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Instance-based Learning 

• Key idea: In contrast to learning methods that construct a general, explicit 

description of the target function when training examples are provided, instance-

based learning constructs the target function only when a new instance must be 

classified.    

• Each time a new query instance is encountered, its relationship to the previously 

stored examples is examined in order to assign a target function value for the new 

instance.  
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Instance-based Learning 

• Instance based learning includes nearest neighbor and locally weighted regression 

methods that assume instances can be represented as points in a Euclidean space.  

• It also includes case-based reasoning methods that use more complex, symbolic 

representations for instances.  

• Instance-based methods are sometimes referred to as "lazy" learning methods 

because they delay processing until a new instance must be classified.  

• A key advantage of this kind of delayed, or lazy, learning is that instead of estimating 

the target function once for the entire instance space, these methods can estimate it 

locally and differently for each new instance to be classified 
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Instance-based Learning 

• Instance-based learning methods such as nearest neighbor and locally weighted 

regression are conceptually straightforward approaches to approximating real-

valued or discrete-valued target functions. 

• Learning in these algorithms consists of simply storing the presented training 

data. When a new query instance is encountered, a set of similar related 

instances is retrieved from memory and used to classify the new query instance 

• Instance-based approaches can construct a different approximation to the target 

function for each distinct query instance that must be classified 
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Advantages of Instance-based learning 

1. Training is very fast 

2. Learn complex target function 

3. Don’t lose information 
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Disadvantages of Instance-based learning 

• The cost of classifying new instances can be high.  

• This is due to the fact that nearly all computation takes place at classification time 

rather than when the training examples are first encountered. 

• In many instance-based approaches, especially nearest-neighbor approaches, is 

that they typically consider all attributes of the instances when attempting to 

retrieve similar training examples from memory. If the target concept depends on 

only a few of the many available attributes, then the instances that are truly most 

"similar" may well be a large distance apart. 
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k-NEAREST NEIGHBOR LEARNING 
• The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm.  

• This algorithm assumes all instances correspond to points in the n-dimensional space Rn.  

• The nearest neighbors of an instance are defined in terms of the standard Euclidean 

distance.  

• The arbitrary instance x be described by the feature vector 

 

where ar(x) denotes the value of the rth  attribute of instance x. 

• Then the distance between two instances xi and xj is defined to be d ( xi , xj), where 

 

• In nearest-neighbor learning the target function may be either discrete-valued or real- 

valued. 
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k-NEAREST NEIGHBOR LEARNING 
• Let us first consider learning discrete-valued target functions of the form  

 

• Where, V is the finite set {v1, . . . vs }  

• The k- Nearest Neighbor algorithm for approximation a discrete-valued target function is 
given below: 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target 

1 150 50 Medium 

2 155 55 Medium 

3 160 60 Large 

4 161 59 Large 

5 158 65 Large 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target Distance 

1 150 50 Medium 8.06 

2 155 55 Medium 2.24 

3 160 60 Large 6.71 

4 161 59 Large 6.40 

5 158 65 Large 11.05 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target Distance 
Nearest 
Points 

1 150 50 Medium 8.06 

2 155 55 Medium 2.24 1 

3 160 60 Large 6.71 3 

4 161 59 Large 6.40 2 

5 158 65 Large 11.05 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 

• The  value 𝑓 (𝑥𝑞)  returned  by  this  algorithm  as  its  estimate  of  𝑓(𝑥𝑞)  is  just  

the  most common value of 𝑓 among the 𝑘 training examples nearest to 𝑥𝑞. 

• If k = 1, then the 1- Nearest Neighbor algorithm assigns to 𝑓 (𝑥𝑞) the value 

𝑓(𝑥𝑖).  

• Where xi is the training instance nearest to xq. 

• For larger values of k, the algorithm assigns the most common value among the 

k nearest training examples. 
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k-NEAREST NEIGHBOR LEARNING 
• Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the case 

where the instances are points in a two-dimensional space and where the target function 

is Boolean valued. 

