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Bayesian Classification: Why? - Features 

• Each observed training example can incrementally decrease or increase the 

estimated probability that a hypothesis is correct. This provides a more flexible 

approach to learning than algorithms that completely eliminate a hypothesis if it 

is found to be inconsistent with any single example. 

• Prior knowledge can be combined with observed data to determine the final 

probability of a hypothesis. In Bayesian learning, prior knowledge is provided by 

asserting  

1. a prior probability for each candidate hypothesis, and  

2. a probability distribution over observed data for each possible hypothesis.  
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Bayesian Classification: Why? - Features 

• Bayesian methods can accommodate hypotheses that make probabilistic 

predictions (e.g., hypotheses such as "this pneumonia patient has a 93% chance 

of complete recovery").  

• New instances can be classified by combining the predictions of multiple 

hypotheses, weighted by their probabilities.  

• Even in cases where Bayesian methods prove computationally intractable, they 

can provide a standard of optimal decision making against which other practical 

methods can be measured. 
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Practical Difficulty 

• Bayesian methods typically require initial knowledge of many 

probabilities. When these probabilities are not known in advance 

they are often estimated based on background knowledge, 

previously available data, and assumptions about the form of the 

underlying distributions.  

• Computational cost required to determine the Bayes optimal 

hypothesis in the general case. 
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Naïve Bayes Model – Simple Classification Example 

• Suppose a XYZ company needs to predict the service required by 

the incoming customer. 

• If there are only two services offered — R and M. 

• Then the value to be predicted is whether the next customer will be 

for R or M. 

• The number of classes k are 2 that is, k=2. 
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• The first step is to compute prior probability.  

• Suppose the data gathered for the last one year showed that during that 

period there were 2500 customers for R and 1500 customers for M.  

• Thus, prior probability for the next customer to be for R is 2500/4000 or 

5/8.  

• Prior probability for the next customer to be for M is 1500/4000 or 3/8.  

• Based on this information alone, the next customer would likely be for R.  
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

Naïve Bayes Model – Simple Classification Example 

CSE, HIT, Nidasoshi



• Another way to predict the service requirement by the next customer is to look at 

the most recent data.  

• One can look at the last few (choose a number) customers, to predict the next 

customer.  

• Suppose the last five customers were for the services ... R, M, R, M, M order.  

• Thus, the data shows the recent probability of R is 2/5 and that of M is 3/5.  

• Based on just this information, the next customer will likely to be for M. 
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• Thomas Bayes suggested that the prior probability should be informed by 

the more recent data.  

• Naive-Bayes posterior probability for a class is computed by multiplying 

the prior probability and the recent probability.  

• NB posterior probability P(R) is (5/8 x 2/5) = 10/40.  

• Similarly, the NB probability P(M) is (3/8 x 3/5) = 9/40.  

• Since P(R) is greater than P(M), it follows that there is a greater probability 

of the next customer to be for R.  

• Thus the expected class label assigned to the next customer would be R.  
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• Suppose, however the next customer coming in was for M service.  

• The last five customer sequence now becomes M, R, M, M, M.  

• Thus, the recent data shows the probability for R to be 1/5 and that of M 

to be 4/5.  

• Now the NB probability for R is (5/8 x 1/5) = 5/40.  

• Similarly, the NB probability for M is (3/8 x 4/5) = 12/40.  

• Since P(M) is greater than P(R), it follows that there is a greater probability 

of the next customer to be for M.  

• Thus the expected class label assigned to the next customer is M.  
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BAYES THEOREM 

• In machine learning we are often interested in determining the best hypothesis 

from some space H, given the observed training data D.  

• One way to specify what we mean by the best hypothesis is to say that we 

demand the most probable hypothesis, given the data D plus any initial 

knowledge about the prior probabilities of the various hypotheses in H.  

• Bayes theorem provides a direct method for calculating such probabilities.  

• More precisely, Bayes theorem provides a way to calculate the probability of a 

hypothesis based on its prior probability, the probabilities of observing various 

data given the hypothesis, and the observed data itself. 
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BAYES THEOREM 

• To define Bayes theorem precisely, let us first introduce a little notation.  

• We shall write P(h) to denote the initial probability that hypothesis h 

holds, before we have observed the training data. P(h) is often called the 

priorprobability of h and may reflect any background knowledge we have 

about the chance that h is a correct hypothesis.  

• If we have no such prior knowledge, then we might simply assign the same 

prior probability to each candidate hypothesis. 
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BAYES THEOREM 
• P(D) to denote the prior probability that training data D will be observed (i.e., 

the probability of D given no knowledge about which hypothesis holds).  

• Next, we will write P(D|h) to denote the probability of observing data D given 

some world in which hypothesis h holds. More generally, we write P(x|y) to 

denote the probability of x given y.  

• In machine learning problems we are interested in the probability P (h|D) that h 

holds given the observed training data D.  

• P (h|D) is called the posteriorprobability of h, because it reflects our confidence 

that h holds after we have seen the training data D.  

• Notice the posterior probability P(h|d) reflects the influence of the training data 

D, in contrast to the prior probability P(h) , which is independent of D. 
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BAYES THEOREM 

• Bayes theorem is the cornerstone of Bayesian learning methods because it 

provides a way to calculate the posterior probability P(h|D), from the prior 

probability P(h), together with P(D) and P(D(h). 

𝑃 ℎ 𝐷 =  
𝑃 𝐷 ℎ 𝑝(ℎ)

𝑃(𝐷)
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BAYES THEOREM 

• The learner considers some set of candidate hypotheses H and is interested in 

finding the most probable hypothesis h ϵ H given the observed data D (or at least 

one of the maximally probable if there are several).  

• Any such maximally probable hypothesis is called a maximum a posteriori (MAP) 

hypothesis.  

• We can determine the MAP hypotheses by using Bayes theorem to calculate the 

posterior probability of each candidate hypothesis. 
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BAYES THEOREM 

• More precisely, we will say that hMAP is a MAP hypothesis provided 

 

 

 

 

• Notice in the final step above we dropped the term P(D) because it is a constant 

independent of h. 
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BAYES THEOREM 
• In some cases, we will assume that every hypothesis in H is equally 

probable a priori (P(hi) = P(hj) for all hi and hj in H). 
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Example - Does patient have cancer or not? 
• Consider a medical diagnosis problem in which there are two alternative hypotheses:  

(1) that the patient has a particular form of cancer.  

