
Authentication and E-Mail
Security

Prof. A. A. Daptardar

HIT, Nidasoshi

X.509 Certificates

• X.509 defines a framework for the provision of
authentication services by the X.500 directory to
its users.

• The directory may serve as a repository of public-
key certificates.

• Each certificate contains the public key of a user
and is signed with the private key of a trusted
certification authority.

• In addition, X.509 defines alternative
authentication protocols based on the use of
public-key certificates.

• X.509 was initially issued in 1988.

• The standard was subsequently revised to
address some of the security concerns
documented in [IANS90] and [MITC90];

• A revised recommendation was issued in
1993.

• A third version was issued in 1995 and revised
in 2000.

• X.509 is based on the use of public-key
cryptography and digital signatures.

• The digital signature scheme is assumed to
require the use of a hash function.

Certificates

• The heart of the X.509 scheme is the public-
key certificate associated with each user.

• These user certificates are assumed to be
created by some trusted certification
authority (CA) and placed in the directory by
the CA or by the user.

• The directory server itself is not responsible
for the creation of public keys or for the
certification function;

• It merely provides an easily accessible location
for users to obtain certificates.

• Version: Differentiates among successive versions of the
certificate format; the default is version 1. If the issuer
unique identifier or subject unique identifier are present,
the value must be version 2. If one or more extensions are
present, the version must be version 3.

• Serial number: An integer value unique within the issuing
CA that is unambiguously associated with this certificate.

• Signature algorithm identifier: The algorithm used to sign
the certificate together with any associated parameters.
Because this information is repeated in the signature field
at the end of the certificate, this field has little, if any,
utility.

• Issuer name: X.500 name of the CA that created and signed
this certificate.

• Period of validity: Consists of two dates: the first and last
on which the certificate is valid.

• Subject name: The name of the user to whom this
certificate refers. That is, this certificate certifies the public
key of the subject who holds the corresponding private key.

• Subject’s public-key information: The public key of the
subject, plus an identifier of the algorithm for which
this key is to be used, together with any associated
parameters.

• Issuer unique identifier: An optional-bit string field
used to identify uniquely the issuing CA in the event
the X.500 name has been reused for different entities.

• Subject unique identifier: An optional-bit string field
used to identify uniquely the subject in the event the
X.500 name has been reused for different entities.

• Extensions: A set of one or more extension fields.
Extensions were added in version 3.

• Signature: Covers all of the other fields of the
certificate; it contains the hash code of the other fields
encrypted with the CA’s private key. This field includes
the signature algorithm identifier.

• The unique identifier fields were added in version 2 to handle the possible
reuse of subject and/or issuer names over time.

• These fields are rarely used.
• The standard uses the following notation to define a certificate:
• CA <<A>> = CA {V, SN, AI, CA, UCA, A, UA, Ap, TA}
• where
• Y <<X>> = the certificate of user X issued by certification authority Y
• Y {I} = the signing of I by Y. It consists of I with an encrypted hash code

appended
• V = version of the certificate
• SN = serial number of the certificate
• AI = identifier of the algorithm used to sign the certificate
• CA = name of certificate authority
• UCA = optional unique identifier of the CA
• A = name of user A
• UA = optional unique identifier of the user A
• Ap = public key of user A
• TA = period of validity of the certificate

Obtaining a User’s Certificate

• User certificates generated by a CA have the
following characteristics:

– Any user with access to the public key of the CA can
verify the user public key that was certified.

– No party other than the certification authority can
modify the certificate without this being detected.

• Because certificates are unforgeable, they can be
placed in a directory without the need for the
directory to make special efforts to protect them.

• Now suppose that A has obtained a certificate from
certification authority X1 and B has obtained a
certificate from CA X2. If A does not securely know the
public key of X2, then B’s certificate, issued by X2, is
useless to A. A can read B’s certificate, but A cannot
verify the signature. However, if the two CAs have
securely exchanged their own public keys, the
following procedure will enable A to obtain B’s public
key.
– Step 1 - A obtains from the directory the certificate of X2

signed by X1. Because A securely knows X1’s public key, A
can obtain X2’s public key from its certificate and verify it
by means of X1’s signature on the certificate.

