
ACA (15CS72) MODULE-5 
 
 
 
 
 

6.0 Objective 
 

6.1 Introduction 
 

6.2 Vector Processors 
 

6.2.1 functional units, 
 

6.2.2 vector instruction, 
 

6.2.3 processor implementation, 
 

6.3 Vector memory 
 

6.3.1 modeling vector memory performance, 
 

6.3.2 Gamma Binomial model. 
 

6.4 Vector processor speedup 
 

6.5 Multiple issue processors 
 

6.6 Self assignment questions 
 

6.7 Reference. 
 

6.0 Objective 
 

In this lesson we will about various types of concurrent processor. To study vector 

processor how pipelining is implemented in vector processor through the instruction 

format, functional unit. To provides a general overview of the architecture of a vector 

computer which includes an introduction to vectors and vector arithmetic, a discussion of 

performance measurements used to evaluate this type of machine. Various models for 

memory organization for the vector processor are also discussed. We will also study 

about multiple instruction issue machine which include VLIW, EPIC etc . 

6.1 Introduction 
 

The Concurrent Processors must be able to execute multiple instructions at the same time. 

Concurrent processors must be able to make simultaneous accesses to memory and to 

simultaneously execute multiple operations. Concurrent processors depend on 

sophisticated compilers to detect various types of instruction level parallelism that exist 

within a program. They are classified as 
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 Vector processors 
 

 SIMD and small clustered MIMD 

 Multiple instruction issue machines 

Superscalar (run time schedule) 

VLIW (compile time schedule) 

EPIC 

Hybrids 
 

A Vector processor is a processor that can operate on an entire vector in one instruction. 

The operands to the instructions are complete vectors instead of one element. 

Vector processors reduce the fetch and decode bandwidth as the numbers of instructions 

fetched are less. 

 
 
 
 
 
 
 
 
 

They also exploit data parallelism in large scientific and multimedia applications. Based 
 

on how the operands are fetched, vector processors can be divided into two categories - in 
 

memory-memory architecture operands are directly streamed to the functional units from 
 

the memory and results are written back to memory as the vector operation proceeds. In 
 

vector-register architecture, operands are read into vector registers from which they are 
 

fed to the functional units and results of operations are written to vector registers. 
 

Many performance optimization schemes are used in vector processors. Memory banks 
 

are used to reduce load/store latency. Strip mining is used to generate code so that vector 
 

operation is possible for vector operands whose size is less than or greater than the size of 
 

vector registers. 
 

Various techniques are used for fast accessing these include 
 

— Vector chaining - the equivalent of forwarding in vector processors - is used 
 

in case of data dependency among vector instructions. 
 

— Special scatter and gather instructions are provided to efficiently operate on 
 

sparse matrices. 
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Instruction set has been designed with the property that all vector arithmetic instructions 
 

only allow element N of one vector register to take part in operations with element N 
 

from other vector registers. This dramatically simplifies the construction of a highly 
 

parallel vector unit, which can be structured as multiple parallel lanes. As with a traffic 
 

highway, we can increase the peak throughput of a vector unit by adding more lanes. 
 

Adding multiple lanes is a popular technique to improve vector performance as it requires 
 

little increase in control complexity and does not require changes to existing machine 
 

code. The reason behind the declining popularity of vector processors is their cost as 
 

compared to multiprocessors and superscalar processors. The reasons behind high cost of 
 

vector processors are 
 

• Vector processors do not use commodity parts. Since they sell very few copies, design 
 

cost dominates overall cost. 
 

• Vector processors need high speed on-chip memories which are expensive. 
 

• It is difficult to package the processors with such high speed. In the past, vector 
 

manufactures have employed expensive designs for this. 
 

• There have been few architectural innovations compared to superscalar processors to 
 

improve performance keeping the cost low. 
 

Vector processing has the following semantic advantages. 
 

• Programs size is small as it requires less number of instructions. Vector instructions also 

hide many branches by executing a loop in one instruction. 