(2) that the patient does not.  

• The available data is from a particular laboratory test with two possible outcomes:  + 

(positive) and − (negative). 

• The test returns a correct positive result in only 98% of the cases in which the disease  is 

actually present, and a correct negative result in only 97% of the cases in which the  

disease is not present. 

• Furthermore we know that, 0.008 of the entire population have cancer. 

• 𝑃 𝑐𝑎𝑛𝑐𝑒𝑟 = 0.008           𝑃 ˥𝑐𝑎𝑛𝑐𝑒𝑟 = 0.992 

• 𝑃 +|𝑐𝑎𝑛𝑐𝑒𝑟 = 0.98        𝑃 −|𝑐𝑎𝑛𝑐𝑒𝑟 = 0.02 

• 𝑃 +|˥𝑐𝑎𝑛𝑐𝑒𝑟 = 0.03      𝑃 −|˥𝑐𝑎𝑛𝑐𝑒𝑟 = 0.97 
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Example - Does patient have cancer or not? 

• Suppose we now observe a new patient for whom the lab test returns a positive 

result.  

• Should we diagnose the patient as having cancer or not? 

𝑃 ℎ 𝐷 =  
𝑃 𝐷 ℎ 𝑃(ℎ)

𝑃(𝐷)
 

𝑃 𝑐𝑎𝑛𝑐𝑒𝑟 + = 𝑃 + 𝑐𝑎𝑛𝑐𝑒𝑟 ∗ 𝑃 𝑐𝑎𝑛𝑐𝑒𝑟 = 0.98 ∗ 0.008 = 0.0078   

𝑃 ˥𝑐𝑎𝑛𝑐𝑒𝑟 + = 𝑃 + ˥𝑐𝑎𝑛𝑐𝑒𝑟 ∗ 𝑃 ˥𝑐𝑎𝑛𝑐𝑒𝑟 = 0.03 ∗ 0.992 = 0.0298   

ℎ𝑀𝐴𝑃 = ˥𝑐𝑎𝑛𝑐𝑒𝑟 
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Example - Does patient have cancer or not? 

• Suppose we now observe a new patient for whom the lab test returns a negative 

result.  

• Should we diagnose the patient as having cancer or not? 

𝑃 ℎ 𝐷 =  
𝑃 𝐷 ℎ 𝑃(ℎ)

𝑃(𝐷)
 

𝑃 𝑐𝑎𝑛𝑐𝑒𝑟 − = 𝑃 − 𝑐𝑎𝑛𝑐𝑒𝑟 ∗ 𝑃 𝑐𝑎𝑛𝑐𝑒𝑟 = 0.02 ∗ 0.008 = 0.00016   

𝑃 ˥𝑐𝑎𝑛𝑐𝑒𝑟 − = 𝑃 − ˥𝑐𝑎𝑛𝑐𝑒𝑟 ∗ 𝑃 ˥𝑐𝑎𝑛𝑐𝑒𝑟 = 0.97 ∗ 0.992 = 0. 96224  

ℎ𝑀𝐴𝑃 = ˥𝑐𝑎𝑛𝑐𝑒𝑟 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

CSE, HIT, Nidasoshi



Brute-Force Bayes Concept Learning 

• Assume the learner considers some finite hypothesis space H defined over the 

instance space X. 

• Here the task is to learn some target concept c : X  {0,1}. 

• As usual, we assume that the learner is given some sequence of training examples 

(<x1, d1>, <x2, d2>, <x3, d3>, . . <xm, dm>,) where xi is some instance from X and 

where di is the target value of xi. 

• To simplify the discussion in this section, we assume the sequence of instances 

(x1 . . . xm) is held fixed, so that the training data D can be written simply as the 

sequence of target values D = (d1 . . . Dm) 
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Brute-Force Bayes Concept Learning 
• BRUTE-FORCE MAP LEARNING algorithm 
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Brute-Force Bayes Concept Learning 

• BRUTE-FORCE MAP LEARNING algorithm 

 

• This algorithm may require significant computation, because it applies Bayes 

theorem  to each hypothesis in H to calculate P(h|D ) . 

– While this is impractical for large hypothesis spaces, 

– The algorithm is still of interest because it provides a standard against which 

we  may judge the performance of other concept learning algorithms. 
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Brute-Force Bayes Concept Learning 

• BRUTE-FORCE MAP LEARNING algorithm 

• Brute Force MAP learning algorithm must specify values for P(h) and P(D|h). 

• P(h) and P(D|h) must be chosen to be consistent with the assumptions: 

1.The training data D is noise free. 

2.The target concept c is contained in the hypothesis space H 

3.We have no a priori reason to believe that any hypothesis is more probable than 

any other. 
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Brute-Force Bayes Concept Learning 

• Given these assumptions, what values should we specify for P(h)?  

• Given no prior knowledge that one hypothesis is more likely than another, it is 

reasonable to assign the same prior probability to every hypothesis h in H.  

• Furthermore, because we assume the target concept is contained in H we should 

require that these prior probabilities sum to 1.  

• Together these constraints imply that we should choose 
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Brute-Force Bayes Concept Learning 

• What choice shall we make for P(D|h)?  

• P(D|h) is the probability of observing the target values D = <d1 . . .dm> for the 

fixed set of instances <X1 . . . Xm>. 

• Since we assume noise-free training data, the probability of observing 

classification di given h is just 1 if di = h(xi) and 0 if di != h(xi).  

• Therefore, 

 

• In other words, the probability of data D given hypothesis h is 1 if D is consistent 

• with h, and 0 otherwise. 
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Brute-Force Bayes Concept Learning 
• Given these choices for P(h) and for P(D|h) we now have a fully-defined problem for 

the above BRUTE-FORCE MAP LEARNING agorithm.  

• Let us consider the first step of this algorithm, which uses Bayes theorem to compute 

the posterior probability P(h|D) of each hypothesis h given the observed training 

data D. 

