
Decision Tree Tearning

Mahesh G Huddar

Asst. Professor

CSED, HIT, Nidasoshi

Inductive inference with decision trees

 Decision Trees is one of the most widely used and

practical methods of inductive inference

 Features

 Method for approximating discrete-valued functions

(including boolean)

 Learned functions are represented as decision trees (or if-

then-else rules)

 Expressive hypotheses space, including disjunction

 Robust to noisy data

9/19/2018 Mahesh G Huddar

Decision tree representation (PlayTennis)

9/20/2018 Mahesh G Huddar

Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong No

Decision trees expressivity
 Decision trees represent a disjunction of conjunctions on

constraints on the value of attributes:

(Outlook = Sunny  Humidity = Normal) 

(Outlook = Overcast) 

(Outlook = Rain  Wind = Weak)

When to use Decision Trees

 Problem characteristics:

 Instances can be described by attribute value pairs

 Target function is discrete valued

 Disjunctive hypothesis may be required

 Possibly noisy training data samples

 Robust to errors in training data

 Missing attribute values

 Different classification problems:

 Equipment or medical diagnosis

 Credit risk analysis

 Several tasks in natural language processing

9/20/2018 Mahesh G Huddar

Top-down induction of Decision Trees

 ID3 (Quinlan, 1986) is a basic algorithm for learning DT's

 Given a training set of examples, the algorithms for building DT

performs search in the space of decision trees

 The construction of the tree is top-down. The algorithm is greedy.

 The fundamental question is “which attribute should be tested next?

Which question gives us more information?”

 Select the best attribute

 A descendent node is then created for each possible value of this

attribute and examples are partitioned according to this value

 The process is repeated for each successor node until all the

examples are classified correctly or there are no attributes left

9/20/2018 Mahesh G Huddar

Which attribute is the best classifier?

 A statistical property called information gain, measures how

well a given attribute separates the training examples

 Information gain uses the notion of entropy, commonly used in

information theory

 Information gain = expected reduction of entropy

9/20/2018 Mahesh G Huddar

Entropy in binary classification

 Entropy measures the impurity of a collection of examples. It
depends from the distribution of the random variable p.

 S is a collection of training examples

 p+ the proportion of positive examples in S

 p– the proportion of negative examples in S

 Entropy (S)  – p+ log2 p+ – p–log2 p– [0 log20 = 0]

 Entropy ([14+, 0–]) = – 14/14 log2 (14/14) – 0 log2 (0) = 0

 Entropy ([9+, 5–]) = – 9/14 log2 (9/14) – 5/14 log2 (5/14) = 0,94

 Entropy ([7+, 7–]) = – 7/14 log2 (7/14) – 7/14 log2 (7/14) =

 = 1/2 + 1/2 = 1 [log21/2 = – 1]

 Note: the log of a number < 1 is negative, 0  p  1, 0  entropy  1

9/20/2018 Mahesh G Huddar

Entropy

9/20/2018 Mahesh G Huddar

Example

9/20/2018 Mahesh G Huddar

Entropy in general

 Entropy measures the amount of information in a random
variable

 Entropy(X) = – p+ log2 p+ – p– log2 p– X = {+, –}

 for binary classification [two-valued random variable]
 c c

 Entropy(X) = –  pi log2 pi =  pi log2 1/ pi X = {i, …, c}
 i=1 i=1

 for classification in c classes

 Example: rolling a die with 8, equally probable, sides
 8

 Entropy(X) = –  1/8 log2 1/8 = – log2 1/8 = log2 8 = 3
 i=1

9/20/2018 Mahesh G Huddar

Information gain as entropy reduction

 Information gain is the expected reduction in entropy caused by

partitioning the examples on an attribute.

 The higher the information gain the more effective the attribute

in classifying training data.