• Vector memory access has no wastage like cache access. Every data item requested by 

the processor is actually used. 

• Once a vector instruction starts operating, only the functional unit(FU) and the register 

buses feeding it need to be powered. Fetch unit, de-code unit, ROB etc can be powered 

off. This reduces the power usage. 

6.2 Vector processor 
 

The vector computer or vector processor is a machine designed to efficiently handle 

arithmetic operations on elements of arrays, called vectors. Such machines are especially 

useful in high-performance scientific computing, where matrix and vector arithmetic are 

quite common. The Cray Y-MP and the Convex C3880 are two examples of vector 

processors used today. 
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Vectors and vector arithmetic 
 

A vector, v, is a list of elements 
 

v = ( v1, v2, v3, ..., vn ), 
 

transposed. The length of a vector is defined as the number of elements in that vector; so 
 

the length of v is n. As far as a vector to a computer program, we declare it as an 1-D 
 

array. In Fortran, we declare v by the statement 

DIMENSION V(N) 

where N is an integer variable holding the value of the length of the vector. 
 

Arithmetic operations may be performed on vectors. Two vectors are added by adding 

corresponding elements: 

s = x + y = ( x1+y1, x2+y2, ..., xn+yn ). 

In Fortran, vector addition could be performed by the following code 

DO I=1,N 
 

S(I) = X(I) + Y(I) 

ENDDO 

where s is the vector representing the final sum and S, X, and Y have been declared as 

arrays of dimension N. This operation is sometimes called elementwise addition. 

Similarly, the subtraction of two vectors, x - y, is an elementwise operation. 

The stages of a floating-point operation 
 

Consider the steps or stages involved in a floating-point addition on a sequential machine 

with IEEE arithmetic hardware: s = x + y. 

  [A:] The exponents of the two floating-point numbers to be added are compared 

to find the number with the smallest magnitude. 

 [B:] The significand of the number with the smaller magnitude is shifted so that 

the exponents of the two numbers agree. 

 [C:] The significands are added. 
 

 [D:] The result of the addition is normalized. 
 

  [E:] Checks are made to see if any floating-point exceptions occurred during the 

addition, such as overflow. 

 [F:] Rounding occurs. 
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Figure 6.2 : An example showing the stages of a floating-point addition: s = x + y. 
 

Figure 6.2 shows the step-by-step example of such an addition. The numbers to be added 
 

are x = 1234.00 and y = -567.8. Now consider this scalar addition performed on 

all the elements of a pair of vectors (arrays) of length n. Each of the six stages needs to 

be executed for every pair of elements. If each stage of the execution takes t units of 

time, then each addition takes 6*t units of time (not counting the time required to fetch 

and decode the instruction itself or to fetch the two operands). So the number of time 

units required to add all the elements of the two vectors in a serial fashion would be Ts 

= 6*n*t. These execution stages are shown in figure 6.3 with respect to time. 

 

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 
 
 

Step 
 
 

 

A 
x1 + x2 + 
 

y1 y2 
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B 
x1 + x2 + 
 

y1 y2 
 
 

 

C 
x1 + 
 

y1 
 
 

 

D 
x1 + 
 

y1 
 
 

 

E 
x1 + 
 

y1 
 
 

 

F 
x1 + 
 

y1 
 
 
 
 

Figure 6.3 : Scalar floating-point addition of vector elements. 

An arithmetic pipeline 

Suppose the addition operation described in the last subsection is pipelined; that is, one of 

the six stages of the addition for a pair of elements is performed at each stage in the 

pipeline. Each stage of the pipeline has a separate arithmetic unit designed for the 

operation to be performed at that stage. Once stage A has been completed for the first 

pair of elements, these elements can be moved to the next stage (B) while the second pair 

of elements moves into the first stage (A). Again each stage takes t units of time. Thus, 

the flow through the pipeline can be viewed as shown in figure 6.4 

 

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 
 
 

Step 
 
 

 

