
S. J. P. N. TRUST’S

HIRASUGAR INSTITUTE OF TECHNOLOGY, NIDASOSHI
Accredited at 'A' Grade by NAAC

Programmes Accredited by NBA: CSE, ECE, EEE & ME.

Department of Computer Science & Engineering

Course: Artificial Intelligence and Machine Learning (18CS71)

Module 5
Classification using instance-based learning,

Reinforcement Learning

Dr. Mahesh G. Huddar
Asst. Prof. , Dept. of Computer Science & Engg.,

Hirasugar Institute of Technology, Nidasoshi

CSE, HIT, Nidasoshi

Instance-based Learning

• Key idea: In contrast to learning methods that construct a general, explicit

description of the target function when training examples are provided, instance-

based learning constructs the target function only when a new instance must be

classified.

• Each time a new query instance is encountered, its relationship to the previously

stored examples is examined in order to assign a target function value for the new

instance.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Instance-based Learning

• Instance based learning includes nearest neighbor and locally weighted regression

methods that assume instances can be represented as points in a Euclidean space.

• It also includes case-based reasoning methods that use more complex, symbolic

representations for instances.

• Instance-based methods are sometimes referred to as "lazy" learning methods

because they delay processing until a new instance must be classified.

• A key advantage of this kind of delayed, or lazy, learning is that instead of estimating

the target function once for the entire instance space, these methods can estimate it

locally and differently for each new instance to be classified

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Instance-based Learning

• Instance-based learning methods such as nearest neighbor and locally weighted

regression are conceptually straightforward approaches to approximating real-

valued or discrete-valued target functions.

• Learning in these algorithms consists of simply storing the presented training

data. When a new query instance is encountered, a set of similar related

instances is retrieved from memory and used to classify the new query instance

• Instance-based approaches can construct a different approximation to the target

function for each distinct query instance that must be classified

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Advantages of Instance-based learning

1. Training is very fast

2. Learn complex target function

3. Don’t lose information

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Disadvantages of Instance-based learning

• The cost of classifying new instances can be high.

• This is due to the fact that nearly all computation takes place at classification time

rather than when the training examples are first encountered.

• In many instance-based approaches, especially nearest-neighbor approaches, is

that they typically consider all attributes of the instances when attempting to

retrieve similar training examples from memory. If the target concept depends on

only a few of the many available attributes, then the instances that are truly most

"similar" may well be a large distance apart.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING
• The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm.

• This algorithm assumes all instances correspond to points in the n-dimensional space Rn.

• The nearest neighbors of an instance are defined in terms of the standard Euclidean

distance.

• The arbitrary instance x be described by the feature vector

where ar(x) denotes the value of the rth attribute of instance x.

• Then the distance between two instances xi and xj is defined to be d (xi , xj), where

• In nearest-neighbor learning the target function may be either discrete-valued or real-

valued.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING
• Let us first consider learning discrete-valued target functions of the form

• Where, V is the finite set {v1, . . . vs }

• The k- Nearest Neighbor algorithm for approximation a discrete-valued target function is
given below:

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target

1 150 50 Medium

2 155 55 Medium

3 160 60 Large

4 161 59 Large

5 158 65 Large

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target Distance

1 150 50 Medium 8.06

2 155 55 Medium 2.24

3 160 60 Large 6.71

4 161 59 Large 6.40

5 158 65 Large 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target Distance
Nearest
Points

1 150 50 Medium 8.06

2 155 55 Medium 2.24 1

3 160 60 Large 6.71 3

4 161 59 Large 6.40 2

5 158 65 Large 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

• The value 𝑓 (𝑥𝑞) returned by this algorithm as its estimate of 𝑓(𝑥𝑞) is just

the most common value of 𝑓 among the 𝑘 training examples nearest to 𝑥𝑞.

• If k = 1, then the 1- Nearest Neighbor algorithm assigns to 𝑓 (𝑥𝑞) the value

𝑓(𝑥𝑖).

• Where xi is the training instance nearest to xq.

• For larger values of k, the algorithm assigns the most common value among the

k nearest training examples.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING
• Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the case

where the instances are points in a two-dimensional space and where the target function

is Boolean valued.

• The positive and negative training examples are shown by “+” and “-” respectively.

• A query point 𝑥𝑞 is shown as well.

