
Decision Tree Tearning

Mahesh G Huddar

Asst. Professor

CSED, HIT, Nidasoshi

Inductive inference with decision trees

 Decision Trees is one of the most widely used and

practical methods of inductive inference

 Features

 Method for approximating discrete-valued functions

(including boolean)

 Learned functions are represented as decision trees (or if-

then-else rules)

 Expressive hypotheses space, including disjunction

 Robust to noisy data

9/19/2018 Mahesh G Huddar

Decision tree representation (PlayTennis)

9/20/2018 Mahesh G Huddar

Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong No

Decision trees expressivity
 Decision trees represent a disjunction of conjunctions on

constraints on the value of attributes:

(Outlook = Sunny Humidity = Normal)

(Outlook = Overcast)

(Outlook = Rain Wind = Weak)

When to use Decision Trees

 Problem characteristics:

 Instances can be described by attribute value pairs

 Target function is discrete valued

 Disjunctive hypothesis may be required

 Possibly noisy training data samples

 Robust to errors in training data

 Missing attribute values

 Different classification problems:

 Equipment or medical diagnosis

 Credit risk analysis

 Several tasks in natural language processing

9/20/2018 Mahesh G Huddar

Top-down induction of Decision Trees

 ID3 (Quinlan, 1986) is a basic algorithm for learning DT's

 Given a training set of examples, the algorithms for building DT

performs search in the space of decision trees

 The construction of the tree is top-down. The algorithm is greedy.

 The fundamental question is “which attribute should be tested next?

Which question gives us more information?”

 Select the best attribute

 A descendent node is then created for each possible value of this

attribute and examples are partitioned according to this value

 The process is repeated for each successor node until all the

examples are classified correctly or there are no attributes left

9/20/2018 Mahesh G Huddar

Which attribute is the best classifier?

 A statistical property called information gain, measures how

well a given attribute separates the training examples

 Information gain uses the notion of entropy, commonly used in

information theory

 Information gain = expected reduction of entropy

9/20/2018 Mahesh G Huddar

Entropy in binary classification

 Entropy measures the impurity of a collection of examples. It
depends from the distribution of the random variable p.

 S is a collection of training examples

 p+ the proportion of positive examples in S

 p– the proportion of negative examples in S

 Entropy (S) – p+ log2 p+ – p–log2 p– [0 log20 = 0]

 Entropy ([14+, 0–]) = – 14/14 log2 (14/14) – 0 log2 (0) = 0

 Entropy ([9+, 5–]) = – 9/14 log2 (9/14) – 5/14 log2 (5/14) = 0,94

 Entropy ([7+, 7–]) = – 7/14 log2 (7/14) – 7/14 log2 (7/14) =

 = 1/2 + 1/2 = 1 [log21/2 = – 1]

 Note: the log of a number < 1 is negative, 0 p 1, 0 entropy 1

9/20/2018 Mahesh G Huddar

Entropy

9/20/2018 Mahesh G Huddar

Example

9/20/2018 Mahesh G Huddar

Entropy in general

 Entropy measures the amount of information in a random
variable

 Entropy(X) = – p+ log2 p+ – p– log2 p– X = {+, –}

 for binary classification [two-valued random variable]
 c c

 Entropy(X) = – pi log2 pi = pi log2 1/ pi X = {i, …, c}
 i=1 i=1

 for classification in c classes

 Example: rolling a die with 8, equally probable, sides
 8

 Entropy(X) = – 1/8 log2 1/8 = – log2 1/8 = log2 8 = 3
 i=1

9/20/2018 Mahesh G Huddar

Information gain as entropy reduction

 Information gain is the expected reduction in entropy caused by

partitioning the examples on an attribute.

 The higher the information gain the more effective the attribute

in classifying training data.