– Step 2 - A then goes back to the directory and obtains the
certificate of B signed by X2. Because A now has a trusted
copy of X2’s public key, A can verify the signature and
securely obtain B’s public key.

• A has used a chain of certificates to obtain B’s
public key. In the notation of X.509, this chain is
expressed as

X1 << X2 >> X2 << B >>

• In the same fashion, B can obtain A’s public key
with the reverse chain:

X2 << X1 >> X1 << A >>

• This scheme need not be limited to a chain of two
certificates. An arbitrarily long path of CAs can be
followed to produce a chain. A chain with N
elements would be expressed as

X1 << X2 >> X2 << X3 >> ……XN << B >>

• The connected circles indicate the hierarchical
relationship among the CAs; the associated
boxes indicate certificates maintained in the
directory for each CA entry.

• The directory entry for each CA includes two
types of certificates:

• Forward certificates: Certificates of X
generated by other CAs

• Reverse certificates: Certificates generated by
X that are the certificates of other CAs

• In this example, user A can acquire the
following certificates from the directory to
establish a certification path to B:

• If A wishes to receive encrypted messages
back from B, or to sign messages sent to B,
then B will require A’s public key, which can be
obtained from the following certification path:

Revocation of Certificates

• Each certificate includes a period of validity, much
like a credit card.

• Typically, a new certificate is issued just before
the expiration of the old one.

• In addition, it may be desirable on occasion to
revoke a certificate before it expires, for one of
the following reasons.
– 1. The user’s private key is assumed to be

compromised.

– 2. The user is no longer certified by this CA.

– 3. The CA’s certificate is assumed to be compromised.

• Each CA must maintain a list consisting of all revoked
but not expired certificates issued by that CA, including
both those issued to users and to other CAs.

• These lists should also be posted on the directory.

• Each certificate revocation list (CRL) posted to the
directory is signed by the issuer and includes (Figure
14.15b) the issuer’s name, the date the list was
created, the date the next CRL is scheduled to be
issued, and an entry for each revoked certificate.

• Each entry consists of the serial number of a certificate
and revocation date for that certificate.

• Because serial numbers are unique within a CA, the
serial number is sufficient to identify the certificate.

X.509 Version 3
• The X.509 version 2 format does not convey all of the

information that recent design and implementation
experience has shown to be needed. [FORD95] lists the
following requirements not satisfied by version 2.
– 1. The subject field is inadequate to convey the identity of a key

owner to a public-key user. X.509 names may be relatively short
and lacking in obvious identification details that may be needed
by the user.

– 2. The subject field is also inadequate for many applications,
which typically recognize entities by an Internet e-mail address,
a URL, or some other Internet-related identification.

– 3. There is a need to indicate security policy information. This
enables a security application or function, such as IPSec, to
relate an X.509 certificate to a given policy.

– 4. There is a need to limit the damage that can result from a
faulty or malicious CA by setting constraints on the applicability
of a particular certificate.

– 5. It is important to be able to identify different keys used by the
same owner at different times.

• Version 3 includes a number of optional
extensions that may be added to the version 2
format.

• Each extension consists of an extension identifier,
a criticality indicator, and an extension value.

• The criticality indicator indicates whether an
extension can be safely ignored.

• If the indicator has a value of TRUE and an
implementation does not recognize the
extension, it must treat the certificate as invalid.

• The certificate extensions fall into three main
categories: key and policy information, subject
and issuer attributes, and certification path
constraints.

Key and Policy Information

• These extensions convey additional
information about the subject and issuer keys,
plus indicators of certificate policy.

• A certificate policy is a named set of rules that
indicates the applicability of a certificate to a
particular community and/or class of
application with common security
requirements.

• This area includes:
– Authority key identifier: Identifies the public key to be used to

verify the signature on this certificate or CRL.
– Subject key identifier: Identifies the public key being certified.

Useful for subject key pair updating. Also, a subject may have
multiple key pairs and, correspondingly, different certificates for
different purposes.

– Key usage: Indicates a restriction imposed as to the purposes
for which, and the policies under which, the certified public key
may be used.

– Private-key usage period: Indicates the period of use of the
private key corresponding to the public key.

– Certificate policies: Certificates may be used in environments
where multiple policies apply. This extension lists policies that
the certificate is recognized as supporting, together with
optional qualifier information.

