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Inductive inference with decision trees 

 Decision Trees is one of the most widely used and 

practical methods of inductive inference 

 Features 

 Method for approximating discrete-valued functions 

(including boolean)  

 Learned functions are represented as decision trees (or if-

then-else rules) 

 Expressive hypotheses space, including disjunction 

 Robust to noisy data 
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Decision tree representation (PlayTennis) 
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Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong     No 



Decision trees expressivity 
 Decision trees represent a disjunction of conjunctions on 

constraints on the value of attributes: 

(Outlook = Sunny  Humidity = Normal)  

(Outlook = Overcast)  

(Outlook = Rain  Wind = Weak) 



When to use Decision Trees 

 Problem characteristics: 

 Instances can be described by attribute value pairs  

 Target function is discrete valued   

 Disjunctive hypothesis may be required   

 Possibly noisy training data samples 

 Robust to errors in training data 

 Missing attribute values 

 Different classification problems: 

 Equipment or medical diagnosis 

 Credit risk analysis  

 Several tasks in natural language processing 
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Top-down induction of Decision Trees 

 ID3 (Quinlan, 1986) is a basic algorithm for learning DT's 

 Given a training set of examples, the algorithms for building DT 

performs search in the space of decision trees 

 The construction of the tree is top-down. The algorithm is greedy. 

 The fundamental question is “which attribute should be tested next? 

Which question gives us more information?” 

 Select the best attribute 

 A descendent node is then created for each possible value of this 

attribute and examples are partitioned according to this value 

 The process is repeated for each successor node until all the 

examples are classified correctly or there are no attributes left 
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Which attribute is the best classifier? 

 A statistical property called information gain, measures how 

well a given attribute separates the training examples 

 Information gain uses the notion of entropy, commonly used in 

information theory 

 Information gain = expected reduction of entropy 
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Entropy in binary classification 

 Entropy measures the impurity of a collection of examples. It 
depends from the distribution of the random variable p. 

 S is a collection of training examples 

 p+ the proportion of positive examples in S 

 p– the proportion of negative examples in S 

 Entropy (S)   – p+ log2 p+ – p–log2 p–      [0 log20 = 0] 

 Entropy ([14+, 0–]) = – 14/14 log2 (14/14) –  0 log2 (0) = 0 

 Entropy ([9+, 5–]) = – 9/14 log2 (9/14) –  5/14 log2 (5/14) = 0,94 

 Entropy ([7+, 7– ]) = –  7/14 log2 (7/14) –  7/14 log2 (7/14) =  

    = 1/2 + 1/2 = 1                        [log21/2 = – 1] 

 Note: the log of a number < 1 is negative,  0  p  1, 0  entropy  1 
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Entropy 
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Example 
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Entropy in general 

 Entropy measures the amount of information in a random 
variable 

 Entropy(X) = – p+ log2 p+ – p– log2 p–  X = {+, –} 

 for binary classification [two-valued random variable] 
             c                             c  

  Entropy(X) = –  pi log2 pi =  pi log2 1/ pi  X = {i, …, c} 
            i=1            i=1 

 for classification in c classes 

 Example: rolling a die with 8, equally probable, sides 
               8 

 Entropy(X) = –  1/8 log2 1/8 = – log2 1/8 = log2 8 = 3 
 i=1 
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Information gain as entropy reduction 

 Information gain is the expected reduction in entropy caused by 

partitioning the examples on an attribute. 

 The higher the information gain the more effective the attribute 

in classifying training data.  

 Expected reduction in entropy knowing A        

 Gain(S, A) = Entropy(S) −           Entropy(Sv)  

       v  Values(A)    

 Values(A) possible values for A 

 Sv subset of S for which A has value v 
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|Sv| 

|S| 



Example: expected information gain 

 Let 

 Values(Wind) = {Weak, Strong} 

 S = [9+, 5−] 

 SWeak = [6+, 2−] 

 SStrong = [3+, 3−] 

 Information gain due to knowing Wind: 

Gain(S, Wind) = Entropy(S) − 8/14 Entropy(SWeak) − 6/14 Entropy(SStrong)  

     = 0.94 − 8/14  0.811 − 6/14  1.00   

     = 0.048  
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Which attribute is the best classifier? 
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First step: which attribute to test at the root? 

 Which attribute should be tested at the root? 

