
Key Management and
Distribution

Prof. A. A. Daptardar

HIT, Nidasoshi

Symmetric Key Distribution using
Symmetric Encryption

• Key Distribution Technique is a term that
refers to the means of delivering a key to two
parties who wish to exchange data without
allowing others to see the key.

• For two parties A and B, key distribution can
be achieved in a number of ways, as follows:

– 1. A can select a key and physically deliver it to B.

– 2. A third party can select the key and physically
deliver it to A and B.

– 3. If A and B have previously and recently used a
key, one party can transmit the new key to the
other, encrypted using the old key.

– 4. If A and B each has an encrypted connection to
a third party C, C can deliver a key on the
encrypted links to A and B.

• The scale of the problem depends on the
number of communicating pairs that must be
supported.

• If end-to-end encryption is done at a network
or IP level, then a key is needed for each pair
of hosts on the network that wish to
communicate.

• Thus, if there are N hosts, the number of
required keys is [N(N - 1)]/2.

• For end-to-end encryption, a key distribution center is
responsible for distributing keys to pairs of users (hosts,
processes, applications) as needed.

• Each user must share a unique key with the key distribution
center for purposes of key distribution.

• The use of a key distribution center is based on the use of a
hierarchy of keys.

• At a minimum, two levels of keys are used.
– Communication between end systems is encrypted using a

temporary key, often referred to as a session key.
– Typically, the session key is used for the duration of a logical

connection, such as a frame relay connection or transport
connection, and then discarded.

– Each session key is obtained from the key distribution center
over the same networking facilities used for end-user
communication.

– Accordingly, session keys are transmitted in encrypted form,
using a master key that is shared by the key distribution center
and an end system or user.

A Key Distribution Scenario

• Let us assume that user A wishes to establish a logical connection with B
and requires a one-time session key to protect the data transmitted over
the connection.

• A has a master key, Ka, known only to itself and the KDC; similarly, B
shares the master key Kb with the KDC. The following steps occur.
– 1. A issues a request to the KDC for a session key to protect a logical

connection to B. The message includes the identity of A and B and a
unique identifier, N1, for this transaction, which we refer to as a
nonce.

– 2. The KDC responds with a message encrypted using Ka. The message
includes two items intended for A:

• The one-time session key, Ks, to be used for the session
• The original request message, including the nonce, to enable A to match this

response with the appropriate request

– In addition, the message includes two items intended for B:
• The one-time session key, Ks, to be used for the session
• An identifier of A (e.g., its network address), IDA

– 3. A stores the session key for use in the upcoming session and
forwards to B the information that originated at the KDC for B, namely,
E(Kb,[Ks || IDA]).

– 4. Using the newly minted session key for encryption, B sends a nonce,
N2, to A.

– 5. Also, using Ks, A responds with f(N2), where f is a function that
performs some transformation on N2 (e.g., adding one).

Hierarchical Key Control
• It is not necessary to limit the key distribution

function to a single KDC.

• A hierarchy of KDCs can be established.

• For example, there can be local KDCs, each
responsible for a small domain of the overall
internetwork, such as a single LAN or a single
building.

• For communication among entities within the
same local domain, the local KDC is
responsible for key distribution.

• If two entities in different domains desire a
shared key, then the corresponding local KDCs
can communicate through a global KDC.

• In this case, any one of the three KDCs
involved can actually select the key.

• A hierarchical scheme minimizes the effort
involved in master key distribution, because
most master keys are those shared by a local
KDC with its local entities.

• Furthermore, such a scheme limits the
damage of a faulty or subverted KDC to its
local area only.

Session Key Lifetime

• The more frequently session keys are
exchanged, the more secure they are.

• On the other hand, the distribution of session
keys delays the start of any exchange and
places a burden on network capacity.

• A security manager must try to balance these
competing considerations in determining the
lifetime of a particular session key.

• For connection-oriented protocols, one obvious choice is to
use the same session key for the length of time that the
connection is open, using a new session key for each new
session.

• If a logical connection has a very long lifetime, then it
would be prudent to change the session key periodically,
perhaps every time the PDU (protocol data unit) sequence
number cycles.

• For a connectionless protocol, such as a transaction-
oriented protocol, there is no explicit connection initiation
or termination.

• Thus, it is not obvious how often one needs to change the
session key.

• The most secure approach is to use a new session key for
each exchange.

• A better strategy is to use a given session key for a certain
fixed period only or for a certain number of transactions.

A Transparent Key Control Scheme
• The scheme (Figure 14.4) is useful for providing

end-to- end encryption at a network or transport
level in a way that is transparent to the end users.

• The approach assumes that communication
makes use of a connection-oriented end-to-end
protocol, such as TCP.