 Expected reduction in entropy knowing A

 Gain(S, A) = Entropy(S) −  Entropy(Sv)

 v  Values(A)

 Values(A) possible values for A

 Sv subset of S for which A has value v

9/20/2018 Mahesh G Huddar

|Sv|

|S|

Example: expected information gain

 Let

 Values(Wind) = {Weak, Strong}

 S = [9+, 5−]

 SWeak = [6+, 2−]

 SStrong = [3+, 3−]

 Information gain due to knowing Wind:

Gain(S, Wind) = Entropy(S) − 8/14 Entropy(SWeak) − 6/14 Entropy(SStrong)

 = 0.94 − 8/14  0.811 − 6/14  1.00

 = 0.048

9/20/2018 Mahesh G Huddar

Which attribute is the best classifier?

9/20/2018 Mahesh G Huddar

First step: which attribute to test at the root?

 Which attribute should be tested at the root?

 Gain(S, Outlook) = 0.246

 Gain(S, Humidity) = 0.151

 Gain(S, Wind) = 0.084

 Gain(S, Temperature) = 0.029

 Outlook provides the best prediction for the target

 Lets grow the tree:

 add to the tree a successor for each possible value of Outlook

 partition the training samples according to the value of Outlook

9/20/2018 Mahesh G Huddar

After first step

9/20/2018 Mahesh G Huddar

Second step

 Working on Outlook=Sunny node:

Gain(SSunny, Humidity) = 0.970  3/5  0.0  2/5  0.0 = 0.970

Gain(SSunny, Wind) = 0.970  2/5  1.0  3/5  0.918 = 0 .019

Gain(SSunny, Temp.) = 0.970  2/5  0.0  2/5  1.0  1/5  0.0 = 0.570

 Humidity provides the best prediction for the target

 Lets grow the tree:

 add to the tree a successor for each possible value of Humidity

 partition the training samples according to the value of Humidity

9/20/2018 Mahesh G Huddar

Second and third steps

9/20/2018 Mahesh G Huddar

{D1, D2, D8}

 No

{D9, D11}

 Yes
{D4, D5, D10}

 Yes

{D6, D14}

 No

ID3: algorithm
ID3(X, T, Attrs) X: training examples:

 T: target attribute (e.g. PlayTennis),

 Attrs: other attributes, initially all attributes

 Create Root node

 If all X's are +, return Root with class +

 If all X's are –, return Root with class –

 If Attrs is empty return Root with class most common value of T in X

 else

 A  best attribute; decision attribute for Root  A

 For each possible value vi of A:

 - add a new branch below Root, for test A = vi

 - Xi  subset of X with A = vi

 - If Xi is empty then add a new leaf with class the most common value of T in X

 else add the subtree generated by ID3(Xi, T, Attrs  {A})

 return Root

9/20/2018 Mahesh G Huddar

Search space in Decision Tree learning

 The search space is made by
partial decision trees

 The algorithm is hill-climbing

 The evaluation function is
information gain

 The hypotheses space is complete
(represents all discrete-valued
functions)

 The search maintains a single
current hypothesis

 No backtracking; no guarantee of
optimality

 It uses all the available examples
(not incremental)

 May terminate earlier, accepting
noisy classes

9/20/2018 Mahesh G Huddar

Inductive bias in decision tree learning

 What is the inductive bias of DT learning?

1. Shorter trees are preferred over longer trees

 Not enough. This is the bias exhibited by a simple breadth

first algorithm generating all DT's e selecting the shorter one

2. Prefer trees that place high information gain attributes close to

the root

 Note: DT's are not limited in representing all possible functions

9/20/2018 Mahesh G Huddar

Two kinds of biases

 Preference or search biases (due to the search strategy)

 ID3 searches a complete hypotheses space; the search strategy is

incomplete

 Restriction or language biases (due to the set of hypotheses

expressible or considered)

 Candidate-Elimination searches an incomplete hypotheses space; the

search strategy is complete

 A combination of biases in learning a linear combination of

weighted features in board games.