 

• First consider the case where h is inconsistent with the training data D. We know that 

P(D)h) to be 0 when h is inconsistent with D, we have, 

 

 

• The posterior probability of a hypothesis inconsistent with D is zero. 
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Brute-Force Bayes Concept Learning 
• Now consider the case where h is consistent with D. we know that P(Dlh) to be 1 

when h is consistent with D, we have 

 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

CSE, HIT, Nidasoshi



Brute-Force Bayes Concept Learning 
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Brute-Force Bayes Concept Learning 
• To summarize, Bayes theorem implies that the posterior probability P(h|D) 

• under our assumed P(h) and P(D|h) is, 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

• Many learning approaches such as neural network learning, linear  regression, 

and polynomial curve fitting try to learn a continuous-valued target function. 

• Under certain assumptions any learning algorithm that minimizes  the squared 

error between the output hypothesis predictions and  the training data will 

output a MAXIMUM LIKELIHOOD HYPOTHESIS. 

• The significance of this result is that it provides a Bayesian justification  (under 

certain assumptions) for many neural network and other curve  fitting methods 

that attempt to minimize the sum of squared errors over  the training data. 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

• Learner L considers an instance space X and a hypothesis space H consisting of some  
class of real-valued functions defined over X. 

• The problem faced by L is to learn an unknown target function f drawn from H. 

• A set of m training examples is provided, where the target value of each example is  
corrupted by random noise drawn according to a Normal probability distribution 

• Each training example is a pair of the form (xi, di) where di = f (xi) + ei. 

– Here f(xi) is the noise-free value of the target function and ei is a random variable 
representing the noise. 

– It is assumed that the values of the ei are drawn independently and that they are  
distributed according to a Normal distribution with zero mean. 

• The task of the learner is to output a maximum likelihood hypothesis, or, 
equivalently,  a MAP hypothesis assuming all hypotheses are equally probable a 
priori. 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

• In order to find the maximum likelihood hypothesis, we start with our earlier 

definition  but using lower case p to refer to the probability density function. 

 

• We assume a fixed set of training instances (x1 . . . xm) and therefore consider the data  

D to be the corresponding sequence of target values D = (d1 . . . dm). 

• Here we can write p(D|h) as the product of the various   p(di|h) 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

 

 

 

 

• We now apply a transformation that is common in maximum likelihood calculations 

• Rather than maximizing the above complicated expression we shall choose to 

maximize its (less complicated) logarithm.  

• This is justified because ln (𝑝) is a monotonic function of p. Therefore maximizing In p 

also maximizes p. 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

 

 

• First term is constant, discard it. 

 

 

• Maximizing the negative quantity is equivalent to minimizing the corresponding  positive quantity 

 

 

• Finally, we can again discard constants that are independent of h. 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 

• The maximum likelihood hypothesis hML is the one that minimizes the sum of the  
squared errors between observed training values di  and hypothesis predictions h(xi). 

• This holds under the assumption that the observed training values di are generated 
by  adding random noise to the true target value, where this random noise is drawn  
independently for each example from a Normal distribution with zero mean. 

• Similar derivations can be performed starting with other assumed noise distributions,  
producing different results. 

• Why is it reasonable to choose the Normal distribution to characterize noise? 

– One reason, is that it allows for a mathematically straightforward analysis. 

– A second reason is that the smooth, bell-shaped distribution is a good approximation to  
many types of noise in physical systems. 

• Minimizing the sum of squared errors is a common approach in many neural 
network,  curve fitting, and other approaches to approximating real-valued functions. 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 

• The Minimum Description Length principle is motivated by interpreting the 

definition of hMap in the light of basic concepts from information theory.  

• Consider definition of hMap 

 

• which can be equivalently expressed in terms of maximizing the log2, 

 

• or alternatively, minimizing the negative of this quantity 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 
• To explain this, let us introduce a basic result from information theory: Consider the problem of 

designing a code to transmit messages drawn at random, where the probability of encountering 

message i is pi.  

• We are interested here in the most compact code; that is, we are interested in the code that 

minimizes the expected number of bits we must transmit in order to encode a message drawn at 

random.  

• Clearly, to minimize the expected code length we should assign shorter codes to messages that 

are more probable. 

• Shannon and Weaver (1949) showed that the optimal code (i.e., the code that minimizes the 

expected message length) assigns  –log2pi bits to encode message i .  

• We will refer to the number of bits required to encode message i using code C as the 

description length of message i with respect to C, which we denote by Lc(i). 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 
• Let us interpret hMAP Equation in light of the above result from coding theory. 

• - log2P(h) is the description length of h under the optimal encoding for the hypothesis 

space H.  

• In other words, this is the size of the description of hypothesis h using this optimal 

representation.  

• In our notation, LCH
(h) = - log2P(h), where CH is the optimal code for hypothesis space H. 

• -log2P(D|h) is the description length of the training data D given hypothesis h, under its 

optimal encoding.  

• In our notation, LcD|h
(Dlh) = - log2P(Dlh), where CD|h is  the optimal code for describing 

data D assuming that both the sender and receiver know the hypothesis h. 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 

• Therefore we can rewrite Equation to show that hMAP is the hypothesis h that 

minimizes the sum given by the description length of the hypothesis plus the 

description length of the data given the hypothesis. 

 

 

• where CH and CDlh are the optimal encodings for H and for D given h, respectively. 
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MINIMUM DESCRIPTION LENGTH PRINCIPLE 

• Minimum Description Length principle: 

• Choose hMDL where 

 

 

 

• The above analysis shows that if we choose C1 to be the optimal encoding of 

hypotheses CH, and if we choose C2 to be the optimal encoding CDlh then hMDL= 

hMAP 
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NAIVE BAYES CLASSIFIER 
• The Bayesian approach to classifying the new instance is to assign the most 

probable target value, vMAP given the attribute values <a1, a2 . . .an> that 

describe the instance. 

 

• We can use Bayes theorem to rewrite this expression as 

 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

CSE, HIT, Nidasoshi



NAIVE BAYES CLASSIFIER 
• One highly practical Bayesian learning method is the naive Bayes learner, often called 

the naive Bayes classijier.  

• In some domains its performance has been shown to be comparable to that of neural 

network and decision tree learning. 

• The naive Bayes classifier applies to learning tasks where each instance x is described 

by a conjunction of attribute values and where the target function f ( x ) can take on 

any value from some finite set V.  

• A set of training examples of the target function is provided, and a new instance is 

presented, described by the tuple of attribute values <al, a2…an>.  

• The learner is asked to predict the target value, or classification, for this new 

instance. 
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NAIVE BAYES CLASSIFIER - An Illustrative Example 
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NAIVE BAYES CLASSIFIER - An Illustrative Example 

• Here there are 14 training examples of the target concept PlayTennis, where each 

day is described by the attributes Outlook, Temperature, Humidity, and Wind. 