• The 1-Nearest Neighbor algorithm classifies 𝑥𝑞 as a positive example in this figure,

whereas the 5-Nearest Neighbor algorithm classifies it as a negative example.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target

1 150 50 Medium

2 155 55 Medium

3 160 60 Large

4 161 59 Large

5 158 65 Large

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance

1 150 50 Medium 8.06

2 155 55 Medium 2.24

3 160 60 Large 6.71

4 161 59 Large 6.40

5 158 65 Large 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance
Nearest
Points

1 150 50 Medium 8.06

2 155 55 Medium 2.24 1

3 160 60 Large 6.71 3

4 161 59 Large 6.40 2

5 158 65 Large 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance 1/distance2 Nearest
Points

1 150 50 Medium 8.06

2 155 55 Medium 2.24 0.45 1

3 160 60 Large 6.71 0.15 3

4 161 59 Large 6.40 0.16 2

5 158 65 Large 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING
• The K- Nearest Neighbor algorithm for approximation a real-valued target function is given

below

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target

1 150 50 1.5

2 155 55 1.2

3 160 60 1.8

4 161 59 2.1

5 158 65 1.7

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target Distance

1 150 50 1.5 8.06

2 155 55 1.2 2.24

3 160 60 1.8 6.71

4 161 59 2.1 6.40

5 158 65 1.7 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

k-NEAREST NEIGHBOR LEARNING

Sl. No. Height Weight Target Distance
Nearest
Points

1 150 50 1.5 8.06

2 155 55 1.2 2.24 1

3 160 60 1.8 6.71 3

4 161 59 2.1 6.40 2

5 158 65 1.7 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

• The refinement to the k-NEAREST NEIGHBOR Algorithm is to weight the

contribution of each of the k neighbors according to their distance to the query

point 𝑥𝑞, giving greater weight to closer neighbors.

• For example, in the k-Nearest Neighbor algorithm, which approximates discrete-

valued target functions, we might weight the vote of each neighbor according to

the inverse square of its distance from 𝑥𝑞.

• Distance-Weighted Nearest Neighbor Algorithm for approximation a discrete-

valued target functions

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm
• Distance-Weighted Nearest Neighbor Algorithm for approximation a Real-valued target

functions

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target

1 150 50 1.5

2 155 55 1.2

3 160 60 1.8

4 161 59 2.1

5 158 65 1.7

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance

1 150 50 1.5 8.06

2 155 55 1.2 2.24

3 160 60 1.8 6.71

4 161 59 2.1 6.40

5 158 65 1.7 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance
Nearest
Points

1 150 50 1.5 8.06

2 155 55 1.2 2.24 1

3 160 60 1.8 6.71 3

4 161 59 2.1 6.40 2

5 158 65 1.7 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Distance-Weighted Nearest Neighbor Algorithm

Sl. No. Height Weight Target Distance 1/distance2 Nearest
Points

1 150 50 1.5 8.06

2 155 55 1.2 2.24 0.45 1

3 160 60 1.8 6.71 0.15 3

4 161 59 2.1 6.40 0.16 2

5 158 65 1.7 11.05

6 157 54 ?

CSE, HIT, Nidasoshi

Suppose we have height, weight and T-shirt size of some customers and we
need to predict the T-shirt size of a new customer given only height and
weight information we have. Data including height, weight and T-shirt size
information is shown below

Height (in cms) Weight (in kgs) T Shirt Size

158 58 M

158 59 M

158 63 M

160 59 M

160 60 M

163 60 M

163 61 L

160 64 L

163 64 L

165 61 L

165 62 L

165 65 L

168 62 L

168 63 L

168 66 L

170 63 L

170 64 L

170 68 L Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

New customer named XYZ' has height 161cm and
weight 61kg.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION

• Locally weighted regression is instance based learning algorithm.

• The phrase "locally weighted regression" is called

– local because the function is approximated based only on data near the query

point,

– weighted because the contribution of each training example is weighted by its

distance from the query point, and

– regression because this is the term used widely in the statistical learning

community for the problem of approximating real-valued functions.

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION

• Given a new query instance xq, the general approach in locally

weighted regression is to construct an approximation 𝑓 that fits the

training examples in the neighborhood surrounding of xq.

• This approximation is then used to calculate the value 𝑓 (𝑥𝑞), which

is output as the estimated target value for the query instance.