 Gain(S, Outlook) = 0.246 

 Gain(S, Humidity) = 0.151 

 Gain(S, Wind) = 0.084 

 Gain(S, Temperature) = 0.029 

 Outlook provides the best prediction for the target 

 Lets grow the tree: 

 add to the tree a successor for each possible value of Outlook 

 partition the training samples according to the value of Outlook 
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After first step 
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Second step 

 Working on Outlook=Sunny node: 

Gain(SSunny, Humidity) = 0.970  3/5  0.0  2/5  0.0 = 0.970  

Gain(SSunny, Wind) = 0.970  2/5  1.0  3/5  0.918 = 0 .019 

Gain(SSunny, Temp.) = 0.970  2/5  0.0  2/5  1.0  1/5  0.0 = 0.570 

 Humidity provides the best prediction for the target 

 Lets grow the tree: 

 add to the tree a successor for each possible value of Humidity 

 partition the training samples according to the value of Humidity 
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Second and third steps 

9/20/2018 Mahesh G Huddar 

{D1, D2, D8} 

        No 

{D9, D11} 

        Yes 
{D4, D5, D10} 

        Yes 

{D6, D14} 

        No 



ID3: algorithm 
ID3(X, T, Attrs) X: training examples:  

   T: target attribute (e.g. PlayTennis),     

   Attrs: other attributes, initially all attributes 

  Create Root node 

  If all X's are +, return Root with class + 

  If all X's are –, return Root with class – 

  If Attrs is empty return Root with class most common value of T in X 

  else 

 A  best attribute; decision attribute for Root  A 

 For each possible value vi of A: 

  - add a new branch below Root, for test A = vi 

  - Xi  subset of X with A = vi 

  - If Xi is empty then add a new leaf with class the most common value of T in X 

       else add the subtree generated by ID3(Xi, T, Attrs  {A}) 

  return Root 
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Search space in Decision Tree learning 

 The search space is made by 
partial decision trees 

 The algorithm is hill-climbing 

 The evaluation function is 
information gain 

 The hypotheses space is complete 
(represents all discrete-valued 
functions) 

 The search maintains a single 
current hypothesis 

 No backtracking; no guarantee of 
optimality 

 It uses all the available examples 
(not incremental) 

 May terminate earlier, accepting 
noisy classes 
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Inductive bias in decision tree learning  

 What is the inductive bias of DT learning? 

1. Shorter trees are preferred over longer trees 

 Not enough. This is the bias exhibited by a simple breadth 

first algorithm generating all DT's e selecting the shorter one 

2. Prefer trees that place high information gain attributes close to 

the root 

 Note: DT's are not limited in representing all possible functions 
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Two kinds of biases  

 Preference or search biases (due to the search strategy) 

 ID3 searches a complete hypotheses space; the search strategy is 

incomplete 

 Restriction or language biases (due to the set of hypotheses 

expressible or considered)                                            

 Candidate-Elimination searches an incomplete hypotheses space; the 

search strategy is complete 

 A combination of biases in learning a linear combination of 

weighted features in board games. 
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Prefer shorter hypotheses:  Occam's rasor 

 Why prefer shorter hypotheses? 

 Arguments in favor: 

 There are fewer short hypotheses than long ones 

 If a short hypothesis fits data unlikely to be a coincidence 

 Elegance and aesthetics 

 Arguments against: 

 Not every short hypothesis is a reasonable one. 

 Occam's razor:"The simplest explanation is usually the best one." 

 a principle usually (though incorrectly) attributed14th-century English 
logician and Franciscan friar, William of Ockham. 

 lex parsimoniae ("law of parsimony", "law of economy", or "law of 
succinctness") 

 The term razor refers to the act of shaving away unnecessary 
assumptions to get to the simplest explanation. 
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Issues in decision trees learning 

 Overfitting 

 Reduced error pruning 

 Rule post-pruning 

 Extensions 

 Continuous valued attributes 

 Alternative measures for selecting attributes 

 Handling training examples with missing attribute values 

 Handling attributes with different costs 

 Improving computational efficiency 

 Most of these improvements in C4.5 (Quinlan, 1993) 
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Overfitting: definition 
 Building trees that “adapt too much” to the training examples 

may lead to “overfitting”. 

 Consider error of hypothesis h over 

 training data: errorD(h)   empirical error 

 entire distribution X of data: errorX(h) expected error 

 Hypothesis h overfits training data if there is an alternative 

hypothesis h'  H such that 

   errorD(h) < errorD(h’)   and 

   errorX(h’) < errorX(h) 

 i.e. h’ behaves better over unseen data 
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Example 
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 D15     Sunny              Hot             Normal     Strong           No 



Overfitting in decision trees 
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Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No  

 

New noisy example causes splitting of second leaf node. 



Overfitting in decision tree learning 
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Avoid overfitting in Decision Trees 

 Two strategies: 

1. Stop growing the tree earlier, before perfect classification 

2. Allow the tree to overfit the data, and then post-prune the tree 

 Training and validation set 

 split the training in two parts (training and validation) and use 
validation to assess the utility of post-pruning 

 Reduced error pruning 

 Rule pruning 

 Other approaches 

 Use a statistical test to estimate effect of expanding or pruning 

 Minimum description length principle: uses a measure of complexity of 
encoding the DT and the examples, and halt growing the tree when this 
encoding size is minimal 
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Reduced-error pruning (Quinlan 1987) 

 Each node is a candidate for pruning 

 Pruning consists in removing a subtree rooted in a node: the 

node becomes a leaf and is assigned the most common 

classification 

 Nodes are removed only if the resulting tree performs no 

worse on the validation set. 