 

 

 

• The positive and negative training examples are shown by “+” and “-” respectively.  

• A query point 𝑥𝑞 is shown as well. 

• The 1-Nearest Neighbor algorithm classifies 𝑥𝑞 as a positive example in this figure, 

whereas the 5-Nearest Neighbor algorithm classifies it as a negative example. 
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Distance-Weighted Nearest Neighbor Algorithm 
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Distance-Weighted Nearest Neighbor Algorithm 
 

Sl. No. Height Weight Target 

1 150 50 Medium 

2 155 55 Medium 

3 160 60 Large 

4 161 59 Large 

5 158 65 Large 

6 157 54 ? 
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Distance-Weighted Nearest Neighbor Algorithm 
 

Sl. No. Height Weight Target Distance 

1 150 50 Medium 8.06 

2 155 55 Medium 2.24 

3 160 60 Large 6.71 

4 161 59 Large 6.40 

5 158 65 Large 11.05 

6 157 54 ? 
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Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target Distance 
Nearest 
Points 

1 150 50 Medium 8.06 

2 155 55 Medium 2.24 1 

3 160 60 Large 6.71 3 

4 161 59 Large 6.40 2 

5 158 65 Large 11.05 

6 157 54 ? 
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Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target Distance 1/distance2 Nearest 
Points 

1 150 50 Medium 8.06 

2 155 55 Medium 2.24 0.45 1 

3 160 60 Large 6.71 0.15 3 

4 161 59 Large 6.40 0.16 2 

5 158 65 Large 11.05 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 
• The K- Nearest Neighbor algorithm for approximation a real-valued target function is given 

below 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target 

1 150 50 1.5 

2 155 55 1.2 

3 160 60 1.8 

4 161 59 2.1 

5 158 65 1.7 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target Distance 

1 150 50 1.5 8.06 

2 155 55 1.2 2.24 

3 160 60 1.8 6.71 

4 161 59 2.1 6.40 

5 158 65 1.7 11.05 

6 157 54 ? 
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k-NEAREST NEIGHBOR LEARNING 
 

Sl. No. Height Weight Target Distance 
Nearest 
Points 

1 150 50 1.5 8.06 

2 155 55 1.2 2.24 1 

3 160 60 1.8 6.71 3 

4 161 59 2.1 6.40 2 

5 158 65 1.7 11.05 

6 157 54 ? 
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Distance-Weighted Nearest Neighbor Algorithm 

• The refinement to the k-NEAREST NEIGHBOR Algorithm is to weight the 

contribution of each of the k neighbors according to their distance to the query 

point 𝑥𝑞, giving greater weight to closer neighbors. 

• For example, in the k-Nearest Neighbor algorithm, which approximates discrete-

valued target functions, we might weight the vote of each neighbor according to 

the inverse square of its distance from 𝑥𝑞. 

• Distance-Weighted Nearest Neighbor Algorithm for approximation a discrete-

valued target functions 
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Distance-Weighted Nearest Neighbor Algorithm 
• Distance-Weighted Nearest Neighbor Algorithm for approximation a Real-valued target 

functions 
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Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target 

1 150 50 1.5 

2 155 55 1.2 

3 160 60 1.8 

4 161 59 2.1 

5 158 65 1.7 

6 157 54 ? 

CSE, HIT, Nidasoshi



Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target Distance 

1 150 50 1.5 8.06 

2 155 55 1.2 2.24 

3 160 60 1.8 6.71 

4 161 59 2.1 6.40 

5 158 65 1.7 11.05 

6 157 54 ? 
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Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target Distance 
Nearest 
Points 

1 150 50 1.5 8.06 

2 155 55 1.2 2.24 1 

3 160 60 1.8 6.71 3 

4 161 59 2.1 6.40 2 

5 158 65 1.7 11.05 

6 157 54 ? 