– Policy mappings: Used only in certificates for CAs issued by
other CAs. Policy mappings allow an issuing CA to indicate that
one or more of that issuer’s policies can be considered
equivalent to another policy used in the subject CA’s domain.

Certificate Subject and Issuer
Attributes

• These extensions support alternative names,
in alternative formats, for a certificate subject
or certificate issuer and can convey additional
information about the certificate subject to
increase a certificate user’s confidence that
the certificate subject is a particular person or
entity.

• The extension fields in this area include:

– Subject alternative name: Contains one or more
alternative names, using any of a variety of forms.
This field is important for supporting certain
applications, such as electronic mail, EDI, and
IPSec, which may employ their own name forms.

– Issuer alternative name: Contains one or more
alternative names, using any of a variety of forms.

– Subject directory attributes: Conveys any desired
X.500 directory attribute values for the subject of
this certificate.

Certification Path Constraints

• These extensions allow constraint
specifications to be included in certificates
issued for CAs by other CAs.

• The constraints may restrict the types of
certificates that can be issued by the subject
CA or that may occur subsequently in a
certification chain.

• The extension fields in this area include:

– Basic constraints: Indicates if the subject may act
as a CA. If so, a certification path length constraint
may be specified.

– Name constraints: Indicates a name space within
which all subject names in subsequent certificates
in a certification path must be located.

– Policy constraints: Specifies constraints that may
require explicit certificate policy identification or
inhibit policy mapping for the remainder of the
certification path.

Public-Key Infrastructure

• RFC 4949 (Internet Security Glossary) defines public-
key infrastructure (PKI) as the set of hardware,
software, people, policies, and procedures needed to
create, manage, store, distribute, and revoke digital
certificates based on asymmetric cryptography.

• The principal objective for developing a PKI is to enable
secure, convenient, and efficient acquisition of public
keys.

• The Internet Engineering Task Force (IETF) Public Key
Infrastructure X.509 (PKIX) working group has been the
driving force behind setting up a formal (and generic)
model based on X.509 that is suitable for deploying a
certificate-based architecture on the Internet.

• Figure 14.17 shows the interrelationship among the key elements
of the PKIX model. These elements are
– End entity: A generic term used to denote end users, devices

(e.g., servers, routers), or any other entity that can be identified
in the subject field of a public-key certificate. End entities
typically consume and/or support PKI-related services.

– Certification authority (CA): The issuer of certificates and
(usually) certificate revocation lists (CRLs). It may also support a
variety of administrative functions, although these are often
delegated to one or more Registration Authorities.

– Registration authority (RA): An optional component that can
assume a number of administrative functions from the CA. The
RA is often associated with the end entity registration process
but can assist in a number of other areas as well.

– CRL issuer: An optional component that a CA can delegate to
publish CRLs.

– Repository: A generic term used to denote any method for
storing certificates and CRLs so that they can be retrieved by
end entities.

PKIX Management Functions

• PKIX identifies a number of management
functions that potentially need to be supported
by management protocols. These are indicated in
Figure 14.17 and include the following:
– Registration: This is the process whereby a user first

makes itself known to a CA (directly or through an
RA), prior to that CA issuing a certificate or certificates
for that user. Registration begins the process of
enrolling in a PKI. Registration usually involves some
offline or online procedure for mutual authentication.
Typically, the end entity is issued one or more shared
secret keys used for subsequent authentication.

– Initialization: Before a client system can operate
securely, it is necessary to install key materials that
have the appropriate relationship with keys stored
elsewhere in the infrastructure.

– Certification: This is the process in which a CA issues a
certificate for a user’s public key, returns that
certificate to the user’s client system, and/or posts
that certificate in a repository.

– Key pair recovery: Key pairs can be used to support
digital signature creation and verification, encryption
and decryption, or both. When a key pair is used for
encryption/decryption, it is important to provide a
mechanism to recover the necessary decryption keys
when normal access to the keying material is no
longer possible, otherwise it will not be possible to
recover the encrypted data.

– Key pair update: All key pairs need to be updated
regularly (i.e., replaced with a new key pair) and
new certificates issued. Update is required when
the certificate lifetime expires and as a result of
certificate revocation.

