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Inductive inference with decision trees 

 Decision Trees is one of the most widely used and 

practical methods of inductive inference 

 Features 

 Method for approximating discrete-valued functions 

(including boolean)  

 Learned functions are represented as decision trees (or if-

then-else rules) 

 Expressive hypotheses space, including disjunction 

 Robust to noisy data 
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Decision tree representation (PlayTennis) 
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Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong     No 



Decision trees expressivity 
 Decision trees represent a disjunction of conjunctions on 

constraints on the value of attributes: 

(Outlook = Sunny  Humidity = Normal)  

(Outlook = Overcast)  

(Outlook = Rain  Wind = Weak) 



When to use Decision Trees 

 Problem characteristics: 

 Instances can be described by attribute value pairs  

 Target function is discrete valued   

 Disjunctive hypothesis may be required   

 Possibly noisy training data samples 

 Robust to errors in training data 

 Missing attribute values 

 Different classification problems: 

 Equipment or medical diagnosis 

 Credit risk analysis  

 Several tasks in natural language processing 

9/20/2018 Mahesh G Huddar 



Top-down induction of Decision Trees 

 ID3 (Quinlan, 1986) is a basic algorithm for learning DT's 

 Given a training set of examples, the algorithms for building DT 

performs search in the space of decision trees 

 The construction of the tree is top-down. The algorithm is greedy. 

 The fundamental question is “which attribute should be tested next? 

Which question gives us more information?” 

 Select the best attribute 

 A descendent node is then created for each possible value of this 

attribute and examples are partitioned according to this value 

 The process is repeated for each successor node until all the 

examples are classified correctly or there are no attributes left 

9/20/2018 Mahesh G Huddar 



Which attribute is the best classifier? 

 A statistical property called information gain, measures how 

well a given attribute separates the training examples 

 Information gain uses the notion of entropy, commonly used in 

information theory 

 Information gain = expected reduction of entropy 
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Entropy in binary classification 

 Entropy measures the impurity of a collection of examples. It 
depends from the distribution of the random variable p. 

 S is a collection of training examples 

 p+ the proportion of positive examples in S 

 p– the proportion of negative examples in S 

 Entropy (S)   – p+ log2 p+ – p–log2 p–      [0 log20 = 0] 

 Entropy ([14+, 0–]) = – 14/14 log2 (14/14) –  0 log2 (0) = 0 

 Entropy ([9+, 5–]) = – 9/14 log2 (9/14) –  5/14 log2 (5/14) = 0,94 

 Entropy ([7+, 7– ]) = –  7/14 log2 (7/14) –  7/14 log2 (7/14) =  

    = 1/2 + 1/2 = 1                        [log21/2 = – 1] 

 Note: the log of a number < 1 is negative,  0  p  1, 0  entropy  1 
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Entropy 
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Example 
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Entropy in general 

 Entropy measures the amount of information in a random 
variable 

 Entropy(X) = – p+ log2 p+ – p– log2 p–  X = {+, –} 

 for binary classification [two-valued random variable] 
             c                             c  

  Entropy(X) = –  pi log2 pi =  pi log2 1/ pi  X = {i, …, c} 
            i=1            i=1 

 for classification in c classes 

 Example: rolling a die with 8, equally probable, sides 
               8 

 Entropy(X) = –  1/8 log2 1/8 = – log2 1/8 = log2 8 = 3 
 i=1 
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Information gain as entropy reduction 

 Information gain is the expected reduction in entropy caused by 

partitioning the examples on an attribute. 

 The higher the information gain the more effective the attribute 

in classifying training data.  

 Expected reduction in entropy knowing A        

 Gain(S, A) = Entropy(S) −           Entropy(Sv)  

       v  Values(A)    

 Values(A) possible values for A 

 Sv subset of S for which A has value v 
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|Sv| 

|S| 



Example: expected information gain 

 Let 

 Values(Wind) = {Weak, Strong} 

 S = [9+, 5−] 

 SWeak = [6+, 2−] 

 SStrong = [3+, 3−] 

 Information gain due to knowing Wind: 

Gain(S, Wind) = Entropy(S) − 8/14 Entropy(SWeak) − 6/14 Entropy(SStrong)  

     = 0.94 − 8/14  0.811 − 6/14  1.00   

     = 0.048  
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Which attribute is the best classifier? 
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First step: which attribute to test at the root? 

 Which attribute should be tested at the root? 