9/20/2018 Mahesh G Huddar

Prefer shorter hypotheses: Occam's rasor

 Why prefer shorter hypotheses?

 Arguments in favor:

 There are fewer short hypotheses than long ones

 If a short hypothesis fits data unlikely to be a coincidence

 Elegance and aesthetics

 Arguments against:

 Not every short hypothesis is a reasonable one.

 Occam's razor:"The simplest explanation is usually the best one."

 a principle usually (though incorrectly) attributed14th-century English
logician and Franciscan friar, William of Ockham.

 lex parsimoniae ("law of parsimony", "law of economy", or "law of
succinctness")

 The term razor refers to the act of shaving away unnecessary
assumptions to get to the simplest explanation.

9/20/2018 Mahesh G Huddar

Issues in decision trees learning

 Overfitting

 Reduced error pruning

 Rule post-pruning

 Extensions

 Continuous valued attributes

 Alternative measures for selecting attributes

 Handling training examples with missing attribute values

 Handling attributes with different costs

 Improving computational efficiency

 Most of these improvements in C4.5 (Quinlan, 1993)

9/20/2018 Mahesh G Huddar

Overfitting: definition
 Building trees that “adapt too much” to the training examples

may lead to “overfitting”.

 Consider error of hypothesis h over

 training data: errorD(h) empirical error

 entire distribution X of data: errorX(h) expected error

 Hypothesis h overfits training data if there is an alternative

hypothesis h'  H such that

 errorD(h) < errorD(h’) and

 errorX(h’) < errorX(h)

 i.e. h’ behaves better over unseen data

9/20/2018 Mahesh G Huddar

Example

9/20/2018 Mahesh G Huddar

 D15 Sunny Hot Normal Strong No

Overfitting in decision trees

9/20/2018 Mahesh G Huddar

Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No 

New noisy example causes splitting of second leaf node.

Overfitting in decision tree learning

9/20/2018 Mahesh G Huddar

Avoid overfitting in Decision Trees

 Two strategies:

1. Stop growing the tree earlier, before perfect classification

2. Allow the tree to overfit the data, and then post-prune the tree

 Training and validation set

 split the training in two parts (training and validation) and use
validation to assess the utility of post-pruning

 Reduced error pruning

 Rule pruning

 Other approaches

 Use a statistical test to estimate effect of expanding or pruning

 Minimum description length principle: uses a measure of complexity of
encoding the DT and the examples, and halt growing the tree when this
encoding size is minimal

9/20/2018 Mahesh G Huddar

Reduced-error pruning (Quinlan 1987)

 Each node is a candidate for pruning

 Pruning consists in removing a subtree rooted in a node: the

node becomes a leaf and is assigned the most common

classification

 Nodes are removed only if the resulting tree performs no

worse on the validation set.

 Nodes are pruned iteratively: at each iteration the node

whose removal most increases accuracy on the validation set is

pruned.

 Pruning stops when no pruning increases accuracy

9/20/2018 Mahesh G Huddar

Effect of reduced error pruning

9/20/2018 Mahesh G Huddar

Rule post-pruning
1. Create the decision tree from the training set

2. Convert the tree into an equivalent set of rules

 Each path corresponds to a rule

 Each node along a path corresponds to a pre-condition

 Each leaf classification to the post-condition

3. Prune (generalize) each rule by removing those preconditions
whose removal improves accuracy …

 … over validation set

 … over training with a pessimistic, statistically inspired, measure

4. Sort the rules in estimated order of accuracy, and consider
them in sequence when classifying new instances

9/20/2018 Mahesh G Huddar

Converting to rules

9/20/2018 Mahesh G Huddar

(Outlook=Sunny)(Humidity=High) ⇒ (PlayTennis=No)

Why converting to rules?