– Revocation request: An authorized person advises
a CA of an abnormal situation requiring certificate
revocation. Reasons for revocation include private
key compromise, change in affiliation, and name
change.

– Cross certification: Two CAs exchange information
used in establishing a cross-certificate. A cross-
certificate is a certificate issued by one CA to
another CA that contains a CA signature key used
for issuing certificates.

PKIX Management Protocols
• The PKIX working group has defines two

alternative management protocols between PKIX
entities that support the management functions
listed in the preceding subsection.
– RFC 2510 defines the certificate management

protocols (CMP). Within CMP, each of the
management functions is explicitly identified by
specific protocol exchanges. CMP is designed to be a
flexible protocol able to accommodate a variety of
technical, operational, and business models.

– RFC 2797 defines certificate management messages
over CMS (CMC), where CMS refers to RFC 2630,
cryptographic message syntax. CMC is built on earlier
work and is intended to leverage existing
implementations.

User Authentication

Remote User-Authentication
Principles

• In most computer security contexts, user
authentication is the fundamental building
block and the primary line of defense.

• User authentication is the basis for most types
of access control and for user accountability.

• There are four general means of authenticating a
user’s identity, which can be used alone or in
combination:

– Something the individual knows: Examples include a
password, a personal identification number (PIN), or
answers to a prearranged set of questions.

– Something the individual possesses: Examples include
cryptographic keys, electronic keycards, smart cards, and
physical keys. This type of authenticator is referred to as a
token.

– Something the individual is (static biometrics): Examples
include recognition by fingerprint, retina, and face.

– Something the individual does (dynamic biometrics):
Examples include recognition by voice pattern,
handwriting characteristics, and typing rhythm.

• Each method has problems.

– An adversary may be able to guess or steal a password.

– Similarly, an adversary may be able to forge or steal a
token.

– A user may forget a password or lose a token.

– Furthermore, there is a significant administrative
overhead for managing password and token information
on systems and securing such information on systems.

– With respect to biometric authenticators, there are a
variety of problems, including dealing with false positives
and false negatives, user acceptance, cost, and
convenience.

– For network-based user authentication, the most
important methods involve cryptographic keys and
something the individual knows, such as a password.

Mutual Authentication

• Mutual Authentication Protocols enable
communicating parties to satisfy themselves
mutually about each other’s identity and to
exchange session keys.

• Central to the problem of authenticated key
exchange are two issues:

– confidentiality

– timeliness

• To prevent masquerade and to prevent
compromise of session keys, essential
identification and session-key information
must be communicated in encrypted form.

• This requires the prior existence of secret or
public keys that can be used for this purpose.

• The second issue, timeliness, is important
because of the threat of message replays.

• Such replays, at worst, could allow an
opponent to compromise a session key or
successfully impersonate another party.

• The following examples of replay attacks:
• 1. The simplest replay attack is one in which the opponent

simply copies a message and replays it later.

• 2. An opponent can replay a timestamped message within the
valid time window. If both the original and the replay arrive
within then time window, this incident can be logged.

• 3. As with example (2), an opponent can replay a
timestamped message within the valid time window, but in
addition, the opponent suppresses the original message.
Thus, the repetition cannot be detected.

• 4. Another attack involves a backward replay without
modification. This is a replay back to the message sender. This
attack is possible if symmetric encryption is used and the
sender cannot easily recognize the difference between
messages sent and messages received on the basis of content.

• One approach to coping with replay attacks is
to attach a sequence number to each message
used in an authentication exchange.

• A new message is accepted only if its
sequence number is in the proper order.

• The difficulty with this approach is that it
requires each party to keep track of the last
sequence number for each claimant it has
dealt with.

• Instead, one of the following two general
approaches is used:

– Timestamps: Party A accepts a message as fresh
only if the message contains a timestamp that, in
A’s judgment, is close enough to A’s knowledge of
current time. This approach requires that clocks
among the various participants be synchronized.

– • Challenge/response: Party A, expecting a fresh
message from B, first sends B a nonce (challenge)
and requires that the subsequent message
(response) received from B contain the correct
nonce value.

One-Way Authentication
• One application for which encryption is growing in popularity

is electronic mail (e-mail).

• It is not necessary for the sender and receiver to be online at
the same time.