 Expected reduction in entropy knowing A

 Gain(S, A) = Entropy(S) − Entropy(Sv)

 v Values(A)

 Values(A) possible values for A

 Sv subset of S for which A has value v

9/20/2018 Mahesh G Huddar

|Sv|

|S|

Example: expected information gain

 Let

 Values(Wind) = {Weak, Strong}

 S = [9+, 5−]

 SWeak = [6+, 2−]

 SStrong = [3+, 3−]

 Information gain due to knowing Wind:

Gain(S, Wind) = Entropy(S) − 8/14 Entropy(SWeak) − 6/14 Entropy(SStrong)

 = 0.94 − 8/14 0.811 − 6/14 1.00

 = 0.048

9/20/2018 Mahesh G Huddar

Which attribute is the best classifier?

9/20/2018 Mahesh G Huddar

First step: which attribute to test at the root?

 Which attribute should be tested at the root?

 Gain(S, Outlook) = 0.246

 Gain(S, Humidity) = 0.151

 Gain(S, Wind) = 0.084

 Gain(S, Temperature) = 0.029

 Outlook provides the best prediction for the target

 Lets grow the tree:

 add to the tree a successor for each possible value of Outlook

 partition the training samples according to the value of Outlook

9/20/2018 Mahesh G Huddar

After first step

9/20/2018 Mahesh G Huddar

Second step

 Working on Outlook=Sunny node:

Gain(SSunny, Humidity) = 0.970 3/5 0.0 2/5 0.0 = 0.970

Gain(SSunny, Wind) = 0.970 2/5 1.0 3/5 0.918 = 0 .019

Gain(SSunny, Temp.) = 0.970 2/5 0.0 2/5 1.0 1/5 0.0 = 0.570

 Humidity provides the best prediction for the target

 Lets grow the tree:

 add to the tree a successor for each possible value of Humidity

 partition the training samples according to the value of Humidity

9/20/2018 Mahesh G Huddar

Second and third steps

9/20/2018 Mahesh G Huddar

{D1, D2, D8}

 No

{D9, D11}

 Yes
{D4, D5, D10}

 Yes

{D6, D14}

 No

ID3: algorithm
ID3(X, T, Attrs) X: training examples:

 T: target attribute (e.g. PlayTennis),

 Attrs: other attributes, initially all attributes

 Create Root node

 If all X's are +, return Root with class +

 If all X's are –, return Root with class –

 If Attrs is empty return Root with class most common value of T in X

 else

 A best attribute; decision attribute for Root A

 For each possible value vi of A:

 - add a new branch below Root, for test A = vi

 - Xi subset of X with A = vi

 - If Xi is empty then add a new leaf with class the most common value of T in X

 else add the subtree generated by ID3(Xi, T, Attrs {A})

 return Root

9/20/2018 Mahesh G Huddar

Search space in Decision Tree learning

 The search space is made by
partial decision trees

 The algorithm is hill-climbing

 The evaluation function is
information gain

 The hypotheses space is complete
(represents all discrete-valued
functions)

 The search maintains a single
current hypothesis

 No backtracking; no guarantee of
optimality

 It uses all the available examples
(not incremental)

 May terminate earlier, accepting
noisy classes

9/20/2018 Mahesh G Huddar

Inductive bias in decision tree learning

 What is the inductive bias of DT learning?

1. Shorter trees are preferred over longer trees

 Not enough. This is the bias exhibited by a simple breadth

first algorithm generating all DT's e selecting the shorter one

2. Prefer trees that place high information gain attributes close to

the root

 Note: DT's are not limited in representing all possible functions

9/20/2018 Mahesh G Huddar

Two kinds of biases

 Preference or search biases (due to the search strategy)

 ID3 searches a complete hypotheses space; the search strategy is

incomplete

 Restriction or language biases (due to the set of hypotheses

expressible or considered)

 Candidate-Elimination searches an incomplete hypotheses space; the

search strategy is complete

 A combination of biases in learning a linear combination of

weighted features in board games.