 Each distinct path produces a different rule: a condition

removal may be based on a local (contextual) criterion. Node

pruning is global and affects all the rules

 In rule form, tests are not ordered and there is no book-

keeping involved when conditions (nodes) are removed

 Converting to rules improves readability for humans

9/20/2018 Mahesh G Huddar

Dealing with continuous-valued attributes
 So far discrete values for attributes and for outcome.

 Given a continuous-valued attribute A, dynamically create a
new attribute Ac

 Ac = True if A < c, False otherwise

 How to determine threshold value c ?

 Example. Temperature in the PlayTennis example

 Sort the examples according to Temperature

 Temperature 40 48 | 60 72 80 | 90

 PlayTennis No No 54 Yes Yes Yes 85 No

 Determine candidate thresholds by averaging consecutive values where
there is a change in classification: (48+60)/2=54 and (80+90)/2=85

 Evaluate candidate thresholds (attributes) according to information gain.
The best is Temperature>54.The new attribute competes with the other
ones

9/20/2018 Mahesh G Huddar

Problems with information gain

 Natural bias of information gain: it favours attributes with
many possible values.

 Consider the attribute Date in the PlayTennis example.

 Date would have the highest information gain since it perfectly
separates the training data.

 It would be selected at the root resulting in a very broad tree

 Very good on the training, this tree would perform poorly in predicting
unknown instances. Overfitting.

 The problem is that the partition is too specific, too many small
classes are generated.

 We need to look at alternative measures …

9/20/2018 Mahesh G Huddar

An alternative measure: gain ratio
 c |Si | |Si |

 SplitInformation(S, A)  −  log2
 i=1 |S | |S |

 Si are the sets obtained by partitioning on value i of A

 SplitInformation measures the entropy of S with respect to the values of A. The
more uniformly dispersed the data the higher it is.

 Gain(S, A)
 GainRatio(S, A) 
 SplitInformation(S, A)

 GainRatio penalizes attributes that split examples in many small classes such as
Date. Let |S |=n, Date splits examples in n classes
 SplitInformation(S, Date)= −[(1/n log2 1/n)+…+ (1/n log2 1/n)]= −log21/n =log2n

 Compare with A, which splits data in two even classes:
 SplitInformation(S, A)= − [(1/2 log21/2)+ (1/2 log21/2)]= − [− 1/2 −1/2]=1

9/20/2018 Mahesh G Huddar

Adjusting gain-ratio

 Problem: SplitInformation(S, A) can be zero or very small
when |Si | ≈ |S | for some value i

 To mitigate this effect, the following heuristics has been used:

1. compute Gain for each attribute

2. apply GainRatio only to attributes with Gain above average

 Other measures have been proposed:
 Distance-based metric [Lopez-De Mantaras, 1991] on the partitions of

data

 Each partition (induced by an attribute) is evaluated according to the
distance to the partition that perfectly classifies the data.

 The partition closest to the ideal partition is chosen

9/20/2018 Mahesh G Huddar

Handling incomplete training data

 How to cope with the problem that the value of some attribute

may be missing?

 Example: Blood-Test-Result in a medical diagnosis problem

 The strategy: use other examples to guess attribute

1. Assign the value that is most common among the training examples at

the node

2. Assign a probability to each value, based on frequencies, and assign

values to missing attribute, according to this probability distribution

 Missing values in new instances to be classified are treated

accordingly, and the most probable classification is chosen

(C4.5)

9/20/2018 Mahesh G Huddar

Handling attributes with different

costs

 Instance attributes may have an associated cost: we would
prefer decision trees that use low-cost attributes

 ID3 can be modified to take into account costs:

1. Tan and Schlimmer (1990)

 Gain2(S, A)

 Cost(S, A)

2. Nunez (1988)

 2Gain(S, A)  1

 (Cost(A) + 1)w
w ∈ [0,1]

9/20/2018 Mahesh G Huddar

References

 Machine Learning, Tom Mitchell, Mc Graw-Hill International

Editions, 2013, India Edition.

9/20/2018 Mahesh G Huddar

