hypothesis, since does not satisfy any hypothesis in G

Classifying new examples

Uncertain classification: half hypothesis are consistent, half are not consistent

Classifying new examples

 Sunny, Cold, Normal, Strong, Warm, Same

4 hypothesis not satisfied; 2 satisfied

Probably a negative instance. Majority vote?

Hypothesis space and bias

• What if H does not contain the target concept?

• Can we improve the situation by extending the
hypothesis space?

• Will this influence the ability to generalize?

• These are general questions for inductive
inference, addressed in the context of
Candidate-Elimination

• Suppose we include in H every possible
hypothesis … including the ability to represent
disjunctive concepts

Extending the hypothesis space

 No hypothesis consistent with the three examples with the
assumption that the target is a conjunction of constraints

 ?, Warm, Normal, Strong, Cool, Change is too general

 Target concept exists in a different space H', including
disjunction and in particular the hypothesis

Sky=Sunny or Sky=Cloudy

Sky AirTemp Humidity Wind Water Forecast EnjoyS

1 Sunny Warm Normal Strong Cool Change YES

2 Cloudy Warm Normal Strong Cool Change YES

3 Rainy Warm Normal Strong Cool Change NO

An unbiased learner

• Every possible subset of X is a possible target
 |H'| = 2|X|, or 296 (vs |H| = 973, a strong bias)
• This amounts to allowing conjunction,

disjunction and negation
 Sunny, ?, ?, ?, ?, ? V <Cloudy, ?, ?, ?, ?, ?
 Sunny(Sky) V Cloudy(Sky)

• We are guaranteed that the target concept
exists

• No generalization is however possible!!!
 Let's see why …

No generalization without bias!

• VS after presenting three positive instances x1, x2, x3, and
two negative instances x4, x5

S = {(x1 v x2 v x3)}

G = {¬(x4 v x5)}

… all subsets including x1 x2 x3 and not including x4 x5

• We can only classify precisely examples already seen!

• Take a majority vote?
– Unseen instances, e.g. x, are classified positive (and negative) by half

of the hypothesis

– For any hypothesis h that classifies x as positive, there is a
complementary hypothesis ¬h that classifies x as negative

No inductive inference without a
bias

• A learner that makes no a priori assumptions
regarding the identity of the target concept,
has no rational basis for classifying unseen
instances

• The inductive bias of a learner are the
assumptions that justify its inductive
conclusions or the policy adopted for
generalization

• Different learners can be characterized by
their bias

• See next for a more formal definition of
inductive bias …

Inductive bias: definition

• Given:
– a concept learning algorithm L for a set of instances X

– a concept c defined over X

– a set of training examples for c: Dc = {x, c(x)}

– L(xi, Dc) outcome of classification of xi after learning

• Inductive inference (≻):

 Dc xi ≻ L(xi, Dc)

• The inductive bias is defined as a minimal set of
assumptions B, such that (|− for deduction)

 (xi X) [(B Dc xi) |− L(xi, Dc)]

Inductive bias of Candidate-
Elimination

 Assume L is defined as follows:
 compute VSH,D

 classify new instance by complete agreement of all the hypotheses
in VSH,D

 Then the inductive bias of Candidate-Elimination is simply

 B (c H)

 In fact by assuming c H:
1. c VSH,D , in fact VSH,D includes all hypotheses in H consistent with

D

2. L(xi, Dc) outputs a classification "by complete agreement", hence any
hypothesis, including c, outputs L(xi, Dc)

Inductive system

Equivalent deductive system

Each learner has an inductive bias

• Three learner with three different inductive
bias:
1. Rote learner: no inductive bias, just stores

examples and is able to classify only previously
observed examples

2. CandidateElimination: the concept is a
conjunction of constraints.

3. Find-S: the concept is in H (a conjunction of
constraints) plus "all instances are negative
unless seen as positive examples” (stronger bias)

– The stronger the bias, greater the ability to
generalize and classify new instances (greater
inductive leaps).