• Instead, the e-mail message is forwarded to the receiver’s
electronic mailbox, where it is buffered until the receiver is
available to read it.

• The “envelope” or header of the e-mail message must be in
the clear, so that the message can be handled by the store-
and-forward e-mail protocol, such as the Simple Mail Transfer
Protocol (SMTP) or X.400.

• A second requirement is that of authentication. Typically, the
recipient wants some assurance that the message is from the
alleged sender.

Remote User-Authentication Using
Symmetric Encryption

• Mutual Authentication

• One-Way Authentication

Mutual Authentication
• The proposal is put by Needham and Schroeder for

secret key distribution using KDC.

• The protocol can be summarized as follows

• The purpose of the protocol is to distribute securely
a session key Ks to A and B.

• The protocol is still vulnerable to a form of replay
attack.

• Suppose that an opponent, X, has been able to
compromise an old session key.

• X can impersonate A and trick B into using the old
key by simply replaying step 3.

• Unless B remembers indefinitely all previous session
keys used with A, B will be unable to determine that
this is a replay.

• If X can intercept the handshake message in step 4,
then it can impersonate A’s response in step 5.

• From this point on, X can send bogus messages to B
that appear to B to come from A using an
authenticated session key.

• Denning proposes to overcome this weakness
by a modification to the Needham/Schroeder
protocol that includes the addition of a
timestamp to steps 2 and 3.

• Her proposal assumes that the master keys, Ka
and Kb, are secure, and it consists of the
following steps.

• T is a timestamp that assures A and B that the
session key has only just been generated.
Thus, both A and B know that the key
distribution is a fresh exchange.

• A and B can verify timeliness by checking that

• | Clock – T | < Δt1 + Δt2

• where Δt1 is the estimated normal
discrepancy between the KDC’s clock and the
local clock (at A or B) and Δt2 is the expected
network delay time.

• The Denning protocol seems to provide an
increased degree of security compared to the
Needham/Schroeder protocol.

• However, a new concern is raised: namely,
that this new scheme requires reliance on
clocks that are synchronized throughout the
network.

• The risk is based on the fact that the
distributed clocks can become unsynchronized
as a result of sabotage on or faults in the
clocks or the synchronization mechanism.

• The problem occurs when a sender’s clock is
ahead of the intended recipient’s clock.

• In this case, an opponent can intercept a
message from the sender and replay it later
when the timestamp in the message becomes
current at the recipient’s site.

• This replay could cause unexpected results.

• Gong refers to such attacks as suppress-replay
attacks.

• One way to counter suppress-replay attacks is
to enforce the requirement that parties
regularly check their clocks against the KDC’s
clock.

• The other alternative, which avoids the need
for clock synchronization, is to rely on
handshaking protocols using nonces.

• The Needham/Schroeder protocol relies on
nonces only but, as we have seen, has other
vulnerabilities.

• 1. A initiates the authentication exchange by
generating a nonce, Na, and sending that plus its
identifier to B in plaintext. This nonce will be returned
to A in an encrypted message that includes the session
key, assuring A of its timeliness.

• 2. B alerts the KDC that a session key is needed. Its
message to the KDC includes its identifier and a nonce,
Nb. This nonce will be returned to B in an encrypted
message that includes the session key, assuring B of its
timeliness.

• B’s message to the KDC also includes a block
encrypted with the secret key shared by B and the
KDC. This block is used to instruct the KDC to issue
credentials to A; the block specifies the intended
recipient of the credentials, a suggested expiration
time for the credentials, and the nonce received
from A.

• 3. The KDC passes on to A B’s nonce and a block
encrypted with the secret key that B shares with the
KDC. The block serves as a “ticket” that can be used
by A for subsequent authentications, as will be seen.
The KDC also sends to A a block encrypted with the
secret key shared by A and the KDC.

• This block verifies that B has received A’s initial
message (IDB) and that this is a timely message and
not a replay (Na), and it provides A with a session key
(Ks) and the time limit on its use (Tb).

• 4. A transmits the ticket to B, together with the B’s
nonce, the latter encrypted with the session key. The
ticket provides B with the secret key that is used to
decrypt E(Ks, Nb) to recover the nonce. The fact that
B’s nonce is encrypted with the session key
authenticates that the message came from A and is
not a replay.