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION
• Consider locally weighted regression in which the target function f is approximated near

xq using a linear function of the form

• Where, ai(x) denotes the value of the ith attribute of the instance x

 CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION
• Derived methods are used to choose weights that minimize the squared error summed

over the set D of training examples using gradient descent

• Which led us to the gradient descent training rule

• Where, η is a constant learning rate

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION
Need to modify this procedure to derive a local approximation rather than a global

one. The simple way is to redefine the error criterion E to emphasize fitting the local

training examples. Three possible criteria are given below.

1. Minimize the squared error over just the k nearest neighbors:

2. Minimize the squared error over the entire set D of training examples, while weighting

the error of each training example by some decreasing function K of its distance from xq :

CSE, HIT, Nidasoshi

LOCALLY WEIGHTED REGRESSION
3. Combine 1 and 2:

• If we choose criterion three and re-derive the gradient descent rule, we obtain the

following training rule

• The differences between this new rule and the rule given by Equation (3) are that the

contribution of instance x to the weight update is now multiplied by the distance penalty

K(d(xq, x)), and that the error is summed over only the k nearest training examples.

CSE, HIT, Nidasoshi

RADIAL BASIS FUNCTIONS
• One approach to function approximation that is closely related to distance-weighted

regression and also to artificial neural networks is learning with radial basis functions.

• In this approach, the learned hypothesis is a function of the form

• Where, each xu is an instance from X and where the kernel function Ku(d(xu, x)) is defined

so that it decreases as the distance d(xu, x) increases.

• Here k is a user provided constant that specifies the number of kernel functions to be

included.

• 𝑓 is a global approximation to f (x), the contribution from each of the Ku(d(xu, x)) terms is

localized to a region nearby the point xu.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

RADIAL BASIS FUNCTIONS
• Choose each function Ku(d(xu, x)) to be a Gaussian function centred at the point xu with

some variance 𝜎u
2

• The functional form of equ(1) can approximate any function with arbitrarily small error,

provided a sufficiently large number k of such Gaussian kernels and provided the width

• 𝜎2 of each kernel can be separately specified

• The function given by equ(1) can be viewed as describing a two layer network where the

first layer of units computes the values of the various Ku(d(xu, x)) and where the second

layer computes a linear combination of these first-layer unit values

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

CASE-BASED REASONING

• Instance-based methods such as k-NEAREST NEIGHBOR and locally weighted

regression share three key properties.

• First, they are lazy learning methods in that they defer the decision of how to

generalize beyond the training data until a new query instance is observed.

• Second, they classify new query instances by analyzing similar instances while

ignoring instances that are very different from the query.

• Third, they represent instances as real-valued points in an n-dimensional

Euclidean space.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

CASE-BASED REASONING

• In CBR represent instances are not represented as real-valued points, but instead,

they use a rich symbolic representation and the methods used to retrieve similar

instances are correspondingly more elaborate.

• CBR has been applied to problems such as conceptual design of mechanical

devices based on a stored library of previous designs, reasoning about new legal

cases based on previous rulings, and solving planning and scheduling problems by

reusing and combining portions of previous solutions to similar problems

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

CASE-BASED REASONING

• In case-based reasoning, the training examples, the cases, are stored and

accessed to solve a new problem.

• To get a prediction for a new example, those cases that are similar, or close to, the

new example are used to predict the value of the target features of the new

example.

• This is at one extreme of the learning problem where, unlike decision trees and

neural networks, relatively little work must be done offline, and virtually all of the

work is performed at query time.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

CASE-BASED REASONING

Case-based reasoning consists of a cycle of the following four steps:

1. Retrieve - Given a new case, retrieve similar cases from the case

base.

2. Reuse - Adapt the retrieved cases to fit to the new case.

3. Revise - Evaluate the solution and revise it based on how well it

works.

4. Retain - Decide whether to retain this new case in the case base.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

CASE-BASED REASONING – Example
• A common example of a case-based reasoning system is a help desk that users call with

problems to be solved.

• Case-based reasoning could be used by the diagnostic assistant to help users diagnose problems
on their computer systems.

• When users give a description of a problem, the closest cases in the case base are retrieved. The
diagnostic assistant could recommend some of these to the user, adapting each case to the
user’s particular situation.

• An example of adaptation is to change the recommendation based on what software the user
has, what method they use to connect to the Internet, and the model of the printer.

