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Private-Key Cryptography

• traditional private / secret / single key
cryptography uses one key

• shared by both sender and receiver

• if this key is disclosed communications
are compromised

• also is symmetric, parties are equal

• hence does not protect sender from
receiver forging a message & claiming is
sent by sender



Public-Key Cryptography

• probably most significant advance in the
3000 year history of cryptography

• uses two keys – a public & a private key

• asymmetric since parties are not equal

• uses clever application of number
theoretic concepts to function

• complements rather than replaces
private key cryptography



Why Public-Key Cryptography?

• developed to address two key issues:
– key distribution – how to have secure

communications in general without having
to trust a KDC with your key

– digital signatures – how to verify a message
comes intact from the claimed sender

• public invention due to Whitfield Diffie &
Martin Hellman at Stanford Uni in 1976
– known earlier in classified community



Public-Key Cryptography

• public-key/two-key/asymmetric cryptography
involves the use of two keys:
– a public-key, which may be known by anybody, and

can be used to encrypt messages, and verify
signatures

– a private-key, known only to the recipient, used to
decrypt messages, and sign (create) signatures

• is asymmetric because
– those who encrypt messages or verify signatures

cannot decrypt messages or create signatures



• A public-key encryption scheme has six
ingredients :
– Plaintext: This is the readable message or data that is fed

into the algorithm as input.

– Encryption algorithm: The encryption algorithm

performs various transformations on the plaintext.

– Public and private keys: This is a pair of keys that have

been selected so that if one is used for encryption, the

other is used for decryption. The exact transformations

performed by the algorithm depend on the public or

private key that is provided as input.

– Ciphertext: This is the scrambled message produced as

output. It depends on the plaintext and the key. For a

given message, two different keys will produce two

different ciphertexts.

– Decryption algorithm: This algorithm accepts the

ciphertext and the matching key and produces the

original plaintext.



Public-Key Cryptography



• The essential steps are the following:
– Each user generates a pair of keys to be used for

the encryption and decryption of messages.

– Each user places one of the two keys in a public
register or other accessible file. This is the
public key. The companion key is kept private.
Each user maintains a collection of public keys
obtained from others.

– If Bob wishes to send a confidential message to
Alice, Bob encrypts the message using Alice’s
public key.

– When Alice receives the message, she decrypts
it using her private key. No other recipient can
decrypt the message because only Alice knows
Alice’s private key.





Public-Key Characteristics

• Public-Key algorithms rely on two keys where:

– it is computationally infeasible to find decryption 
key knowing only algorithm & encryption key

– it is computationally easy to en/decrypt messages 
when the relevant (en/decrypt) key is known

– either of the two related keys can be used for 
encryption, with the other used for decryption (for 
some algorithms)



Public-Key Cryptosystems



Public-Key Applications

• can classify uses into 3 categories:
• encryption/decryption (provide secrecy) : The sender

encrypts a message with the recipient’s public key.

• digital signatures (provide authentication) : The sender
“signs” a message with its private key. Signing is
achieved by a cryptographic algorithm applied to the
message or to a small block of data that is a function of
the Message.

• key exchange (of session keys) : Two sides cooperate to
exchange a session key. Several different approaches
are possible, involving the private key(s) of one or both
parties.

• some algorithms are suitable for all uses, others are
specific to one





Requirements for Public-Key 
Cryptography

• It is computationally easy for a party B to
generate a pair (public key PUb, private
key PRb).

• It is computationally easy for a sender A,
knowing the public key and the message
to be encrypted, M, to generate the
corresponding ciphertext:

C = E(PUb, M)



• It is computationally easy for the receiver
B to decrypt the resulting ciphertext
using the private key to recover the
original message:

M = D(PRb,C) = D[PRb, E(PUb,M)]

• It is computationally infeasible for an
adversary, knowing the public key, PUb,to
determine the private key, PRb.

• It is computationally infeasible for an
adversary, knowing the public key, PUb,
and a ciphertext, C, to recover the
original message, M.



• The two keys can be applied in either
order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]



One-way Function

• It is one that maps a domain into a range
such that every function value has a
unique inverse, with the condition that
the calculation of the function is easy,
whereas the calculation of the inverse is
infeasible:

Y = f(X) easy

X = f -1(Y) infeasible



• Easy is defined to mean a problem that can be
solved in polynomial time as a function of input
length.

• Thus, if the length of the input is n bits, then
the time to compute the function is
proportional to na, where a is a fixed constant.

• Such algorithms are said to belong to the class
P.

• In general, we can say a problem is infeasible if
the effort to solve it grows faster than
polynomial time as a function of input size.