• Here we use the naive Bayes classifier and the training data from this table to 

classify the following novel instance: 
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NAIVE BAYES CLASSIFIER - An Illustrative Example 
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O utlook P N H um id ity P N

sunny 2 /9 3 /5 h igh 3 /9 4 /5

overcast 4 /9 0 no rm al 6 /9 1 /5

rain 3 /9 2 /5

T em preatu re W indy

ho t 2 /9 2 /5 true 3 /9 3 /5

m ild 4 /9 2 /5 false 6 /9 2 /5

coo l 3 /9 1 /5
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NAIVE BAYES CLASSIFIER - An Illustrative Example 

 

 

 

 

 

 

 

• Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this 
new instance 
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NAIVE BAYES CLASSIFIER - An Illustrative Example 
• Estimate conditional probabilities of each attributes {color, legs, height, smelly} for the 

species classes: {M, H} using the data given in the table.  

• Using these probabilities estimate the probability values for the new instance – 

(Color=Green, legs=2, Height=Tall, and Smelly=No). 
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No Color Legs Height Smelly Species 

1 White 3 Short Yes M 

2 Green 2 Tall No M 

3 Green 3 Short Yes M 

4 White 3 Short Yes M 

5 Green 2 Short No H 

6 White 2 Tall No H 

7 White 2 Tall No H 

8 White 2 Short Yes H 
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Color M H 

White 2/4 3/4 

Green 2/4 1/4 

Legs M H 

2 1/4 4/4 

3 3/4 0/4 

𝑃 𝑀 =
4

8
=  0.5    𝑃 𝐻 =

4

8
=  0.5 

No Color Legs Height Smelly Species 

1 White 3 Short Yes M 

2 Green 2 Tall No M 

3 Green 3 Short Yes M 

4 White 3 Short Yes M 

5 Green 2 Short No H 

6 White 2 Tall No H 

7 White 2 Tall No H 

8 White 2 Short Yes H 

Height M H 

Tall 3/4 2/4 

Short 1/4 2/4 

Smelly M H 

Yes 3/4 1/4 

No 1/4 3/4 

NAIVE BAYES CLASSIFIER 
EXAMPLE - 2 

New Instance 

(Color=Green, legs=2, Height=Tall, and Smelly=No) 
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NAIVE BAYES CLASSIFIER - EXAMPLE - 2 

𝑃 𝑀 =
4

8
=  0.5    𝑃 𝐻 =

4

8
=  0.5 

 

 

 

𝑝(𝑀|𝑁𝑒𝑤 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒) =  𝑝 𝑀 ∗ 𝑝 𝐶𝑜𝑙𝑜𝑟 = 𝐺𝑟𝑒𝑒𝑛 𝑀 ∗ 𝑝 𝐿𝑒𝑔𝑠 = 2 𝑀 ∗ 𝑝 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑎𝑙𝑙 𝑀 ∗  𝑝 𝑆𝑚𝑒𝑙𝑙𝑦 = 𝑛𝑜 𝑀  

𝑝 𝑀 𝑁𝑒𝑤 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒 =  0.5 ∗
2

4
∗

1

4
∗

3

4
 ∗

1

4
= 0.0117  

 𝑝(𝐻|𝑁𝑒𝑤 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒) =  𝑝 𝐻 ∗ 𝑝 𝐶𝑜𝑙𝑜𝑟 = 𝐺𝑟𝑒𝑒𝑛 𝐻 ∗ 𝑝 𝐿𝑒𝑔𝑠 = 2 𝐻 ∗ 𝑝 𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑡𝑎𝑙𝑙 𝐻 ∗  𝑝 𝑆𝑚𝑒𝑙𝑙𝑦 = 𝑛𝑜 𝐻  

 𝑝(𝐻|𝑁𝑒𝑤 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒) =  0.5 ∗
1

4
∗

4

4
∗

2

4
 ∗

3

4
= 0.047  
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Color M H 

White 2/4 3/4 

Green 2/4 1/4 

Legs M H 

2 1/4 4/4 

3 3/4 0/4 

Height M H 

Tall 3/4 2/4 

Short 1/4 2/4 

Smelly M H 

Yes 3/4 1/4 

No 1/4 3/4 

 𝒑(𝑯|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆) > 𝒑(𝑴|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆)  

𝑯𝒆𝒏𝒄𝒆 𝒕𝒉𝒆 𝒏𝒆𝒘 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆 𝒃𝒆𝒍𝒐𝒏𝒈𝒔 𝒕𝒐 𝑺𝒑𝒆𝒄𝒆𝒔 𝑯 
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NAIVE BAYES CLASSIFIER - AN EXAMPLE 
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NAIVE BAYES CLASSIFIER 
EXAMPLE - 3 

𝑝 𝑌𝑒𝑠 =
5

10
= 0.5 

𝑝 𝑁𝑜 =
5

10
= 0.5 

Color Yes No 

Red 3/5 2/5 

Yellow 2/5 3/5 

Type Yes No 

Sports 4/5 2/5 

SUV 1/5 3/5 

Origin Yes No 

Domestic 2/5 3/5 

Imported 3/5 2/5 

𝑷 𝒀𝒆𝒔|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 = 𝒑 𝒀𝒆𝒔 ∗ 𝑷 𝑪𝒐𝒍𝒐𝒓 = 𝑹𝒆𝒅 𝒀𝒆𝒔 ∗ 𝑷 𝑻𝒚𝒑𝒆 = 𝑺𝑼𝑽 𝒀𝒆𝒔 ∗ 𝑷 𝑶𝒓𝒊𝒈𝒊𝒏 = 𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 𝒀𝒆𝒔  

𝑷 𝒀𝒆𝒔|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 =
𝟓

𝟏𝟎
∗

𝟑

𝟓
∗

𝟏

𝟓
∗

𝟐

𝟓
=

𝟑

𝟏𝟐𝟓
= 𝟎. 𝟎𝟐𝟒 

 

𝑷 𝑵𝒐|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 = 𝒑 𝑵𝒐 ∗ 𝑷 𝑪𝒐𝒍𝒐𝒓 = 𝑹𝒆𝒅 𝑵𝒐 ∗ 𝑷 𝑻𝒚𝒑𝒆 = 𝑺𝑼𝑽 𝑵𝒐 ∗ 𝑷 𝑶𝒓𝒊𝒈𝒊𝒏 = 𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄 𝑵𝒐  