• If one of the adapted cases works, that case is added to the case base, to be used when another
user asks a similar question.

• In this way, all of the common different cases will eventually be in the case base.

• If none of the cases found works, some other method is attempted to solve the problem,
perhaps by adapting other cases or having a human help diagnose the problem.

• When the problem is finally solved, the solution is added to the case base.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

A prototypical example of a case-based reasoning

• The CADET system employs case-based reasoning to assist in the conceptual design

of simple mechanical devices such as water faucets.

• It uses a library containing approximately 75 previous designs and design fragments

to suggest conceptual designs to meet the specifications of new design problems.

• Each instance stored in memory (e.g., a water pipe) is represented by describing

both its structure and its qualitative function.

• New design problems are then presented by specifying the desired function and

requesting the corresponding structure.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

A prototypical example of a case-based reasoning

• The problem setting is illustrated in below figure

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

A prototypical example of a case-based reasoning
• The function is represented in terms of the qualitative relationships among the water-

flow levels and temperatures at its inputs and outputs.

• In the functional description, an arrow with a "+" label indicates that the variable at the
arrowhead increases with the variable at its tail. A "-" label indicates that the variable at
the head decreases with the variable at the tail.

• Here Qc refers to the flow of cold water into the faucet, Qh to the input flow of hot
water, and Qm to the single mixed flow out of the faucet.

• Tc, Th, and Tm refer to the temperatures of the cold water, hot water, and mixed water
respectively.

• The variable Ct denotes the control signal for temperature that is input to the faucet, and
Cf denotes the control signal for waterflow.

• The controls Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly
influencing the faucet output flow Qm and temperature Tm.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

A prototypical example of a case-based reasoning

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

A prototypical example of a case-based reasoning

• CADET searches its library for stored cases whose functional descriptions match

the design problem.

• If an exact match is found, indicating that some stored case implements exactly

the desired function, then this case can be returned as a suggested solution to

the design problem.

• If no exact match occurs, CADET may find cases that match various subgraphs of

the desired functional specification.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

REINFORCEMENT LEARNING

Reinforcement learning addresses the question of how an autonomous agent that senses and

acts in its environment can learn to choose optimal actions to achieve its goals.

• Consider building a learning robot.

• The robot, or agent, has a set of sensors to observe the state of its environment, and a set

of actions it can perform to alter this state.

• Its task is to learn a control strategy, or policy, for choosing actions that achieve its goals.

• The goals of the agent can be defined by a reward function that assigns a numerical value

to each distinct action the agent may take from each distinct state.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

REINFORCEMENT LEARNING
• This reward function may be built into the robot, or known only to an external teacher

who provides the reward value for each action performed by the robot.

• The task of the robot is to perform sequences of actions, observe their consequences,

and learn a control policy.

• The control policy is one that, from any initial state, chooses actions that maximize the

reward accumulated over time by the agent.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

REINFORCEMENT LEARNING
Example:

• A mobile robot may have sensors such as a camera and sonars, and actions such as

"move forward" and "turn."

• The robot may have a goal of docking onto its battery charger whenever its battery level

is low.

• The goal of docking to the battery charger can be captured by assigning a positive reward

(Eg., +100) to state-action transitions that immediately result in a connection to the

charger and a reward of zero to every other state-action transition.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

REINFORCEMENT LEARNING
Reinforcement Learning Problem

• An agent interacting with its environment.

• The agent exists in an environment described by some set of possible states S.

• Agent perform any of a set of possible actions A.

• Each time it performs an action A, in some state st the agent receives a real-valued

reward r, that indicates the immediate value of this state-action transition.

• This produces a sequence of states si, actions ai, and immediate rewards ri as shown in

the figure.

• The agent's task is to learn a control policy, 𝝅: S → A, that maximizes the expected sum of

these rewards, with future rewards discounted exponentially by their delay.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

REINFORCEMENT LEARNING

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning problem characteristics
1. Delayed reward: The task of the agent is to learn a target function 𝜋 that maps from the current state

s to the optimal action a = 𝜋 (s). In reinforcement learning, training information is not available in (s,

𝜋 (s)). Instead, the trainer provides only a sequence of immediate reward values as the agent

executes its sequence of actions. The agent, therefore, faces the problem of temporal credit

assignment: determining which of the actions in its sequence are to be credited with producing the

eventual rewards.