CSE, HIT, Nidasoshi



Distance-Weighted Nearest Neighbor Algorithm 

Sl. No. Height Weight Target Distance 1/distance2 Nearest 
Points 

1 150 50 1.5 8.06 

2 155 55 1.2 2.24 0.45 1 

3 160 60 1.8 6.71 0.15 3 

4 161 59 2.1 6.40 0.16 2 

5 158 65 1.7 11.05 

6 157 54 ? 
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Suppose we have height, weight and T-shirt size of some customers and we 
need to predict the T-shirt size of a new customer given only height and 
weight information we have. Data including height, weight and T-shirt size 
information is shown below  

Height (in cms) Weight (in kgs) T Shirt Size 

158 58 M 

158 59 M 

158 63 M 

160 59 M 

160 60 M 

163 60 M 

163 61 L 

160 64 L 

163 64 L 

165 61 L 

165 62 L 

165 65 L 

168 62 L 

168 63 L 

168 66 L 

170 63 L 

170 64 L 
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CSE, HIT, Nidasoshi



New customer named XYZ' has height 161cm and 
weight 61kg. 
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LOCALLY WEIGHTED REGRESSION 

• Locally weighted regression is instance based learning algorithm. 

• The phrase "locally weighted regression" is called  

– local because the function is approximated based only on data near the query 

point, 

– weighted because the contribution of each training example is weighted by its 

distance from the query point, and  

– regression because this is the term used widely in the statistical learning 

community for the problem of approximating real-valued functions. 

CSE, HIT, Nidasoshi



LOCALLY WEIGHTED REGRESSION 

• Given a new query instance xq, the general approach in locally 

weighted regression is to construct an approximation 𝑓  that fits the 

training examples in the neighborhood surrounding of xq.  

• This approximation is then used to calculate the value 𝑓 (𝑥𝑞), which 

is output as the estimated target value for the query instance. 
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LOCALLY WEIGHTED REGRESSION 
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LOCALLY WEIGHTED REGRESSION 
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LOCALLY WEIGHTED REGRESSION 
• Consider locally weighted regression in which the target function f is approximated near 

xq using a linear function of the form 

 

• Where, ai(x) denotes the value of the ith attribute of the instance x 
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LOCALLY WEIGHTED REGRESSION 
• Derived methods are used to choose weights that minimize the squared error summed 

over the set D of training examples using gradient descent 

 

• Which led us to the gradient descent training rule 

 

 

• Where, η is a constant learning rate 
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LOCALLY WEIGHTED REGRESSION 
Need to modify this procedure to derive a local approximation rather than a global 

one. The simple way is to redefine the error criterion E to emphasize fitting the local 

training examples. Three possible criteria are given below. 

1. Minimize the squared error over just the k nearest neighbors: 

 

 

2. Minimize the squared error over the entire set D of training examples, while weighting 

the error of each training example by some decreasing function K of its distance from xq : 
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LOCALLY WEIGHTED REGRESSION 
3. Combine 1 and 2: 

 

 

 

• If we choose criterion three and re-derive the gradient descent rule, we obtain the 

following training rule 

 

 
 

• The differences between this new rule and the rule given by Equation (3) are that the 

contribution of instance x to the weight update is now multiplied by the distance penalty 

K(d(xq, x)), and that the error is summed over only the k nearest training examples. 
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RADIAL BASIS FUNCTIONS 
• One approach to function approximation that is closely related to distance-weighted 

regression and also to artificial neural networks is learning with radial basis functions.  

• In this approach, the learned hypothesis is a function of the form 

 

 

• Where, each xu is an instance from X and where the kernel function Ku(d(xu, x)) is defined 

so that it decreases as the distance d(xu, x) increases. 

• Here k is a user provided constant that specifies the number of kernel functions to be 

included. 