A 
x1 + x2 + x3 + x4 + x5 
 

y1 y2 y3 y4 y5 

+ x6 + x7 + x8 + 
 

y6 y7 y8 
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B 
x1 + x2 + x3 + x4 + x5 
 

y1 y2 y3 y4 y5 

+ x6 + x7 + 
 

y6 y7 
 
 

 

C 
x1 + x2 + x3 + x4 + x5 + x6 + 
 

y1 y2 y3 y4 y5 y6 
 
 

 

D 
x1 + x2 + x3 + x4 + x5 + 
 

y1 y2 y3 y4 y5 
 
 

 

E 
x1 + x2 + x3 + x4 + 
 

y1 y2 y3 y4 
 
 

 

F 
x1 + x2 + x3 + 
 

y1 y2 y3 
 
 
 
 

Figure 6.4: Pipelined floating-point addition of vector elements. 
 

Observe that it still takes 6*t units of time to complete the sum of the first pair of 
 

elements, but that the sum of the next pair is ready in only t more units of time. And this 
 

pattern continues for each succeeding pair. This means that the time, Tp, to do the 

pipelined addition of two vectors of length n is 

Tp = 6*t + (n-1)*t = (n + 5)*t. 
 

The first 6*t units of time are required to fill the pipeline and to obtain the first result. 

After the last result, xn + yn, is completed, the pipeline is emptied out or flushed. 

Comparing the equations for Ts and Tp, it is clear that 

(n + 5)*t < 6*n*t, for n > 1. 
 

Thus, this pipelined version of addition is faster than the serial version by almost a factor 

of the number of stages in the pipeline. This is an example of what makes vector 

processing more efficient than scalar processing. For large n, the pipelined addition for 

this sample pipeline is about six times faster than scalar addition. 

6.2.1 Vector Functional unit 

Vector Processing Requirements 
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A vector operand contains an ordered set of n elements, where n is called the length of 
 

the vector. Each element in a vector is a scalar quantity, which may be a floating point 
 

number, an integer, a logical value or a character. A vector processor consists of a scalar 
 

processor and a vector unit, which could be thought of as an independent functional unit 
 

capable of efficient vector operations. 
 

Vector Hardware 
 

Vector computers have hardware to perform the vector operations efficiently. Operands 

can not be used directly from memory but rather are loaded into registers and are put 

back in registers after the operation. Vector hardware has the special ability to overlap or 

pipeline operand processing. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.5 Vector Hardware 
 

Vector functional units pipelined, fully segmented each stage of the pipeline performs a 

step of the function on different operand(s) once pipeline is full, a new result is produced 

each clock period (cp). 

Pipelining 
 

The pipeline is divided up into individual segments, each of which is completely 

independent and involves no hardware sharing. This means that the machine can be 

working on separate operands at the same time. This ability enables it to produce one 

result per clock period as soon as the pipeline is full. The same instruction is obeyed 

repeatedly using the pipeline technique so the vector processor processes all the elements 

of a vector in exactly the same way. The pipeline segments arithmetic operation such as 

floating point multiply into stages passing the output of one stage to the next stage as 

input. The next pair of operands may enter the pipeline after the first stage has processed 
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the previous pair of operands. The processing of a number of operands may be carried out 
 

simultaneously. 
 

The loading of a vector register is itself a pipelined operation, with the ability to load one 
 

element each clock period after some initial startup overhead. 
 

Chaining 
 

Theoretical speedup depends on the number of segments in the pipeline so there is a 

direct relationship between the number of stages in the pipeline you can keep full and the 

performance of the code. The size of the pipeline can be increased by chaining thus the 

Cray combines more than one pipeline to increase its effective size. Chaining means that 

the result from a pipeline can be used as an operand in a second pipeline as illustrated in 

the next diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

S(I) = A * X(I) + Y(I) 
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Figure Pipeline Chaining 
 

This example shows how two pipelines can be chained together to form an effectively 

single pipeline containing more segments. The output from the first segment is fed 

directly into the second set of segments thus giving a resultant effective pipeline length of 

8. Speedup (over scalar code) is dependent on the number of stages in the pipeline. 

Chaining increases the number of stages 

Most vector architectures have more than one pipeline; they may also contain different 

types of pipelines. Some vector architectures provide greater efficiency by allowing the 

output of one pipeline to be chained directly into another pipeline. This feature is called 

chaining and eliminates the need to store the result of the first pipeline before sending it 

into the second pipeline. Figure 14.5 demonstrates the use of chaining in the computation 

of a saxpy vector operation: 

a*x + y, 
 

where x and y are vectors and a is a scalar constant. 