9/20/2018 Mahesh G Huddar

Prefer shorter hypotheses: Occam's rasor

 Why prefer shorter hypotheses?

 Arguments in favor:

 There are fewer short hypotheses than long ones

 If a short hypothesis fits data unlikely to be a coincidence

 Elegance and aesthetics

 Arguments against:

 Not every short hypothesis is a reasonable one.

 Occam's razor:"The simplest explanation is usually the best one."

 a principle usually (though incorrectly) attributed14th-century English
logician and Franciscan friar, William of Ockham.

 lex parsimoniae ("law of parsimony", "law of economy", or "law of
succinctness")

 The term razor refers to the act of shaving away unnecessary
assumptions to get to the simplest explanation.

9/20/2018 Mahesh G Huddar

Issues in decision trees learning

 Overfitting

 Reduced error pruning

 Rule post-pruning

 Extensions

 Continuous valued attributes

 Alternative measures for selecting attributes

 Handling training examples with missing attribute values

 Handling attributes with different costs

 Improving computational efficiency

 Most of these improvements in C4.5 (Quinlan, 1993)

9/20/2018 Mahesh G Huddar

Overfitting: definition
 Building trees that “adapt too much” to the training examples

may lead to “overfitting”.

 Consider error of hypothesis h over

 training data: errorD(h) empirical error

 entire distribution X of data: errorX(h) expected error

 Hypothesis h overfits training data if there is an alternative

hypothesis h' H such that

 errorD(h) < errorD(h’) and

 errorX(h’) < errorX(h)

 i.e. h’ behaves better over unseen data

9/20/2018 Mahesh G Huddar

Example

9/20/2018 Mahesh G Huddar

 D15 Sunny Hot Normal Strong No

Overfitting in decision trees

9/20/2018 Mahesh G Huddar

Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No

New noisy example causes splitting of second leaf node.

Overfitting in decision tree learning

9/20/2018 Mahesh G Huddar

Avoid overfitting in Decision Trees

 Two strategies:

1. Stop growing the tree earlier, before perfect classification

2. Allow the tree to overfit the data, and then post-prune the tree

 Training and validation set

 split the training in two parts (training and validation) and use
validation to assess the utility of post-pruning

 Reduced error pruning

 Rule pruning

 Other approaches

 Use a statistical test to estimate effect of expanding or pruning

 Minimum description length principle: uses a measure of complexity of
encoding the DT and the examples, and halt growing the tree when this
encoding size is minimal

9/20/2018 Mahesh G Huddar

Reduced-error pruning (Quinlan 1987)

 Each node is a candidate for pruning

 Pruning consists in removing a subtree rooted in a node: the

node becomes a leaf and is assigned the most common

classification

 Nodes are removed only if the resulting tree performs no

worse on the validation set.

 Nodes are pruned iteratively: at each iteration the node

whose removal most increases accuracy on the validation set is

pruned.

 Pruning stops when no pruning increases accuracy

9/20/2018 Mahesh G Huddar

Effect of reduced error pruning

9/20/2018 Mahesh G Huddar

Rule post-pruning
1. Create the decision tree from the training set

2. Convert the tree into an equivalent set of rules

 Each path corresponds to a rule

 Each node along a path corresponds to a pre-condition

 Each leaf classification to the post-condition

3. Prune (generalize) each rule by removing those preconditions
whose removal improves accuracy …

 … over validation set

 … over training with a pessimistic, statistically inspired, measure

4. Sort the rules in estimated order of accuracy, and consider
them in sequence when classifying new instances

9/20/2018 Mahesh G Huddar

Converting to rules

9/20/2018 Mahesh G Huddar

(Outlook=Sunny)(Humidity=High) ⇒ (PlayTennis=No)

Why converting to rules?