• 𝑓  is a global approximation to f (x), the contribution from each of the Ku(d(xu, x)) terms is 

localized to a region nearby the point xu. 
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RADIAL BASIS FUNCTIONS 
• Choose each function Ku(d(xu, x)) to be a Gaussian function centred at the point xu with 

some variance 𝜎u
2 

 

• The functional form of equ(1) can approximate any function with arbitrarily small error, 

provided a sufficiently large number k of such Gaussian kernels and provided the width 

• 𝜎2 of each kernel can be separately specified 

• The function given by equ(1) can be viewed as describing a two layer network where the 

first layer of units computes the values of the various Ku(d(xu, x)) and where the second 

layer computes a linear combination of these first-layer unit values 
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CASE-BASED REASONING 

• Instance-based methods such as k-NEAREST NEIGHBOR and locally weighted 

regression share three key properties.  

• First, they are lazy learning methods in that they defer the decision of how to 

generalize beyond the training data until a new query instance is observed. 

• Second, they classify new query instances by analyzing similar instances while 

ignoring instances that are very different from the query. 

• Third, they represent instances as real-valued points in an n-dimensional 

Euclidean space. 
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CASE-BASED REASONING 

• In CBR represent instances are not represented as real-valued points, but instead, 

they use a rich symbolic representation and the methods used to retrieve similar 

instances are correspondingly more elaborate. 

• CBR has been applied to problems such as conceptual design of mechanical 

devices based on a stored library of previous designs, reasoning about new legal 

cases based on previous rulings, and solving planning and scheduling problems by 

reusing and combining portions of previous solutions to similar problems 
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CASE-BASED REASONING 

• In case-based reasoning, the training examples, the cases, are stored and 

accessed to solve a new problem.  

• To get a prediction for a new example, those cases that are similar, or close to, the 

new example are used to predict the value of the target features of the new 

example.  

• This is at one extreme of the learning problem where, unlike decision trees and 

neural networks, relatively little work must be done offline, and virtually all of the 

work is performed at query time. 
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CASE-BASED REASONING 

Case-based reasoning consists of a cycle of the following four steps: 

1. Retrieve - Given a new case, retrieve similar cases from the case 

base. 

2. Reuse - Adapt the retrieved cases to fit to the new case. 

3. Revise - Evaluate the solution and revise it based on how well it 

works. 

4. Retain - Decide whether to retain this new case in the case base. 
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CASE-BASED REASONING – Example 
• A common example of a case-based reasoning system is a help desk that users call with 

problems to be solved.  

• Case-based reasoning could be used by the diagnostic assistant to help users diagnose problems 
on their computer systems.  

• When users give a description of a problem, the closest cases in the case base are retrieved. The 
diagnostic assistant could recommend some of these to the user, adapting each case to the 
user’s particular situation.  

• An example of adaptation is to change the recommendation based on what software the user 
has, what method they use to connect to the Internet, and the model of the printer.  

• If one of the adapted cases works, that case is added to the case base, to be used when another 
user asks a similar question.  

• In this way, all of the common different cases will eventually be in the case base. 

• If none of the cases found works, some other method is attempted to solve the problem, 
perhaps by adapting other cases or having a human help diagnose the problem.  

• When the problem is finally solved, the solution is added to the case base. 
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

CSE, HIT, Nidasoshi



A prototypical example of a case-based reasoning 

• The CADET system employs case-based reasoning to assist in the conceptual design 

of simple mechanical devices such as water faucets. 

• It uses a library containing approximately 75 previous designs and design fragments 

to suggest conceptual designs to meet the specifications of new design problems. 

• Each instance stored in memory (e.g., a water pipe) is represented by describing 

both its structure and its qualitative function. 

• New design problems are then presented by specifying the desired function and 

requesting the corresponding structure. 
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A prototypical example of a case-based reasoning 

• The problem setting is illustrated in below figure 
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A prototypical example of a case-based reasoning 
• The function is represented in terms of the qualitative relationships among the water- 

flow levels and temperatures at its inputs and outputs. 

• In the functional description, an arrow with a "+" label indicates that the variable at the 
arrowhead increases with the variable at its tail. A "-" label indicates that the variable at 
the head decreases with the variable at the tail. 

• Here Qc refers to the flow of cold water into the faucet, Qh to the input flow of hot 
water, and Qm to the single mixed flow out of the faucet. 