𝑷 𝑵𝒐|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 =
𝟓

𝟏𝟎
∗

𝟐

𝟓
∗

𝟑

𝟓
∗

𝟑

𝟓
=

𝟗

𝟏𝟐𝟓
= 𝟎. 𝟎𝟕𝟐 

𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆 = (𝑹𝒆𝒅, 𝑺𝑼𝑽, 𝑫𝒐𝒎𝒆𝒔𝒕𝒊𝒄) 

𝑷 𝑵𝒐|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆  > 𝑷 𝒀𝒆𝒔|𝑵𝒆𝒘 𝑰𝒏𝒔𝒕𝒂𝒏𝒄𝒆  

𝑵𝒐 CSE, HIT, Nidasoshi
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NAIVE BAYES CLASSIFIER - AN EXAMPLE: LEARNING TO CLASSIFY TEXT 

Consider a football game between two rival teams, say team A and team B. Suppose team A wins 

65% of the time and team B wins the remaining matches. Among the games won by team A, only 

35% of them comes from playing at team B’s football field. On the other hand, 75% of the victories 

for team B are obtained while playing at home.  

1. If team B is to host the next match between the two teams, what is the probability that it will 

emerge as the winner? 

2. If team B is to host the next match between the two teams, who will emerge as the winner? 

Solution: 

Probability that team A wins is P(YA) = 0.65. 

Probability that team B wins is P(YB) = 1 − P(YA) = 0.35 

Probability that team B hosted the match it had won is P(XB|YB) = 0.75.  

Probability that team B hosted the match won by team A is P(XB|YA) = 0.35. 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

Y – Winning football match 
X – Hosting football match 
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NAIVE BAYES CLASSIFIER - AN EXAMPLE: LEARNING TO CLASSIFY TEXT 

The above question can be solved by computing P(YB|XB), which is the conditional probability 

that team B wins the next match it hosts. Using the Bayes theorem, we obtain: 

𝑃(𝑌𝐵|𝑋𝐵)  =
𝑃 𝑋𝐵 𝑌𝐵 ×  𝑃 𝑌𝐵

𝑃 𝑋𝐵

 

                               =
𝑃 𝑋

𝐵
𝑌

𝐵
× 𝑃 𝑌

𝐵

𝑃 𝑋
𝐵

𝑌
𝐵

𝑃 𝑌
𝐵

+ 𝑃 𝑋
𝐵

𝑌
𝐴

𝑃 𝑌
𝐴

 

                     =
0.75 × 0.35 

0.75 × 0.35 + 0.35 × 0.65
=  0.5357 
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1. If team B is to host the next match between the two teams, what is the probability that it 

will emerge as the winner? 

Solution: 

      𝑃 𝑌𝐵 𝑋𝐵 = 𝑃 𝑋
𝐵

𝑌
𝐵

× 𝑃 𝑌
𝐵

𝑃 𝑋
𝐵

 

  =
𝑃 𝑋

𝐵
𝑌

𝐵
× 𝑃 𝑌

𝐵

𝑃 𝑋
𝐵

𝑌
𝐴

𝑃 𝑌
𝐴

 
+ 𝑃 𝑋

𝐵
𝑌

𝐵
𝑃 𝑌

𝐵
 

  =
0.75 × 0.35 

0.35 × 0.65 + 0.75 × 0.35
 

  =  0.5357 

NAIVE BAYES CLASSIFIER EXAMPLE – 4  

Probability that team A wins is P(YA) = 0.65. 

Probability that team B wins is P(YB) = 1 − P(YA) = 

0.35 

Probability that team B hosted the match it had 

won is P(XB|YB) = 0.75.  

Probability that team B hosted the match won by 

team A is P(XB|YA) = 0.35. 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

CSE, HIT, Nidasoshi



2. If team B is to host the next match between the two teams, who will emerge as the 

winner? 

Solution: 

      𝑃 𝑌𝐴 𝑋𝐵 = 𝑃 𝑋
𝐵

𝑌𝐴 × 𝑃 𝑌
𝐴

𝑃 𝑋
𝐵

 

  =
𝑃 𝑋

𝐵
𝑌

𝐴
× 𝑃 𝑌𝐴

𝑃 𝑋
𝐵

𝑌
𝐴

𝑃 𝑌
𝐴

 
+ 𝑃 𝑋

𝐵
𝑌

𝐵
𝑃 𝑌

𝐵
 

  =
0.35 × 0.65 

0.35 × 0.65 + 0.75 × 0.35
 

  =  0.4642 

NAIVE BAYES CLASSIFIER EXAMPLE – 4  

Probability that team A wins is P(YA) = 0.65. 

Probability that team B wins is P(YB) = 1 − P(YA) = 

0.35 

Probability that team B hosted the match it had 

won is P(XB|YB) = 0.75.  

Probability that team B hosted the match won by 

team A is P(XB|YA) = 0.35. 
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BAYESIAN BELIEF NETWORKS 

• Bayesian networks (BN) are probabilistic graphical models that are based on 

directed acyclic graphs.  

• They provide a tool to deal with two problems: uncertainty and complexity.  

• Hence, they provide a compact representation of joint probability distributions 

using a combination of graph theory and probability theory.  

• The graph structure specifies statistical dependencies among the variables and 

the local probabilistic models specify how these variables are combined. 
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BAYESIAN BELIEF NETWORKS 

• The naive Bayes classifier makes significant use of the assumption that the values 

of the attributes a1 . . .an are conditionally independent given the target value v.  

• This assumption dramatically reduces the complexity of learning the target 

function  

• A Bayesian belief network describes the probability distribution governing a set of 

variables by specifying a set of conditional independence assumptions along with 

a set of conditional probabilities  

• Bayesian belief networks allow stating conditional independence assumptions 

that apply to subsets of the variables 
Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 
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BAYESIAN BELIEF NETWORKS 
• Consider an arbitrary set of random variables Y1 . . . Yn , where each variable Yi can take on 

the set of possible values V(Yi).  

• The joint space of the set of variables Y to be the cross product V(Y1) x V(Y2) x. . . V(Yn).  