Trap-door One-way Function

• A trap-door one-way function, which is
easy to calculate in one direction and
infeasible to calculate in the other
direction unless certain additional
information is known.

• With the additional information the
inverse can be calculated in polynomial
time.



• We can summarize as follows: A trapdoor
one-way function is a family of invertible
functions fk, such that

• Y = fk (X) easy, if k and X are known

• X = fk
-1(Y) easy, if k and Y are known

• X = fk
-1 (Y) infeasible, if Y is known but k

is not known



Security of Public Key Schemes

• like private key schemes brute force exhaustive
search attack is always theoretically possible
but keys used are too large (>512bits).

• security relies on a large enough difference in
difficulty between easy (en/decrypt) and hard
(cryptanalyse) problems.

• more generally the hard problem is known, but
is made hard enough to be impractical to
break.

• requires the use of very large numbers

• hence is slow compared to private key schemes



RSA

• by Rivest, Shamir & Adleman of MIT in 1977

• best known & widely used public-key scheme

• based on exponentiation in a finite (Galois) field
over integers modulo a prime

– nb. exponentiation takes O((log n)3) operations (easy)

• The RSA scheme is a cipher in which the
plaintext and ciphertext are integers between 0
to n-1 for some n.

• A typical size for n is 1024 bits or 309 decimal
digits.



RSA Key Setup

• each user generates a public/private key pair 
by: 

• selecting two large primes at random - p, q

• computing their system modulus n=p.q
– note ø(n)=(p-1)(q-1)

• selecting at random the encryption key e
• where 1<e<ø(n), gcd(e,ø(n))=1 

• solve following equation to find decryption key 
d

– e.d=1 mod ø(n) and 0≤d≤n

• publish their public encryption key: PU={e,n} 

• keep secret private decryption key: PR={d,n} 





RSA Use

• to encrypt a message M the sender:

– obtains public key of recipient PU={e,n}

– computes: C = Me mod n, where 0≤M<n

• to decrypt the ciphertext C the owner:

– uses their private key PR={d,n}

– computes: M = Cd mod n

• note that the message M must be smaller 
than the modulus n (block if needed)



Why RSA Works

• because of Euler's Theorem:
– aø(n)mod n = 1 where gcd(a,n)=1

• in RSA have:
– n=p.q

– ø(n)=(p-1)(q-1)

– carefully chose e & d to be inverses mod ø(n)
– hence e.d=1+k.ø(n) for some k

• hence :
Cd = Me.d = M1+k.ø(n) = M1.(Mø(n))k

= M1.(1)k = M1 = M mod n



RSA Example - Key Setup

1. Select primes: p=17 & q=11

2. Compute n = pq =17 x 11=187

3. Compute ø(n)=(p–1)(q-1)=16 x 

10=160

4. Select e: gcd(e,160)=1; choose e=7

5. Determine d: de=1 mod 160 and d < 
160 Value is d=23 since 23x7=161= 
10x160+1

6. Publish public key PU={7,187}

7. Keep secret private key PR={23,187}



RSA Example - En/Decryption

• sample RSA encryption/decryption is: 

• given message M = 88 (nb. 88<187)

• encryption:

C = 887 mod 187 = 11

• decryption:

M = 1123 mod 187 = 88





Computational Aspects

• Two issues to consider:

– Encryption/Decryption

– Key Generation



Exponentiation in Modular 
Arithmetic

• Both encryption and decryption in RSA involve
raising an integer to an integer power, mod n.

• If the exponentiation is done over the integers
and then reduced modulo n, the intermediate
values would be gargantuan.

• Another consideration is the efficiency of
exponentiation, because with RSA, we are
dealing with potentially large exponents.

• To see how efficiency might be increased,
consider that we wish to compute x16.



• We can achieve the same final result with
only four multiplications if we repeatedly
take the square of each partial result,
successively forming (x2, x4, x8, x16).

• More generally, suppose we wish to find 
the value ab mod n with a, b, and m 
positive integers. 