• Tc, Th, and Tm refer to the temperatures of the cold water, hot water, and mixed water 
respectively. 

• The variable Ct denotes the control signal for temperature that is input to the faucet, and 
Cf denotes the control signal for waterflow. 

• The controls Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly 
influencing the faucet output flow Qm and temperature Tm. 
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A prototypical example of a case-based reasoning 
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A prototypical example of a case-based reasoning 

• CADET searches its library for stored cases whose functional descriptions match 

the design problem.  

• If an exact match is found, indicating that some stored case implements exactly 

the desired function, then this case can be returned as a suggested solution to 

the design problem.  

• If no exact match occurs, CADET may find cases that match various subgraphs of 

the desired functional specification. 
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REINFORCEMENT LEARNING 

Reinforcement learning addresses the question of how an autonomous agent that senses and 

acts in its environment can learn to choose optimal actions to achieve its goals. 

• Consider building a learning robot.  

• The robot, or agent, has a set of sensors to observe the state of its environment, and a set 

of actions it can perform to alter this state. 

• Its task is to learn a control strategy, or policy, for choosing actions that achieve its goals. 

• The goals of the agent can be defined by a reward function that assigns a numerical value 

to each distinct action the agent may take from each distinct state. 
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REINFORCEMENT LEARNING 
• This reward function may be built into the robot, or known only to an external teacher 

who provides the reward value for each action performed by the robot. 

• The task of the robot is to perform sequences of actions, observe their consequences, 

and learn a control policy. 

• The control policy is one that, from any initial state, chooses actions that maximize the 

reward accumulated over time by the agent. 
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REINFORCEMENT LEARNING 
Example: 

• A mobile robot may have sensors such as a camera and sonars, and actions such as 

"move forward" and "turn." 

• The robot may have a goal of docking onto its battery charger whenever its battery level 

is low. 

• The goal of docking to the battery charger can be captured by assigning a positive reward 

(Eg., +100) to state-action transitions that immediately result in a connection to the 

charger and a reward of zero to every other state-action transition. 
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REINFORCEMENT LEARNING 
Reinforcement Learning Problem 

• An agent interacting with its environment.  

• The agent exists in an environment described by some set of possible states S. 

• Agent perform any of a set of possible actions A.  

• Each time it performs an action A, in some state st the agent receives a real-valued 

reward r, that indicates the immediate value of this state-action transition.  

• This produces a sequence of states si, actions ai, and immediate rewards ri as shown in 

the figure. 

• The agent's task is to learn a control policy, 𝝅: S → A, that maximizes the expected sum of 

these rewards, with future rewards discounted exponentially by their delay. 
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REINFORCEMENT LEARNING 
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Reinforcement learning problem characteristics 
1. Delayed reward: The task of the agent is to learn a target function 𝜋 that maps from the current state 

s to the optimal action a = 𝜋 (s). In reinforcement learning, training information is not available in (s, 

𝜋 (s)). Instead, the trainer provides only a sequence of immediate reward values as the agent 

executes its sequence of actions. The agent, therefore, faces the problem of temporal credit 

assignment: determining which of the actions in its sequence are to be credited with producing the 

eventual rewards. 

2.  Exploration: In reinforcement learning, the agent influences the distribution of training examples by 

the action sequence it chooses. This raises the question of which experimentation strategy produces 

most effective learning. The learner faces a trade-off in choosing whether to favor exploration of 

unknown states and actions, or exploitation of states and actions that it has already learned will yield 

high reward. 
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Reinforcement learning problem characteristics 
3. Partially observable states: The agent's sensors can perceive the entire state of the environment at 

each time step, in many practical situations sensors provide only partial information. In such cases, 

the agent needs to consider its previous observations together with its current sensor data when 

choosing actions, and the best policy may be one that chooses actions specifically to improve the 

observability of the environment. 