• The noteworthy element of this approach is a
session security module (SSM), which may consist
of functionality at one protocol layer, that
performs end-to-end encryption and obtains
session keys on behalf of its host or terminal.

• Step 1 – When one host wishes to set up a
connection to another host, it transmits a
connection-request packet.

• Step 2 - The SSM saves that packet and applies to
the KDC for permission to establish the
connection.

• Step 3 - If the KDC approves the connection
request, it generates the session key and delivers
it to the two appropriate SSMs, using a unique
permanent key for each SSM.

• Step 4 – The requesting SSM can now release the
connection request packet, and a connection is
set up between the two end systems.

Decentralized Key Control
• The use of a key distribution center imposes the

requirement that the KDC be trusted and be protected
from subversion.

• This requirement can be avoided if key distribution is
fully decentralized.

• A decentralized approach requires that each end
system be able to communicate in a secure manner
with all potential partner end systems for purposes of
session key distribution.

• Thus, there may need to be as many as [n(n - 1)]/2
master keys for a configuration with n end systems.

• A session key may be established with the
following sequence of steps (Figure 14.5).

– 1. A issues a request to B for a session key and
includes a nonce, N1.

– 2. B responds with a message that is encrypted
using the shared master key. The response
includes the session key selected by B, an
identifier of B, the value f(N1), and another nonce,
N2.

– 3. Using the new session key, A returns f(N2) to B.

Controlling Key Usage
• The concept of a key hierarchy and the use of

automated key distribution techniques greatly reduce
the number of keys that must be manually managed
and distributed.

• It also may be desirable to impose some control on the
way in which automatically distributed keys are used.

• For example, in addition to separating master keys
from session keys, we may wish to define different
types of session keys on the basis of use, such as
– Data-encrypting key, for general communication across a

network
– PIN-encrypting key, for personal identification numbers

(PINs) used in electronic funds transfer and point-of-sale
applications

– File-encrypting key, for encrypting files stored in publicly
accessible locations

• The Proposed technique is for use with DES and makes
use of the extra 8 bits in each 64-bit DES key. That is,
the eight non-key bits ordinarily reserved for parity
checking form the key tag.

• The bits have the following interpretation:
– One bit indicates whether the key is a session key or a

master key.
– One bit indicates whether the key can be used for

encryption.
– One bit indicates whether the key can be used for

decryption.
– The remaining bits are spares for future use.

• The drawbacks of this scheme are
– 1. The tag length is limited to 8 bits, limiting its flexibility

and functionality.
– 2. Because the tag is not transmitted in clear form, it can

be used only at the point of decryption, limiting the ways
in which key use can be controlled.

• A more flexible scheme, referred to as the
control vector.

• In this scheme, each session key has an
associated control vector consisting of a
number of fields that specify the uses and
restrictions for that session key.

• The length of the control vector may vary.

• The control vector is cryptographically coupled
with the key at the time of key generation at
the KDC.

• As a first step, the control vector is passed
through a hash function that produces a value
whose length is equal to the encryption key
length.

• The hash value is then XORed with the master key
to produce an output that is used as the key input
for encrypting the session key. Thus,
– Hash value = H = h(CV)
– Key input = Km H
– Ciphertext = E([Km H], Ks)

• where Km is the master key and Ks is the session
key.

• The session key is recovered in plaintext by the
reverse operation:

• D([Km H], E([Km H], Ks))

• Use of the control vector has two advantages
over use of an 8-bit tag.

– First, there is no restriction on length of the
control vector, which enables arbitrarily complex
controls to be imposed on key use.

– Second, the control vector is available in clear
form at all stages of operation. Thus, control of
key use can be exercised in multiple locations.

Symmetric Key Distribution Using
Asymmetric Encryption

• Because of the inefficiency of public-key
cryptosystems, they are almost never used for
the direct encryption of sizable block of data,
but are limited to relatively small blocks.

• One of the most important uses of a public-
key cryptosystem is to encrypt secret keys for
distribution.

Simple Secret Key Distribution

• If A wishes to communicate with B, the following
procedure is employed:

• 1. A generates a public/private key pair {PUa, PRa}
and transmits a message to B consisting of PUa
and an identifier of A, IDA.

• 2. B generates a secret key, Ks, and transmits it to
A, which is encrypted with A’s public key.

• 3. A computes D(PRa, E(PUa, Ks)) to recover the
secret key. Because only A can decrypt the
message, only A and B will know the identity of
Ks.

• 4. A discards PUa and PRa and B discards PUa.

• In the present case, if an adversary, D, has control of
the intervening communication channel, then D can
compromise the communication in the following
fashion without being detected (Figure 14.8).