• This protocol provides an effective, secure
means for A and B to establish a session with a
secure session key.

• Furthermore, the protocol leaves A in
possession of a key that can be used for
subsequent authentication to B, avoiding the
need to contact the authentication server
repeatedly.

One-Way Authentication
• For a message with content M, the sequence

is as follows:

• This approach guarantees that only the
intended recipient of a message will be able to
read it.

• It also provides a level of authentication that
the sender is A.

• As specified, the protocol does not protect
against replays.

• Some measure of defense could be provided
by including a timestamp with the message.

• However, because of the potential delays in
the e-mail process, such timestamps may have
limited usefulness.

Kerberos

• Kerberos is an authentication service developed as
part of Project Athena at MIT.

• The problem that Kerberos addresses is this:

• Assume an open distributed environment in which
users at workstations wish to access services on
servers distributed throughout the network.

• We would like for servers to be able to restrict access
to authorized users and to be able to authenticate
requests for service.

• In this environment, a workstation cannot be trusted
to identify its users correctly to network services.

• In particular, the following three threats exist:

– 1. A user may gain access to a particular
workstation and pretend to be another user
operating from that workstation.

– 2. A user may alter the network address of a
workstation so that the requests sent from the
altered workstation appear to come from the
impersonated workstation.

– 3. A user may eavesdrop on exchanges and use a
replay attack to gain entrance to a server or to
disrupt operations.

• Kerberos provides a centralized authentication
server whose function is to authenticate users
to servers and servers to users.

• Kerberos relies exclusively on symmetric
encryption, making no use of public-key
encryption.

• Two versions of Kerberos are in common use.

– Version 4

– Version 5

Motivation

• If a set of users is provided with dedicated personal
computers that have no network connections, then a
user’s resources and files can be protected by
physically securing each personal computer.

• When these users instead are served by a centralized
time-sharing system, the time-sharing operating
system must provide the security.

• The operating system can enforce access-control
policies based on user identity and use the logon
procedure to identify users.

• More common is a distributed architecture
consisting of dedicated user workstations (clients)
and distributed or centralized servers.

• In this environment, three approaches to security

can be envisioned.
– 1. Rely on each individual client workstation to assure the

identity of its user or users and rely on each server to
enforce a security policy based on user identification (ID).

– 2. Require that client systems authenticate themselves to
servers, but trust the client system concerning the identity
of its user.

– 3. Require the user to prove his or her identity for each
service invoked. Also require that servers prove their
identity to clients.

Kerberos Requirements
• Secure: A network eavesdropper should not be able to obtain

the necessary information to impersonate a user. More
generally, Kerberos should be strong enough that a potential
opponent does not find it to be the weak link.

• Reliable: For all services that rely on Kerberos for access
control, lack of availability of the Kerberos service means lack
of availability of the supported services.

• Transparent: Ideally, the user should not be aware that
authentication is taking place beyond the requirement to
enter a password.

• Scalable: The system should be capable of supporting large
numbers of clients and servers. This suggests a modular,
distributed architecture.

Kerberos Version 4

• Version 4 of Kerberos makes use of DES, in a
rather elaborate protocol, to provide the
authentication service.

– A Simple Authentication Dialogue

– A More Secure Authentication Dialogue

– The Version 4 Authentication Dialogue

A Simple Authentication Dialogue

• In an unprotected network environment, any client
can apply to any server for service.

• The obvious security risk is that of impersonation.

• An opponent can pretend to be another client and
obtain unauthorized privileges on server machines.

• To counter this threat, servers must be able to
confirm the identities of clients who request service.

• Each server can be required to undertake this task
for each client/server interaction, but in an open
environment, this places a substantial burden on
each server.

• An alternative is to use an authentication
server (AS) that knows the passwords of all
users and stores these in a centralized
database.

• In addition, the AS shares a unique secret key
with each server.

• These keys have been distributed physically or
in some other secure manner.

• Consider the following hypothetical dialogue:

• In this scenario, the user logs on to a workstation and
requests access to server V.

• The client module C in the user’s workstation
requests the user’s password and then sends a
message to the AS that includes the user’s ID, the
server’s ID, and the user’s password.