• In other words, each item in the joint space corresponds to one of the possible 

assignments of values to the tuple of variables (Y1 . . . Yn). The probability distribution over 

this joint' space is called the joint probability distribution.  

• The joint probability distribution specifies the probability for each of the possible variable 

bindings for the tuple (Y1 . . . Yn).  

• A Bayesian belief network describes the joint probability distribution for a set of variables.  
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BAYESIAN BELIEF NETWORKS 
• Let X, Y, and Z be three discrete-valued random variables.  

• We say that X is conditionally independent of Y given Z if the probability distribution 

governing X is independent of the value of Y given a value for Z; that is, if 

 

 

 

• We say that the set of variables X1 . . . Xi is conditionally independent of the set of 

variables Y1 . . . Ym given the set of variables Z1 . . . Zn, if 
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BAYESIAN BELIEF NETWORKS - REPRESENTATION 

• The joint probability for any desired assignment of values (y1, . . . , yn) to the 

tuple of network variables (Y1 . . . Yn) can be computed by the formula 

 

 

• where Parents(Yi) denotes the set of immediate predecessors of Yi in the 

network. 

• Note the values of P(yi|Parents(Yi)) are precisely the values stored in the 

conditional probability table associated with node Yi. 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 
• You have a new burglar alarm installed at home. 

• It is fairly reliable at detecting burglary, but also sometimes responds to minor 

earthquakes. 

• You have two neighbors, John and Merry , who promised to call you at work when 

they hear the alarm. 

• John always calls when he hears the alarm, but sometimes confuses telephone 

ringing with the alarm and calls too. 

• Merry likes loud music and sometimes misses the alarm. 

• Given the evidence of who has or has not called, we would like to estimate the 

probability of a burglary. 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 

1. What is the probability that the 

alarm has sounded but neither a 

burglary nor an earthquake has 

occurred, and both John and Merry 

call? 

Solution: 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

P(j  m  a  b  e)  = P(j | a) P(m | a) P(a | b, e) P(b) P(e)  

                                            = 0.90 × 0.70 × 0.001 × 0.999 × 0.998 

                                            = 0.00062 

CSE, HIT, Nidasoshi



BAYESIAN BELIEF NETWORKS - EXAMPLE 

2. What is the probability that John call? 

 

Solution: 
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P(j)  = P(j | a) P(a) + P(j |  a) P(a)  

    = P(j|a){P(a|b,e)*P(b,e)+P(a|b,e)*P(b,e)+P(a|b,e)*P(b,e)+P(a|b,e)*P(b,e)}      

   + P(j|a){P(a|b,e)*P(b,e)+P(a|b,e)* P(b,e)+P(a|b,e)* P(b,e)+P(a|b, e)*   

      P(b, e)} 

  = 0.90 * 0.00252 + 0.05 * 0.9974 = 0.0521 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 

• Suppose, we are given for the evidence variables E1,…,Em, their 

values e1,…,em, and we want to predict whether the query variable X 

has the value x or not.  

• For this we compute and compare the following: 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 
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=
1

(P(x,e1,…em) + P(¬x,e1,…em))
 

CSE, HIT, Nidasoshi



BAYESIAN BELIEF NETWORKS - EXAMPLE 
3. What is the probability that there is a burglary given that John and 
Merry calls? 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 
3. What is the probability that there is a burglary given that John and 
Merry calls? 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

P(b | j,m) =  P(b) a P(j|a)P(m|a) e P(a|b,e) P(e)  

=  P(b) a P(j|a) P(m|a) {P(a|b,e)P(e) + P(a|b,e)P(e)}  

=  P(b) [ P(j|a)P(m|a) {P(a|b,e)P(e) + P(a|b,e)P(e)}  

  + P(j|a)P(m|a) {P(a|b,e)P(e) + P(a|b,e)P(e)}] 

=  * .001*(.9*.7*(.95*.002 + .94*.998) +.05*.01*(.05*.002 + .71*.998) ) 

=  * .00059 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 
3. What is the probability that there is a burglary given that John and 
Merry calls? 

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

P(b | j,m) =  P(b) a P(j|a)P(m|a)eP(a|b,e)P(e)  

=  P(b) a P(j|a)P(m|a) { P(a|b,e)P(e) + P(a|b,e)P(e)}  

=  P(b) [ P(j|a)P(m|a) { P(a|b,e)P(e) + P(a|b,e)P(e) }  

  + P(j|a)P(m|a) { P(a|b,e)P(e) + P(a|b,e)P(e) }] 

=  * .999*(.9*.7*(.29*.002 + .001*.998) +.05*.01*(.71*.002 + .999*.998) ) 

=  * .0015 
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BAYESIAN BELIEF NETWORKS - EXAMPLE 
3. What is the probability that there is a burglary given that John and 
Merry calls?  

Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 

 = 1/(.00059 + .0015)  

      =  478.5 

P(b | j,m) = 478.5 * .00059 

                = 0.28 

P(b | j,m) = 478.5 * .0015 

                   = 0.72 

CSE, HIT, Nidasoshi
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K-Means Algorithm for Clustering 

• kMeans algorithm is an unsupervised learning algorithm 

• Given a data set of items, with certain features, and values for these 

features, the algorithm will categorize the items into k groups or clusters of 

similarity.  

• To calculate the similarity, we can use the Euclidean distance, 

Manhattan distance, Hamming distance, Cosine distance as measurement. 
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K-Means Algorithm for Clustering 
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K-Means Algorithm for Clustering 

Here is the pseudocode for implementing a K-means algorithm. 

Input: Algorithm K-Means (K number of clusters, D list of data points) 

1. Choose K number of random data points as initial centroids (cluster 

centers).  

2. Repeat till cluster centers stabilize: 

a. Allocate each point in D to the nearest of Kth centroids. 

b. Compute centroid for the cluster using all points in the cluster. 
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K-Means Algorithm for Clustering 
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Advantages and Disadvantages of K-Means Algorithm 

Advantages of K-Means Algorithm 

1. K-means algorithm is simple, easy to understand, and easy to implement. 

2. It is also efficient, in which the time taken to cluster K-means rises linearly with the 

number of data points. 