• 1. A generates a public/private key pair {PUa, PRa} and
transmits a message intended for B consisting of PUa

and an identifier of A, IDA.

• 2. D intercepts the message, creates its own
public/private key pair {PUd, PRd} and transmits PUs||
IDA to B.

• 3. B generates a secret key, Ks, and transmits E(PUs, Ks).

• 4. D intercepts the message and learns Ks by computing
D(PRd, E(PUd, Ks)).

• 5. D transmits E(PUa, Ks) to A.

Secret Key Distribution with
Confidentiality and Authentication

• 1. A uses B’s public key to encrypt a message to B
containing an identifier of A(IDA) and a nonce (N1),
which is used to identify this transaction uniquely.

• 2. B sends a message to A encrypted with PUa and
containing A’s nonce (N1) as well as a new nonce
generated by B (N2). Because only B could have
decrypted message (1), the presence of N1 in message
(2) assures A that the correspondent is B.

• 3. A returns N2, encrypted using B’s public key, to
assure B that its correspondent is A.

• 4. A selects a secret key Ks and sends M = E(PUb, E(PRa,
Ks)) to B. Encryption of this message with B’s public key
ensures that only B can read it; encryption with A’s
private key ensures that only A could have sent it.

• 5. B computes D(PUa, D(PRb, M)) to recover the secret
key.

A Hybrid Scheme

• This scheme retains the use of a key distribution center
(KDC) that shares a secret master key with each user and
distributes secret session keys encrypted with the master
key.

• A public-key scheme is used to distribute the master keys.
• The following rationale is provided for using this three-level

approach:
– Performance: There are many applications, especially

transaction-oriented applications, in which the session keys
change frequently. With a three-level hierarchy, public-key
encryption is used only occasionally to update the master key
between a user and the KDC.

– Backward compatibility: The hybrid scheme is easily overlaid on
an existing KDC scheme with minimal disruption or software
changes.

Distribution Of Public Keys

• Several techniques have been proposed for
the distribution of public keys.

• Virtually all these proposals can be grouped
into the following general schemes:

– Public announcement

– Publicly available directory

– Public-key authority

– Public-key certificates

Public Announcement of Public Keys

• On the face of it, the point of public-key
encryption is that the public key is public.

• Thus, if there is some broadly accepted public-key
algorithm, such as RSA, any participant can send
his or her public key to any other participant or
broadcast the key to the community at large
(Figure 14.10).

• For example, because of the growing popularity
of PGP (pretty good privacy) which makes use of
RSA, many PGP users have adopted the practice
of appending their public key to messages that
they send to public forums, such as USENET
newsgroups and Internet mailing lists.

• Anyone can forge such a public
announcement. That is, some user could
pretend to be user A and send a public key to
another participant or broadcast such a public
key. Until such time as user A discovers the
forgery and alerts other participants, the
forger is able to read all encrypted messages
intended for A and can use the forged keys for
authentication

Publicly Available Directory

• A greater degree of security can be achieved by maintaining
a publicly available dynamic directory of public keys.
Maintenance and distribution of the public Directory would
have to be the responsibility of some trusted entity or
organization (Figure 14.11). Such a scheme would include
the following elements:
– 1. The authority maintains a directory with a {name, public key}

entry for each participant.
– 2. Each participant registers a public key with the directory

authority. Registration would have to be in person or by some
form of secure authenticated communication.

– 3. A participant may replace the existing key with a new one at
any time, either because of the desire to replace a public key
that has already been used for a large amount of data, or
because the corresponding private key has been compromised
in some way.

– 4. Participants could also access the directory electronically. For
this purpose, secure, authenticated communication from the
authority to the participant is mandatory.

• If an adversary succeeds in obtaining or
computing the private key of the directory
authority, the adversary could authoritatively
pass out counterfeit public keys and
subsequently impersonate any participant and
eavesdrop on messages sent to any
participant.

• Another way to achieve the same end is for
the adversary to tamper with the records kept
by the authority.

Public-Key Authority

• Stronger security for public-key distribution
can be achieved by providing tighter control
over the distribution of public keys from the
directory.

• A typical scenario is illustrated in Figure 14.12

• The scenario assumes that a central authority
maintains a dynamic directory of public keys of all
participants. In addition, each participant reliably
knows a public key for the authority, with only
the authority knowing the corresponding private
key. The following steps occur.

• 1. A sends a timestamped message to the public-
key authority containing a request for the current
public key of B.

• 2. The authority responds with a message that is
encrypted using the authority’s private key,
PRauth. Thus, A is able to decrypt the message
using the authority’s public key. Therefore, A is
assured that the message originated with the
authority.