• The AS checks its database to see if the user has
supplied the proper password for this user ID and
whether this user is permitted access to server V.

• If both tests are passed, the AS accepts the user as
authentic and must now convince the server that this
user is authentic.

• To do so, the AS creates a ticket that contains the
user’s ID and network address and the server’s ID.

• This ticket is then sent back to C.

• Because the ticket is encrypted, it cannot be
altered by C or by an opponent.

• With this ticket, C can now apply to V for
service. C sends a message to V containing C’s
ID and the ticket.

• V decrypts the ticket and verifies that the user
ID in the ticket is the same as the unencrypted
user ID in the message.

• If these two match, the server considers the
user authenticated and grants the requested
service.

Problems

• Two problems arises :

– We would like to minimize the number of times
that a user has to enter a password.

– The scenario involved a plaintext transmission of
the password [message (1)]. An eavesdropper
could capture the password and use any service
accessible to the victim.

A More Secure Authentication Dialogue

• To solve these additional problems, we
introduce a scheme for avoiding plaintext
passwords and a new server, known as the
ticket-granting server (TGS).

• The new (but still hypothetical) scenario is as
follows.

• 1. The client requests a ticket-granting ticket on
behalf of the user by sending its user’s ID to the AS,
together with the TGS ID, indicating a request to use
the TGS service.

• 2. The AS responds with a ticket that is encrypted
with a key that is derived from the user’s password
(Kc), which is already stored at the AS. When this
response arrives at the client, the client prompts the
user for his or her password, generates the key, and
attempts to decrypt the incoming message. If the
correct password is supplied, the ticket is
successfully recovered.

• 3. The client requests a service-granting ticket on
behalf of the user. For this purpose, the client
transmits a message to the TGS containing the user’s
ID, the ID of the desired service, and the ticket-
granting ticket.

• 4. The TGS decrypts the incoming ticket using a key
shared only by the AS and the TGS (Ktgs) and verifies
the success of the decryption by the presence of its
ID. It checks to make sure that the lifetime has not
expired. Then it compares the user ID and network
address with the incoming information to
authenticate the user. If the user is permitted access
to the server V, the TGS issues a ticket to grant access
to the requested service.

• 5. The client requests access to a service on behalf of
the user. For this purpose, the client transmits a
message to the server containing the user’s ID and
the service granting ticket. The server authenticates
by using the contents of the ticket.

Problems

• Two problems arises :

– The heart of the first problem is the lifetime associated
with the ticket-granting ticket. If this lifetime is very short
(e.g., minutes), then the user will be repeatedly asked for a
password. If the lifetime is long (e.g., hours), then an
opponent has a greater opportunity for replay.

– there may be a requirement for servers to Authenticate
themselves to users. Without such authentication, an
opponent could sabotage the configuration so that
messages to a server were directed to another location.
The false server would then be in a position to act as a real
server and capture any information from the user and
deny the true service to the user.

The Version 4 Authentication Dialogue

Kerberos Exchange

Kerberos Realms and Multiple Kerberi

• A full-service Kerberos environment consisting of a
Kerberos server, a number of clients, and a number
of application servers requires the following:

– 1. The Kerberos server must have the user ID and hashed
passwords of all participating users in its database. All
users are registered with the Kerberos server.

– 2. The Kerberos server must share a secret key with each
server. All servers are registered with the Kerberos server.

• Such an environment is referred to as a Kerberos
realm.

• A user wishing service on a server in another realm needs a
ticket for that server. The user’s client follows the usual
procedures to gain access to the local TGS and then requests a
ticket-granting ticket for a remote TGS (TGS in another realm).
The client can then apply to the remote TGS for a service-
granting ticket for the desired server in the realm of the
remote TGS.

Differences between Versions 4 and 5

• Version 5 is intended to address the
limitations of version 4 in two areas:

– environmental shortcomings

– technical deficiencies.

Environmental Shortcomings

1. Encryption system dependence

2. Internet protocol dependence

3. Message byte ordering

4. Ticket lifetime

5. Authentication forwarding

6. Interrealm authentication

Technical Deficiencies

1. Double encryption

2. PCBC encryption

3. Session keys

4. Password attacks

The Version 5 Authentication Dialogue