 Gain(S, Outlook) = 0.246 

 Gain(S, Humidity) = 0.151 

 Gain(S, Wind) = 0.084 

 Gain(S, Temperature) = 0.029 

 Outlook provides the best prediction for the target 

 Lets grow the tree: 

 add to the tree a successor for each possible value of Outlook 

 partition the training samples according to the value of Outlook 
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After first step 
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Second step 

 Working on Outlook=Sunny node: 

Gain(SSunny, Humidity) = 0.970  3/5  0.0  2/5  0.0 = 0.970  

Gain(SSunny, Wind) = 0.970  2/5  1.0  3/5  0.918 = 0 .019 

Gain(SSunny, Temp.) = 0.970  2/5  0.0  2/5  1.0  1/5  0.0 = 0.570 

 Humidity provides the best prediction for the target 

 Lets grow the tree: 

 add to the tree a successor for each possible value of Humidity 

 partition the training samples according to the value of Humidity 
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Second and third steps 
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{D1, D2, D8} 

        No 

{D9, D11} 

        Yes 
{D4, D5, D10} 

        Yes 

{D6, D14} 

        No 



ID3: algorithm 
ID3(X, T, Attrs) X: training examples:  

   T: target attribute (e.g. PlayTennis),     

   Attrs: other attributes, initially all attributes 

  Create Root node 

  If all X's are +, return Root with class + 

  If all X's are –, return Root with class – 

  If Attrs is empty return Root with class most common value of T in X 

  else 

 A  best attribute; decision attribute for Root  A 

 For each possible value vi of A: 

  - add a new branch below Root, for test A = vi 

  - Xi  subset of X with A = vi 

  - If Xi is empty then add a new leaf with class the most common value of T in X 

       else add the subtree generated by ID3(Xi, T, Attrs  {A}) 

  return Root 
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Search space in Decision Tree learning 

 The search space is made by 
partial decision trees 

 The algorithm is hill-climbing 

 The evaluation function is 
information gain 

 The hypotheses space is complete 
(represents all discrete-valued 
functions) 

 The search maintains a single 
current hypothesis 

 No backtracking; no guarantee of 
optimality 

 It uses all the available examples 
(not incremental) 

 May terminate earlier, accepting 
noisy classes 
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Inductive bias in decision tree learning  

 What is the inductive bias of DT learning? 

1. Shorter trees are preferred over longer trees 

 Not enough. This is the bias exhibited by a simple breadth 

first algorithm generating all DT's e selecting the shorter one 

2. Prefer trees that place high information gain attributes close to 

the root 

 Note: DT's are not limited in representing all possible functions 
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Two kinds of biases  

 Preference or search biases (due to the search strategy) 

 ID3 searches a complete hypotheses space; the search strategy is 

incomplete 

 Restriction or language biases (due to the set of hypotheses 

expressible or considered)                                            

 Candidate-Elimination searches an incomplete hypotheses space; the 

search strategy is complete 

 A combination of biases in learning a linear combination of 

weighted features in board games. 
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Prefer shorter hypotheses:  Occam's rasor 

 Why prefer shorter hypotheses? 

 Arguments in favor: 

 There are fewer short hypotheses than long ones 

 If a short hypothesis fits data unlikely to be a coincidence 

 Elegance and aesthetics 

 Arguments against: 

 Not every short hypothesis is a reasonable one. 

 Occam's razor:"The simplest explanation is usually the best one." 

 a principle usually (though incorrectly) attributed14th-century English 
logician and Franciscan friar, William of Ockham. 

 lex parsimoniae ("law of parsimony", "law of economy", or "law of 
succinctness") 

 The term razor refers to the act of shaving away unnecessary 
assumptions to get to the simplest explanation. 
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Issues in decision trees learning 

 Overfitting 

 Reduced error pruning 

 Rule post-pruning 

 Extensions 

 Continuous valued attributes 

 Alternative measures for selecting attributes 

 Handling training examples with missing attribute values 

 Handling attributes with different costs 

 Improving computational efficiency 

 Most of these improvements in C4.5 (Quinlan, 1993) 
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Overfitting: definition 
 Building trees that “adapt too much” to the training examples 

may lead to “overfitting”. 

 Consider error of hypothesis h over 

 training data: errorD(h)   empirical error 

 entire distribution X of data: errorX(h) expected error 

 Hypothesis h overfits training data if there is an alternative 

hypothesis h'  H such that 

   errorD(h) < errorD(h’)   and 

   errorX(h’) < errorX(h) 

 i.e. h’ behaves better over unseen data 
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Example 
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 D15     Sunny              Hot             Normal     Strong           No 



Overfitting in decision trees 
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Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No  

 

New noisy example causes splitting of second leaf node. 



Overfitting in decision tree learning 
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Avoid overfitting in Decision Trees 

 Two strategies: 

1. Stop growing the tree earlier, before perfect classification 

2. Allow the tree to overfit the data, and then post-prune the tree 

 Training and validation set 

 split the training in two parts (training and validation) and use 
validation to assess the utility of post-pruning 

 Reduced error pruning 

 Rule pruning 

 Other approaches 

 Use a statistical test to estimate effect of expanding or pruning 

 Minimum description length principle: uses a measure of complexity of 
encoding the DT and the examples, and halt growing the tree when this 
encoding size is minimal 
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Reduced-error pruning (Quinlan 1987) 

 Each node is a candidate for pruning 

 Pruning consists in removing a subtree rooted in a node: the 

node becomes a leaf and is assigned the most common 

classification 

 Nodes are removed only if the resulting tree performs no 

worse on the validation set. 