 Each distinct path produces a different rule: a condition

removal may be based on a local (contextual) criterion. Node

pruning is global and affects all the rules

 In rule form, tests are not ordered and there is no book-

keeping involved when conditions (nodes) are removed

 Converting to rules improves readability for humans

9/20/2018 Mahesh G Huddar

Dealing with continuous-valued attributes
 So far discrete values for attributes and for outcome.

 Given a continuous-valued attribute A, dynamically create a
new attribute Ac

 Ac = True if A < c, False otherwise

 How to determine threshold value c ?

 Example. Temperature in the PlayTennis example

 Sort the examples according to Temperature

 Temperature 40 48 | 60 72 80 | 90

 PlayTennis No No 54 Yes Yes Yes 85 No

 Determine candidate thresholds by averaging consecutive values where
there is a change in classification: (48+60)/2=54 and (80+90)/2=85

 Evaluate candidate thresholds (attributes) according to information gain.
The best is Temperature>54.The new attribute competes with the other
ones

9/20/2018 Mahesh G Huddar

Problems with information gain

 Natural bias of information gain: it favours attributes with
many possible values.

 Consider the attribute Date in the PlayTennis example.

 Date would have the highest information gain since it perfectly
separates the training data.

 It would be selected at the root resulting in a very broad tree

 Very good on the training, this tree would perform poorly in predicting
unknown instances. Overfitting.

 The problem is that the partition is too specific, too many small
classes are generated.

 We need to look at alternative measures …

9/20/2018 Mahesh G Huddar

An alternative measure: gain ratio
 c |Si | |Si |

 SplitInformation(S, A) − log2
 i=1 |S | |S |

 Si are the sets obtained by partitioning on value i of A

 SplitInformation measures the entropy of S with respect to the values of A. The
more uniformly dispersed the data the higher it is.

 Gain(S, A)
 GainRatio(S, A)
 SplitInformation(S, A)

 GainRatio penalizes attributes that split examples in many small classes such as
Date. Let |S |=n, Date splits examples in n classes
 SplitInformation(S, Date)= −[(1/n log2 1/n)+…+ (1/n log2 1/n)]= −log21/n =log2n

 Compare with A, which splits data in two even classes:
 SplitInformation(S, A)= − [(1/2 log21/2)+ (1/2 log21/2)]= − [− 1/2 −1/2]=1

9/20/2018 Mahesh G Huddar

Adjusting gain-ratio

 Problem: SplitInformation(S, A) can be zero or very small
when |Si | ≈ |S | for some value i

 To mitigate this effect, the following heuristics has been used:

1. compute Gain for each attribute

2. apply GainRatio only to attributes with Gain above average

 Other measures have been proposed:
 Distance-based metric [Lopez-De Mantaras, 1991] on the partitions of

data

 Each partition (induced by an attribute) is evaluated according to the
distance to the partition that perfectly classifies the data.

 The partition closest to the ideal partition is chosen

9/20/2018 Mahesh G Huddar

Handling incomplete training data

 How to cope with the problem that the value of some attribute

may be missing?

 Example: Blood-Test-Result in a medical diagnosis problem

 The strategy: use other examples to guess attribute

1. Assign the value that is most common among the training examples at

the node

2. Assign a probability to each value, based on frequencies, and assign

values to missing attribute, according to this probability distribution

 Missing values in new instances to be classified are treated

accordingly, and the most probable classification is chosen

(C4.5)

9/20/2018 Mahesh G Huddar

Handling attributes with different

costs

 Instance attributes may have an associated cost: we would
prefer decision trees that use low-cost attributes

 ID3 can be modified to take into account costs:

1. Tan and Schlimmer (1990)

 Gain2(S, A)

 Cost(S, A)

2. Nunez (1988)

 2Gain(S, A) 1

 (Cost(A) + 1)w
w ∈ [0,1]

9/20/2018 Mahesh G Huddar

References

 Machine Learning, Tom Mitchell, Mc Graw-Hill International

Editions, 2013, India Edition.

9/20/2018 Mahesh G Huddar