 Nodes are pruned iteratively: at each iteration the node  

whose removal most increases accuracy on the validation set is 

pruned. 

 Pruning stops when no pruning increases accuracy 
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Effect of reduced error pruning 
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Rule post-pruning 
1. Create the decision tree from the training set 

2. Convert the tree into an equivalent set of rules 

 Each path corresponds to a rule 

 Each node along a path corresponds to a pre-condition 

 Each leaf classification to the post-condition 

3. Prune (generalize) each rule by removing those preconditions 
whose removal improves accuracy … 

 … over validation set 

 … over training with a pessimistic, statistically inspired, measure 

4. Sort the rules in estimated order of accuracy, and consider 
them in sequence when classifying new instances 
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Converting to rules 
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(Outlook=Sunny)(Humidity=High) ⇒ (PlayTennis=No) 



Why converting to rules? 

 Each distinct path produces a different rule: a condition 

removal may be based on a local (contextual) criterion. Node 

pruning is global and affects all the rules 

 In rule form, tests are not ordered and there is no book-

keeping involved when conditions (nodes) are removed 

 Converting to rules improves readability for humans 
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Dealing with continuous-valued attributes 
 So far discrete values for attributes and for outcome. 

 Given a continuous-valued attribute A, dynamically create a 
new attribute Ac 

  Ac = True if A < c, False otherwise 

 How to determine threshold value c ?  

 Example. Temperature in the PlayTennis example 

 Sort the examples according to Temperature 

 Temperature 40 48     | 60 72 80      | 90 

 PlayTennis No No   54 Yes Yes Yes  85 No 

 Determine candidate thresholds by averaging consecutive values where 
there is a change in classification: (48+60)/2=54 and (80+90)/2=85 

 Evaluate candidate thresholds (attributes) according to information gain. 
The best is Temperature>54.The new attribute competes with the other 
ones 
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Problems with information gain 

 Natural bias of information gain: it favours attributes with 
many possible values. 

 Consider the attribute Date in the PlayTennis example.  

 Date would have the highest information gain since it perfectly 
separates the training data. 

 It would be selected at the root resulting in a very broad tree 

 Very good on the training, this tree would perform poorly in predicting 
unknown instances. Overfitting. 

 The problem is that the partition is too specific, too many small 
classes are generated. 

 We need to look at alternative measures … 
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An alternative measure: gain ratio 
            c      |Si |   |Si | 

 SplitInformation(S, A)  −         log2              
                             i=1   |S |            |S | 

 Si are the sets obtained by partitioning on value i of A 

 SplitInformation measures the entropy of S with respect to the values of A. The 
more uniformly dispersed the data the higher it is. 

                 Gain(S, A)  
      GainRatio(S, A)  
         SplitInformation(S, A)  

 GainRatio penalizes attributes that split examples in many small classes such as 
Date. Let |S |=n, Date splits examples in n classes 
 SplitInformation(S, Date)= −[(1/n log2 1/n)+…+ (1/n log2 1/n)]= −log21/n =log2n 

 Compare with A, which splits data in two even classes: 
 SplitInformation(S, A)= − [(1/2 log21/2)+ (1/2 log21/2) ]= − [− 1/2 −1/2]=1 
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Adjusting gain-ratio 

 Problem: SplitInformation(S, A) can be zero or very small 
when |Si | ≈ |S | for some value i 

 To mitigate this effect, the following heuristics has been used: 

1. compute Gain for each attribute 

2. apply GainRatio only to attributes with Gain above average 

 Other measures have been proposed: 
 Distance-based metric [Lopez-De Mantaras, 1991] on the  partitions of 

data 

 Each partition (induced by an attribute) is evaluated according to the 
distance to the partition that perfectly classifies the data. 

 The partition closest to the ideal partition is chosen 
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Handling incomplete training data 

 How to cope with the problem that the value of some attribute 

may be missing? 

 Example: Blood-Test-Result in a medical diagnosis problem 

 The strategy: use other examples to guess attribute 

1. Assign the value that is most common among the training examples at 

the node 

2. Assign a probability to each value, based on frequencies, and assign 

values to missing attribute, according to this probability distribution 

 Missing values in new instances to be classified are treated 

accordingly, and the most probable classification is chosen 

(C4.5) 
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Handling attributes with different 

costs 

 Instance attributes may have an associated cost: we would 
prefer decision trees that use low-cost attributes 

 ID3 can be modified to take into account costs: 

1. Tan and Schlimmer   (1990) 

                              Gain2(S, A)   

        Cost(S, A) 

2. Nunez (1988)  

    2Gain(S, A)   1   

    (Cost(A) + 1)w     
w ∈ [0,1] 
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