• If we express b as a binary number bkbk-1 . 
. . b0, then we have



Exponentiation



Efficient Encryption

• encryption uses exponentiation to power 
e

• hence if e small, this will be faster
– often choose e=65537 (216-1)

– also see choices of e=3 or e=17

• but if e too small (eg e=3) can attack
– using Chinese remainder theorem & 3 

messages with different modulii

• if e fixed must ensure gcd(e,ø(n))=1
– ie reject any p or q not relatively prime to e



Efficient Decryption

• decryption uses exponentiation to power 
d
– this is likely large, insecure if not

• can use the Chinese Remainder Theorem 
(CRT) to compute mod p & q separately. 
then combine to get desired answer
– approx 4 times faster than doing directly

• only owner of private key who knows 
values of p & q can use this technique 



RSA Key Generation

• users of RSA must:
– determine two primes at random - p, q

– select either e or d and compute the other

• primes p,q must not be easily derived 
from modulus n=p.q
– means must be sufficiently large

– typically guess and use probabilistic test

• exponents e, d are inverses, so use 
Inverse algorithm to compute the other



RSA Security

• possible approaches to attacking RSA are:

– brute force key search (infeasible given size 
of numbers)

– mathematical attacks (based on difficulty of 
computing ø(n), by factoring modulus n)

– timing attacks (on running of decryption)

– chosen ciphertext attacks (given properties 
of RSA)



Factoring Problem

• mathematical approach takes 3 forms:
– factor n=p.q, hence compute ø(n) and then d

– determine ø(n) directly and compute d

– find d directly

• currently believe all equivalent to factoring
– have seen slow improvements over the years 

• as of May-05 best is 200 decimal digits (663) bit with LS 

– biggest improvement comes from improved 
algorithm
• cf QS to GHFS to LS

– currently assume 1024-2048 bit RSA is secure
• ensure p, q of similar size and matching other constraints



Timing Attacks

• developed by Paul Kocher in mid-1990’s

• exploit timing variations in operations
– eg. multiplying by small vs large number 

– or IF's varying which instructions executed

• infer operand size based on time taken 

• RSA exploits time taken in exponentiation

• countermeasures
– use constant exponentiation time

– add random delays

– blind values used in calculations



Chosen Ciphertext Attacks

• RSA is vulnerable to a Chosen Ciphertext
Attack (CCA)

• attackers chooses ciphertexts & gets decrypted
plaintext back

• choose ciphertext to exploit properties of RSA
to provide info to help cryptanalysis

• can counter with random pad of plaintext
• or use Optimal Asymmetric Encryption Padding

(OASP)



Diffie Hellman Key Exchange



Diffie-Hellman Key Exchange

• The purpose of the algorithm is to enable
two users to securely exchange a key that
can then be used for subsequent
symmetric encryption of messages.

• The algorithm itself is limited to the
exchange of secret values.

• The Diffie-Hellman algorithm depends for
its effectiveness on the difficulty of
computing discrete logarithms.



Discrete Logarithm

• A primitive root of a prime number p is
one whose powers modulo p generate all
the integers from 1 to p - 1.

• That is, if a is a primitive root of the
prime number p, then the numbers

a mod p, a2 mod p,........., ap-1 mod p

• are distinct and consist of the integers
from 1 through p-1 in some
permutation.



• For any integer b and a primitive root a of
prime number p, we can find a unique
exponent i such that

• b = ai (mod p) where 0 … i … (p - 1)

• The exponent i is referred to as the
discrete logarithm of b for the base a,
mod p.

• We express this value as dloga,p(b).



The Algorithm



• For this scheme, there are two publicly
known numbers:

• a prime number q and an integer a that is
a primitive root of q.

• Suppose the users A and B wish to create
a shared key.

• User A selects a random integer XA < q
and computes YA = aXA mod q.

• Similarly, user B independently selects a
random integer XB < q and computes

YB = aXB mod q.



• Each side keeps the X value private and
makes the Y value available publicly to the
other side.

• Thus, XA is A’s private key and YA is A’s
corresponding public key, and similarly for
B.

• User A computes the key as

K = (YB)XA mod q and

• user B computes the key as

K = (YA)XB mod q.

• These two calculations produce identical
results:





• consider an adversary who can observe
the key exchange and wishes to
determine the secret key K.

• Because XA and XB are private, an
adversary only has the following
ingredients to work with: q, a, YA, and YB.

• Thus, the adversary is forced to take a
discrete logarithm to determine the key.

• For example, to determine the private
key of user B, an adversary must
compute



XB = dloga,q(YB)

• The adversary can then calculate the key
K in the same manner as user B
calculates it.

• That is, the adversary can calculate K as

K = (YA)XB mod q

• The security of the Diffie-Hellman key
exchange lies in the fact that, while it is
relatively easy to calculate exponentials
modulo a prime, it is very difficult to
calculate discrete logarithms.



Example

• Consider the prime number q = 353 and
a primitive root of 353, in this case a = 3.

• A and B select private keys XA = 97 and
XB = 233, respectively.

• A computes YA = 397 mod 353 = 40.