3. No other clustering algorithm performs better than K-means. 

 

Disadvantages of K-Means Algorithm 

1. The user needs to specify an initial value of K. 

2. The process of finding the clusters may not converge. 

3. It is not suitable for discovering clusters that are not hyper ellipsoids or hyper spheres). 
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Clustering Exercise 

X  Y  

2  4  

2  6  

5  6  

4  7  

8  3  

6  6  

5  2  

5  7  

6  3  

4  4  Dr. Mahesh G. Huddar, Department of CSE, HSIT, Nidasoshi 
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Clustering Exercise 
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Clustering Exercise 
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Clustering Exercise 

Distance to Cluster 

Number X  Y  (1, 5) (4, 1) (8, 4) 

2 4 1.41 3.61 6.00 C1 

2 6 1.41 5.39 6.32 C1 

5 6 4.12 5.10 3.61 C3 

4 7 3.61 6.00 5.00 C1 

8 3 7.28 4.47 1.00 C3 

6 6 5.10 5.39 2.83 C3 

5 2 5.00 1.41 3.61 C2 

5 7 4.47 6.08 4.24 C3 

6 3 5.39 2.83 2.24 C3 

4 4 3.16 3.00 4.00 C2 

Iteration - 1 
C1 - Seed Point1 –  (1, 5) 
C2 - Seed Point2 – (4, 1)  
C3 - Seed Point3 – ( 8, 4)  

C1 – Centroid  – (2.66, 5.66) 
C2 – Centroid  – (4.5, 3)  
C3 – Centroid  – ( 6, 5)  

𝑫 =  ((𝒙𝟐 − 𝒙𝟏)𝟐 +  𝒚𝟐 − 𝒚𝟏
𝟐) 
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K-Means Algorithm for Clustering 
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K-Means Algorithm for Clustering 
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Clustering Exercise 
Distance to Cluster 

Number X  Y  (2.66, 5.66) (4.5, 3) (6, 5) 

2 4 1.79 2.69 4.12 C1 

2 6 0.74 3.91 4.12 C1 

5 6 2.36 3.04 1.41 C3 

4 7 1.90 4.03 2.83 C1 

8 3 5.97 3.5 2.83 C3 

6 6 3.36 3.35 1 C3 

5 2 4.34 1.12 3.16 C2 

5 7 2.70 4.03 2.24 C3 

6 3 4.27 1.5 2 C2 

4 4 2.13 1.12 2.24 C2 

Iteration - 2 
C1 – Centroid  –  (2.66, 5.66) 
C2 – Centroid  – (4.5, 3)  
C3 – Centroid  – ( 6, 5)  

C1 – Centroid  – (2.66, 5.66) 
C2 – Centroid  – (5, 3)  
C3 – Centroid  – ( 6, 5.5)  
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Clustering Exercise 
Distance to Cluster 

Number X  Y  (2.66, 5.66) (5, 3) (6, 5.5) 

2 4 1.79 3.16 4.27 C1 

2 6 0.74 4.24 4.03 C1 

5 6 2.36 3.00 1.12 C3 

4 7 1.90 4.12 2.50 C1 

8 3 5.97 3.00 3.20 C2 

6 6 3.36 3.16 0.50 C3 

5 2 4.34 1.00 3.64 C2 

5 7 2.70 4.00 1.80 C3 

6 3 4.27 1.00 2.50 C2 

4 4 2.13 1.41 2.50 C2 

Iteration - 3 
C1 – Centroid  –  (2.66, 5.66) 
C2 – Centroid  – (5, 3)  
C3 – Centroid  – ( 6, 5.5)  

C1 – Centroid  – (2.66, 5.66) 
C2 – Centroid  – (5.75, 3)  
C3 – Centroid  – ( 5.33, 6.33)  
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Clustering Exercise 

Distance to Cluster 

Number X  Y  (2.66, 5.66) (5.75, 3) (5.33, 6.33) 

2 4 1.79 3.88 4.06 C1 

2 6 0.74 4.80 3.35 C1 

5 6 2.36 3.09 0.47 C3 

4 7 1.90 4.37 1.49 C3 

8 3 5.97 2.25 4.27 C2 

6 6 3.36 3.01 0.75 C3 

5 2 4.34 1.25 4.34 C2 

5 7 2.70 4.07 0.75 C3 

6 3 4.27 0.25 3.40 C2 

4 4 2.13 2.02 2.68 C2 

Iteration - 4 
C1 – Centroid  –  (2.66, 5.66) 
C2 – Centroid  – (5.75, 3)  
C3 – Centroid  – ( 5.33, 6.33)  

C1 – Centroid  – (2, 5) 
C2 – Centroid  – (5.75, 3)  
C3 – Centroid  – ( 5, 6.5)  
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Clustering Exercise 

Distance to Cluster 

Number X  Y  (2, 5) (5.75, 3) (5, 6.5) 

2 4 1.00 3.88 3.91 C1 

2 6 1.00 4.80 3.04 C1 

5 6 3.16 3.09 0.50 C3 

4 7 2.83 4.37 1.12 C3 

8 3 6.32 2.25 4.61 C2 

6 6 4.12 3.01 1.12 C3 

5 2 4.24 1.25 4.50 C2 

5 7 3.61 4.07 0.50 C3 

6 3 4.47 0.25 3.64 C2 

4 4 2.24 2.02 2.69 C2 

Iteration - 5 
C1 – Centroid  –  (2, 5) 
C2 – Centroid  – (5.75, 3)  
C3 – Centroid  – ( 5, 6.5)  

No movement of data Points 
Hence these are the final 
positions 
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Clustering Exercise 
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MAXIMUM LIKELIHOOD AND LEAST-SQUARED ERROR HYPOTHESES 
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EM ALGORITHM 
• In the real-world applications of machine learning, it is very common that there are many 

relevant features available for learning but only a small subset of them are observable.  

• So, for the variables which are sometimes observable and sometimes not, then we can use 

the instances when that variable is visible is observed for the purpose of learning and then 

predict its value in the instances when it is not observable. 

• The Expectation-Maximization algorithm can be used for the latent variables (variables 

that are not directly observable and are actually inferred from the values of the other 

observed variables) in order to predict their values with the condition that the general 

form of probability distribution governing those latent variables is known to us.  

• This algorithm is actually at the base of many unsupervised clustering algorithms in the 

field of machine learning. 
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EM ALGORITHM 
Let us understand the EM algorithm in detail. 

• Initially, a set of initial values of the parameters are considered.  

• A set of incomplete observed data is given to the system with the assumption that the 

observed data comes from a specific model. 