• The message includes the following:
• B’s public key, PUb, which A can use to encrypt
messages destined for B

• The original request used to enable A to match this
response with the corresponding earlier request and to
verify that the original request was not altered before
reception by the authority

• The original timestamp given so A can determine that
this is not an old message from the authority
containing a key other than B’s current public key

• 3. A stores B’s public key and also uses it to encrypt a
message to B containing an identifier of A (IDA) and a
nonce (N1), which is used to identify this transaction
uniquely.

• 4, 5. B retrieves A’s public key from the authority in the
same manner as A retrieved B’s public key.

• At this point, public keys have been securely
delivered to A and B, and they may begin their
protected exchange. However, two additional
steps are desirable:

• 6. B sends a message to A encrypted with PUa
and containing A’s nonce (N1) as well as a new
nonce generated by B (N2). Because only B
could have Decrypted message (3), the
presence of N1 in message (6) assures A that
the correspondent is B.

• 7. A returns N2, which is encrypted using B’s
public key, to assure B that its correspondent
is A.

Drawbacks

• The public-key authority could be somewhat
of a bottleneck in the system, for a user must
appeal to the authority for a public key for
every other user that it wishes to contact.

• As before, the directory of names and public
keys maintained by the authority is vulnerable
to tampering.

Public-Key Certificates
• An alternative approach, first suggested by Kohnfelder

is to use certificates that can be used by participants to
exchange keys without contacting a public-key
authority, in a way that is as reliable as if the keys were
obtained directly from a public-key authority.

• In essence, a certificate consists of a public key, an
identifier of the key owner, and the whole block signed
by a trusted third party.

• Typically, the third party is a certificate authority, such
as a government agency or a financial institution, that
is trusted by the user community.

• A user can present his or her public key to the
authority in a secure manner and obtain a certificate.

• We can place the following requirements on this
scheme:

• 1. Any participant can read a certificate to
determine the name and public key of the
certificate’s owner.

• 2. Any participant can verify that the certificate
originated from the certificate authority and is
not counterfeit.

• 3. Only the certificate authority can create and
update certificates.

• 4. Any participant can verify the currency of the
certificate.

• Each participant applies to the certificate
authority, supplying a public key and requesting a
certificate.

• Application must be in person or by some form of
secure authenticated communication.

• For participant A, the authority provides a
certificate of the form

CA = E(PRauth, [T||IDA ||PUa])

• where PRauth is the private key used by the
authority and T is a timestamp.

• A may then pass this certificate on to any other
participant, who reads and verifies the certificate
as follows:

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA ||PUa])) = (T||IDA }PUa)

• The recipient uses the authority’s public key,
PUauth, to decrypt the certificate.

• Because the certificate is readable only using
the authority’s public key, this verifies that the
certificate came from the certificate authority.

• The elements IDA and PUa provide the
recipient with the name and public key of the
certificate’s holder.

• The timestamp T validates the currency of the
certificate.

Elliptic Curve Arithmetic

Elliptic Curve Arithmetic

• Most of the products and standards that use public-
key cryptography for encryption and digital
signatures use RSA.

• The key length for secure RSA use has increased over
recent years, and this has put a heavier processing
load on applications using RSA.

• This burden has ramifications, especially for
electronic commerce sites that conduct large
numbers of secure transactions.

• A competing system challenges RSA: elliptic curve
cryptography (ECC).

• ECC is showing up in standardization efforts,
including the IEEE P1363 Standard for Public-
Key Cryptography.

• The principal attraction of ECC, compared to
RSA, is that it appears to offer equal security
for a far smaller key size, thereby reducing
processing overhead.

Abelian Groups

• An abelian group G, sometimes denoted by {G, * }, is a
set of elements with a binary operation, denoted by * ,
that associates to each ordered pair (a, b) of elements
in G an element (a * b) in G, such that the following
axioms are obeyed:3

– (A1) Closure: If a and b belong to G, then a * b is also in G.

– (A2) Associative: a * (b * c) = (a * b) * c for all a, b, c in G.

– (A3) Identity element: There is an element e in G such that a
* e = e * a = a for all a in G.

– (A4) Inverse element: For each a in G there is an element a′ in
G such that a * a′ = a′ * a = e.

– (A5) Commutative: a * b = b * a for all a, b in G.

• For elliptic curve cryptography, an operation
over elliptic curves, called addition, is used.
Multiplication is defined by repeated addition.
For example,

• a * k = (a + a ++ a)

k times

• where the addition is performed over an
elliptic curve.

• Cryptanalysis involves determining k given a
and (a * k).

• An elliptic curve is defined by an equation in
two variables with coefficients.