• B computes YB = 3233 mod 353 = 248.



• After they exchange public keys, each can
compute the common secret key:

• A computes K = (YB)XA mod 353

= 24897 mod 353 = 160.

• B computes K = (YA )XB mod 353

= 40233 mod 353 = 160.



• Consider a Diffie-Hellman scheme with a 
common prime q = 11 and a primitive 
root a = 2.

a. Show that 2 is a primitive root of 11.

b. If user A has public key YA = 9, what is A’s 
private key XA?

c. If user B has public key YB = 3, what is the 
secret key K shared with A?



Key Exchange Protocols
• Suppose that user A wishes to set up a

connection with user B and use a secret key to
encrypt messages on that connection.

• User A can generate a one-time private key XA,
calculate YA, and send that to user B.

• User B responds by generating a private value
XB, calculating YB, and sending YB to user A.

• Both users can now calculate the key.

• The necessary public values q and a would
need to be known ahead of time.

• Alternatively, user A could pick values for q
and a and include those in the first message.



Another Example

• Suppose that a group of users (e.g., all users
on a LAN) each generate a long-lasting
private value Xi (for user i) and calculate a
public value Yi.

• These public values, together with global
public values for q and a, are stored in some
central directory.

• At any time, user j can access user i’s public
value, calculate a secret key, and use that to
send an encrypted message to user A.



• If the central directory is trusted, then
this form of communication provides
both confidentiality and a degree of
authentication.

• Because only i and j can determine the
key, no other user can read the message
(confidentiality).

• Recipient i knows that only user j could
have created a message using this key
(authentication).

• However, the technique does not protect
against replay attacks.



Man-in-the-Middle Attack



• The attack proceeds as follows :
1. Darth prepares for the attack by generating two

random private keys XD1 and XD2 and then computing
the corresponding public keys YD1 and YD2.

2. Alice transmits YA to Bob.

3. Darth intercepts YA and transmits YD1 to Bob. Darth
also calculates

K2 = (YA)XD2 mod q.

4. Bob receives YD1 and calculates

K1 = (YD1)XB mod q.

5. Bob transmits YB to Alice.

6. Darth intercepts YB and transmits YD2 to Alice. Darth
calculates

K1 = (YB)XD1 mod q.

7. Alice receives YD2 and calculates K2 = (YD2)XA mod q.



• At this point, Bob and Alice think that they
share a secret key, but instead Bob and Darth
share secret key K1 and Alice and Darth share
secret key K2.

• All future communication between Bob and
Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).

2.Darth intercepts the encrypted message and
decrypts it to recover M.

3.Darth sends Bob E(K1, M) or E(K1, M′), where M′ is
any message. In the first case, Darth simply wants to
eavesdrop on the communication without altering
it. In the second case, Darth wants to modify the
message going to Bob.



Elgamal Cryptographic System 

• In 1984, T. Elgamal announced a public-
key scheme based on discrete logarithms,
closely related to the Diffie-Hellman
technique [ELGA84, ELGA85].

• The Elgamal2 cryptosystem is used in
some form in a number of standards
including the digital signature standard
(DSS), and the S/MIME e-mail standard.



• The global elements of Elgamal are a
prime number q and α, which is a
primitive root of q.

• User A generates a private/public key
pair as follows:

– 1. Generate a random integer XA, such that 1
< XA < q - 1.

– 2. Compute YA = aXA mod q.

– 3. A’s private key is XA and A’s public key is
{q, α, YA}.



• Any user B that has access to A’s public
key can encrypt a message as follows:

– 1. Represent the message as an integer M in
the range 0 ≤ M ≤ q - 1. Longer messages are
sent as a sequence of blocks, with each
block being an integer less than q.

– 2. Choose a random integer k such that 1 ≤ k
≤ q - 1.

– 3. Compute a one-time key K = (YA)k mod q.

– 4. Encrypt M as the pair of integers (C1, C2)
where

– C1 = α k mod q; C2 = KM mod q



• User A recovers the plaintext as follows:

– Recover the key by computing

K = (C1)XA mod q.

– Compute M = (C2K-1) mod q.





• We can restate the Elgamal process as
follows, using Figure 10.3.
– 1. Bob generates a random integer k.

– 2. Bob generates a one-time key K using Alice’s
public-key components YA, q, and k.

– 3. Bob encrypts k using the public-key
component α, yielding C1. C1 provides sufficient
information for Alice to recover K.

– 4. Bob encrypts the plaintext message M using
K.

– 5. Alice recovers K from C1 using her private key.

– 6. Alice uses K-1 to recover the plaintext
message from C2.