• The next step is known as “Expectation” – step or E-step. In this step, we use the observed 

data in order to estimate or guess the values of the missing or incomplete data. It is 

basically used to update the variables. 

• The next step is known as “Maximization”-step or M-step. In this step, we use the 

complete data generated in the preceding “Expectation” – step in order to update the 

values of the parameters. It is basically used to update the hypothesis. 

• Now, in the fourth step, it is checked whether the values are converging or not, if yes, then 

stop otherwise repeat step-2 and step-3 i.e. “Expectation” – step and “Maximization” – 

step until the convergence occurs. 
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EM ALGORITHM 

Algorithm: 

1. Given a set of incomplete data, consider a set of starting parameters. 

2. Expectation step (E – step): Using the observed available data of the dataset, 

estimate (guess) the values of the missing data. 

3. Maximization step (M – step): Complete data generated after the expectation 

(E) step is used in order to update the parameters. 

4. Repeat step 2 and step 3 until convergence. 
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EM ALGORITHM 
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EM ALGORITHM 

Advantages of EM algorithm – 

• It is always guaranteed that likelihood will increase with each iteration. 

• The E-step and M-step are often pretty easy for many problems in terms of 

implementation. 

• Solutions to the M-steps often exist in the closed form. 
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EM ALGORITHM 

Disadvantages of EM algorithm – 

• It has slow convergence. 

• It makes convergence to the local optima only. 

• It requires both the probabilities, forward and backward (numerical optimization 

requires only forward probability). 
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Estimating Means of k Gaussians 

• The easiest way to introduce the EM algorithm is via an example.  

• Consider a problem in which the data D is a set of instances generated by a probability 

distribution that is a mixture of k distinct Normal distributions.  

• This problem setting is illustrated in Figure for the case where k = 2 and where the 

instances are the points shown along the x axis.  

• Each instance is generated using a two-step process. 
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Estimating Means of k Gaussians 
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Estimating Means of k Gaussians 
• The EM algorithm can be applied in many settings where we wish to estimate some set of 

parameters θ that describe an underlying probability distribution, given only the observed 

portion of the full data produced by this distribution.  

• For example the parameters of interest were θ = (µ1, µ2), and the full data were the triples 

(xi, zi1, zi2) of which only the xi were observed.  

• In general let X = {x1, . . . , xm} denote the observed data in a set of m independently 

drawn instances, let Z = {z1, . . . , zm} denote the unobserved data in these same instances, 

and let Y = X U Z denote the full data. 
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Estimating Means of k Gaussians 

• Note the unobserved Z can be treated as a random variable whose probability distribution 

depends on the unknown parameters θ and on the observed data X.  

• Similarly, Y is a random variable because it is defined in terms of the random variable Z. 

• We use h to denote the current hypothesized values of the parameters θ, and h' to denote 

the revised hypothesis that is estimated on each iteration of the EM algorithm. 
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Estimating Means of k Gaussians 
• The EM algorithm searches for the maximum likelihood hypothesis h' by seeking the h' that 

maximizes E[ln P(Y |h’)].  

• This expected value is taken over the probability distribution governing Y , which is determined 

by the unknown parameters θ.  

• Let us consider exactly what this expression signifies.  

• First, P(Y|h’)  is the likelihood of the full data Y given hypothesis h'. It is reasonable that we wish 

to find a h' that maximizes some function of this quantity.  

• Second, maximizing the logarithm of this quantity In P(Y|h’) also maximizes P(Ylh’), as we have 

discussed on several occasions already.  

• Third, we introduce the expected value E[ln P(Ylh’)] because the full data Y is itself a random 

variable. 
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Estimating Means of k Gaussians 
• Given that the full data Y is a combination of the observed data X and unobserved data Z, 

we must average over the possible values of the unobserved Z, weighting each according 

to its probability.  

• In other words we take the expected value E[ln P(Ylh')] over the probability distribution 

governing the random variable Y. 

• The distribution governing Y is determined by the completely known values for X, plus the 

distribution governing Z. 
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Estimating Means of k Gaussians 
• What is the probability distribution governing Y?  

• In general we will not know this distribution because it is determined by the parameters θ 

that we are trying to estimate.  

• Therefore, the EM algorithm uses its current hypothesis h in place of the actual parameters 

θ to estimate the distribution governing Y.  

• Let us define a function Q(h’|h) that gives E[ln P(Y lh')] as a function of h', under the 

assumption that θ = h and given the observed portion X of the full data Y. 
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Estimating Means of k Gaussians 
• In its general form, the EM algorithm repeats the following two steps until convergence: 

 

• Step 1: Estimation (E) step: Calculate Q(h’|h) using the current hypothesis h and the 
observed data X to estimate the probability distribution over Y. 

 

 

 

• Step 2: Maximization (M) step: Replace hypothesis h by the hypothesis h' that maximizes 
this Q function. 
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Derivation of the k Means Algorithm 
• The k-means problem is to estimate the parameters θ = ( µ1, µ2) that define the means of the k 

Normal distributions. We are given the observed data X = { < xi > } . 

• The hidden variables Z = { < z i1 ,. . . , zik>} in this case indicate which of the k Normal 

distributions was used to generate xi. 

• To apply EM we must derive an expression for Q(h|h’) that applies to our k-means problem.  

• First, let us derive an expression for lnp(Y|h’), 

• Note the probability p(yi |h') of a single instance yi = (xi,zi1 , . . .zik) of the full data can be 

written, 
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Derivation of the k Means Algorithm 
• Given this probability for a single instance p(yi|h’), the logarithm of the probability In 

P(Y|h’) for all m instances in the data is, 
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Derivation of the k Means Algorithm 
• Finally we must take the expected value of this In P(Y|h’) over the probability distribution 

governing Y 

 

 

 

 

 

• To summarize, the function Q(h’|h) for the k means problem is 
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Derivation of the k Means Algorithm 
• Thus, the first (estimation) step of the EM algorithm defines the Q function based on the 

estimated E[zij] terms.  

• The second (maximization) step then finds the values µ1’, …. µn’ that maximize this Q 
function.  

• In the current case 

 

 

 

 

 

• Thus, the maximum likelihood hypothesis here minimizes a weighted sum of squared 
errors, where the contribution of each instance xi to the error that defines µj’ is weighted 
by E[zij]. 
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