2. Exploration: In reinforcement learning, the agent influences the distribution of training examples by

the action sequence it chooses. This raises the question of which experimentation strategy produces

most effective learning. The learner faces a trade-off in choosing whether to favor exploration of

unknown states and actions, or exploitation of states and actions that it has already learned will yield

high reward.

 Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning problem characteristics
3. Partially observable states: The agent's sensors can perceive the entire state of the environment at

each time step, in many practical situations sensors provide only partial information. In such cases,

the agent needs to consider its previous observations together with its current sensor data when

choosing actions, and the best policy may be one that chooses actions specifically to improve the

observability of the environment.

4. Life-long learning: Robot requires to learn several related tasks within the same environment, using

the same sensors. For example, a mobile robot may need to learn how to dock on its battery charger,

how to navigate through narrow corridors, and how to pick up output from laser printers. This setting

raises the possibility of using previously obtained experience or knowledge to reduce sample

complexity when learning new tasks.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning

THE LEARNING TASK

• Consider Markov decision process (MDP) where the agent can perceive a set S of distinct

states of its environment and has a set A of actions that it can perform.

• At each discrete time step t, the agent senses the current state st, chooses a current action

at, and performs it.

• The environment responds by giving the agent a reward rt = r(st, at) and by producing the

succeeding state st+1 = δ(st, at).

• Here the functions δ(st, at) and r(st, at) depend only on the current state and action, and

not on earlier states or actions.

• The task of the agent is to learn a policy, 𝝅: S → A, for selecting its next action a, based on

the current observed state st; that is, 𝝅(st) = at.
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
How shall we specify precisely which policy π we would like the agent to learn?

1. One approach is to require the policy that produces the greatest possible cumulative

reward for the robot over time.

– To state this requirement more precisely, define the cumulative value Vπ (st) achieved

by following an arbitrary policy π from an arbitrary initial state st as follows:

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
• Where, the sequence of rewards rt+i is generated by beginning at state st and by

repeatedly using the policy π to select actions.

• Here 0 ≤ γ ≤ 1 is a constant that determines the relative value of delayed versus

immediate rewards. if we set γ = 0, only the immediate reward is considered. As we set γ

closer to 1, future rewards are given greater emphasis relative to the immediate reward.

• The quantity Vπ (st) is called the discounted cumulative reward achieved by policy π from

initial state s. It is reasonable to discount future rewards relative to immediate rewards

because, in many cases, we prefer to obtain the reward sooner rather than later.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
2. Other definitions of total reward is finite horizon reward,

Considers the undiscounted sum of rewards over a finite number h of steps

3. Another approach is average reward

Considers the average reward per time step over the entire lifetime of the agent.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
Example:

• A simple grid-world environment is depicted in the diagram

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
• To illustrate the operation of the Q learning algorithm, consider a single action taken by

an agent, and the corresponding refinement to �̂� shown in below figure

• The agent moves one cell to the right in its grid world and receives an
immediate reward of zero for this transition.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
• Apply the training rule of Equation

• to refine its estimate Q for the state-action transition it just executed.

• According to the training rule, the new 𝑄 ̂estimate for this transition is the sum
of the received reward (zero) and the highest 𝑄 ̂ value associated with the
resulting state (100), discounted by γ (.9).

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
• The six grid squares in this diagram represent six possible states, or locations, for the

agent.

• Each arrow in the diagram represents a possible action the agent can take to move from

one state to another.

• The number associated with each arrow represents the immediate reward r(s, a) the

agent receives if it executes the corresponding state-action transition

• The immediate reward in this environment is defined to be zero for all state-action

transitions except for those leading into the state labelled G.

• The state G as the goal state, and the agent can receive reward by entering this state.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning
• Once the states, actions, and immediate rewards are defined, choose a value for the

discount factor γ, determine the optimal policy π * and its value function V*(s).

• Let’s choose γ = 0.9. The diagram at the bottom of the figure shows one optimal policy for

this setting.

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

Reinforcement learning

• Values of V*(s) and Q(s, a) follow from r(s, a), and the discount factor γ = 0.9.

• An optimal policy, corresponding to actions with maximal Q values, is also shown.

• The discounted future reward from the bottom centre state is

• 0+ γ 100+ γ2 0+ γ3 0+... = 90

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi

CSE, HIT, Nidasoshi