4. Life-long learning: Robot requires to learn several related tasks within the same environment, using 

the same sensors. For example, a mobile robot may need to learn how to dock on its battery charger, 

how to navigate through narrow corridors, and how to pick up output from laser printers. This setting 

raises the possibility of using previously obtained experience or knowledge to reduce sample 

complexity when learning new tasks. 
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Reinforcement learning  

THE LEARNING TASK 

• Consider Markov decision process (MDP) where the agent can perceive a set S of distinct 

states of its environment and has a set A of actions that it can perform. 

• At each discrete time step t, the agent senses the current state st, chooses a current action 

at, and performs it. 

• The environment responds by giving the agent a reward rt = r(st, at) and by producing the 

succeeding state st+1 = δ(st, at).  

• Here the functions δ(st, at) and r(st, at) depend only on the current state and action, and 

not on earlier states or actions. 

• The task of the agent is to learn a policy, 𝝅: S → A, for selecting its next action a, based on 

the current observed state st; that is, 𝝅(st) = at. 
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Reinforcement learning  
How shall we specify precisely which policy π we would like the agent to learn? 

1. One approach is to require the policy that produces the greatest possible cumulative 

reward for the robot over time. 

– To state this requirement more precisely, define the cumulative value Vπ (st) achieved 

by following an arbitrary policy π from an arbitrary initial state st as follows: 
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Reinforcement learning  
• Where, the sequence of rewards rt+i is generated by beginning at state st and by 

repeatedly using the policy π to select actions. 

• Here 0 ≤ γ ≤ 1 is a constant that determines the relative value of delayed versus 

immediate rewards. if we set γ = 0, only the immediate reward is considered. As we set γ 

closer to 1, future rewards are given greater emphasis relative to the immediate reward. 

• The quantity Vπ (st) is called the discounted cumulative reward achieved by policy π from 

initial state s. It is reasonable to discount future rewards relative to immediate rewards 

because, in many cases, we prefer to obtain the reward sooner rather than later. 
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Reinforcement learning  
2. Other definitions of total reward is finite horizon reward, 

 

Considers the undiscounted sum of rewards over a finite number h of steps 

3. Another approach is average reward 

 

Considers the average reward per time step over the entire lifetime of the agent. 
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Reinforcement learning  
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Reinforcement learning  
Example: 

•  A simple grid-world environment is depicted in the diagram 
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Reinforcement learning  
• To illustrate the operation of the Q learning algorithm, consider a single action taken by 

an agent, and the corresponding refinement to �̂� shown in below figure 

 

 

 

 

 

 

• The agent moves one cell to the right in its grid world and receives an 
immediate reward of zero for this transition. 
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Reinforcement learning  
• Apply the training rule of Equation 

 

 

• to refine its estimate Q for the state-action transition it just executed. 

• According to the training rule, the new 𝑄 ̂estimate for this transition is the sum 
of the received reward (zero) and the highest 𝑄 ̂ value associated with the 
resulting state (100), discounted by γ (.9). 
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Reinforcement learning  
• The six grid squares in this diagram represent six possible states, or locations, for the 

agent. 

• Each arrow in the diagram represents a possible action the agent can take to move from 

one state to another. 

• The number associated with each arrow represents the immediate reward r(s, a) the 

agent receives if it executes the corresponding state-action transition 

• The immediate reward in this environment is defined to be zero for all state-action 

transitions except for those leading into the state labelled G.  

• The state G as the goal state, and the agent can receive reward by entering this state. 
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Reinforcement learning  
• Once the states, actions, and immediate rewards are defined, choose a value for the 

discount factor γ, determine the optimal policy π * and its value function V*(s). 

• Let’s choose γ = 0.9. The diagram at the bottom of the figure shows one optimal policy for 

this setting. 
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Reinforcement learning  

• Values of V*(s) and Q(s, a) follow from r(s, a), and the discount factor γ = 0.9.  

• An optimal policy, corresponding to actions with maximal Q values, is also shown. 

•  The discounted future reward from the bottom centre state is 

• 0+ γ 100+ γ2 0+ γ3 0+... = 90 
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