 Nodes are pruned iteratively: at each iteration the node  

whose removal most increases accuracy on the validation set is 

pruned. 

 Pruning stops when no pruning increases accuracy 
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Effect of reduced error pruning 
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Rule post-pruning 
1. Create the decision tree from the training set 

2. Convert the tree into an equivalent set of rules 

 Each path corresponds to a rule 

 Each node along a path corresponds to a pre-condition 

 Each leaf classification to the post-condition 

3. Prune (generalize) each rule by removing those preconditions 
whose removal improves accuracy … 

 … over validation set 

 … over training with a pessimistic, statistically inspired, measure 

4. Sort the rules in estimated order of accuracy, and consider 
them in sequence when classifying new instances 

 

 

9/20/2018 Mahesh G Huddar 



Converting to rules 
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(Outlook=Sunny)(Humidity=High) ⇒ (PlayTennis=No) 



Why converting to rules? 

 Each distinct path produces a different rule: a condition 

removal may be based on a local (contextual) criterion. Node 

pruning is global and affects all the rules 

 In rule form, tests are not ordered and there is no book-

keeping involved when conditions (nodes) are removed 

 Converting to rules improves readability for humans 
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Dealing with continuous-valued attributes 
 So far discrete values for attributes and for outcome. 

 Given a continuous-valued attribute A, dynamically create a 
new attribute Ac 

  Ac = True if A < c, False otherwise 

 How to determine threshold value c ?  

 Example. Temperature in the PlayTennis example 

 Sort the examples according to Temperature 

 Temperature 40 48     | 60 72 80      | 90 

 PlayTennis No No   54 Yes Yes Yes  85 No 

 Determine candidate thresholds by averaging consecutive values where 
there is a change in classification: (48+60)/2=54 and (80+90)/2=85 

 Evaluate candidate thresholds (attributes) according to information gain. 
The best is Temperature>54.The new attribute competes with the other 
ones 
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Problems with information gain 

 Natural bias of information gain: it favours attributes with 
many possible values. 

 Consider the attribute Date in the PlayTennis example.  

 Date would have the highest information gain since it perfectly 
separates the training data. 

 It would be selected at the root resulting in a very broad tree 

 Very good on the training, this tree would perform poorly in predicting 
unknown instances. Overfitting. 

 The problem is that the partition is too specific, too many small 
classes are generated. 

 We need to look at alternative measures … 
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An alternative measure: gain ratio 
            c      |Si |   |Si | 

 SplitInformation(S, A)  −         log2              
                             i=1   |S |            |S | 

 Si are the sets obtained by partitioning on value i of A 

 SplitInformation measures the entropy of S with respect to the values of A. The 
more uniformly dispersed the data the higher it is. 

                 Gain(S, A)  
      GainRatio(S, A)  
         SplitInformation(S, A)  

 GainRatio penalizes attributes that split examples in many small classes such as 
Date. Let |S |=n, Date splits examples in n classes 
 SplitInformation(S, Date)= −[(1/n log2 1/n)+…+ (1/n log2 1/n)]= −log21/n =log2n 

 Compare with A, which splits data in two even classes: 
 SplitInformation(S, A)= − [(1/2 log21/2)+ (1/2 log21/2) ]= − [− 1/2 −1/2]=1 
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Adjusting gain-ratio 

 Problem: SplitInformation(S, A) can be zero or very small 
when |Si | ≈ |S | for some value i 

 To mitigate this effect, the following heuristics has been used: 

1. compute Gain for each attribute 

2. apply GainRatio only to attributes with Gain above average 

 Other measures have been proposed: 
 Distance-based metric [Lopez-De Mantaras, 1991] on the  partitions of 

data 

 Each partition (induced by an attribute) is evaluated according to the 
distance to the partition that perfectly classifies the data. 

 The partition closest to the ideal partition is chosen 
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Handling incomplete training data 

 How to cope with the problem that the value of some attribute 

may be missing? 

 Example: Blood-Test-Result in a medical diagnosis problem 

 The strategy: use other examples to guess attribute 

1. Assign the value that is most common among the training examples at 

the node 

2. Assign a probability to each value, based on frequencies, and assign 

values to missing attribute, according to this probability distribution 

 Missing values in new instances to be classified are treated 

accordingly, and the most probable classification is chosen 

(C4.5) 
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Handling attributes with different 

costs 

 Instance attributes may have an associated cost: we would 
prefer decision trees that use low-cost attributes 

 ID3 can be modified to take into account costs: 

1. Tan and Schlimmer   (1990) 

                              Gain2(S, A)   

        Cost(S, A) 

2. Nunez (1988)  

    2Gain(S, A)   1   

    (Cost(A) + 1)w     
w ∈ [0,1] 

  

9/20/2018 Mahesh G Huddar 



References 

 Machine Learning, Tom Mitchell, Mc Graw-Hill International 

Editions, 2013, India Edition. 

9/20/2018 Mahesh G Huddar 