Vector Chaining used to compute a*x + y 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.9 Vector chaining used to compute a scalar value a times a vector x, adding the 
 

elements the resultant vector to the elements of a second vector y (of the same length). 

Chaining can double the number of floating-point operations that are done in x 

units of time. Once both the multiplication and addition pipelines have been filled, 

one floating-point multiplication and one floating-point addition (a total of two 

floating-point operations) are completed every x time units. Conceptually, it is 

possible to chain more than two functional units together, providing an even 

greater speedup. However this is rarely (if ever) done due to difficult timing 

problems. 
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6.2.2 Vector instruction /operation 
 

Vector Instructions 
 

The ISA of a scalar processor is augmented with vector instructions of the following 

types: 

Vector-vector instructions: 
 

f1: Vi -> Vj (e.g. MOVE Va, Vb) 
 

f2: Vj x Vk -> Vi (e.g. ADD Va, Vb, Vc) 

Vector-scalar instructions: 

f3: s x Vi -> Vj (e.g. ADD R1, Va, Vb) 

Vector-memory instructions: 

f4: M -> V (e.g. Vector Load) 

f5: V -> M (e.g. Vector Store) 

Vector reduction instructions: 

f6: V -> s (e.g. ADD V, s) 

f7: Vi x Vj ->s (e.g. DOT Va, Vb, s) 

Scatter and gather operations 

Sometimes, only certain elements of a vector are needed in a computation. Most vector 

processors are equipped to pick out the appropriate elements (a gather operation) and put 

them together into a vector or a vector register. If the elements to be used are in a 

regularly-spaced pattern, the spacing between the elements to be gathered is called the 

stride. For example, if the elements 

x1, x5, x9, x13, ..., x[4*floor((n-1)/4)+1] 

are to be extracted from the vector 

( x1, x2, x3, x4, x5, x6, ..., xn ) 
 

for some vector operation, we say the stride is equal to 4. A scatter operation reformats 

the output vector so that the elements are spaced correctly. Scatter and gather operations 

may also be used with irregularly-spaced data. 

f8: M x Va -> Vb (e.g. gather) 

f9: Va x Vb -> M (e.g. scatter) 

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses 

a base address and a set of indices to access from memory "few" of the elements of a 
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large vector into one of the vector registers. The scatter operation does the opposite. The 
 

masking operations allows conditional execution of an instruction based on a 
 

"masking" register. 
 

Masking instructions: 
 

fa: Va x Vm->Vb (e.g. MMOVE V1, V2, V3) 
 

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses 

a base address and a set of indices to access from memory "few" of the elements of a 

large vector into one of the vector registers. The scatter operation does the opposite. The 

masking operation allows conditional execution of an instruction based on a "masking" 

register. 

 A Boolean vector can be generated as a result of comparing two vectors, and can 

be used as a masking vector for enabling and disabling component operations in a 

vector instruction. 

 A compress instruction will shorten a vector under the control of a masking of 

vector. 

 A merge instruction combines two vectors under the control of a masking vector. 

In general machine operation suitable for pipelining should have the following properties: 

 Identical Processes (or functions) are repeatedly invoked many times, each of 

which can be subdivided into subprocesses (or sub functions) 

 Successive Operands are fed through the pipeline segments and require as few 

buffers and local controls as possible. 

 Operations executed by distinct pipelines should be able to share expensive 

resources, such as memories and buses in the system. 

  The operation code must be specified in order to select the functional unit or to 

reconfigure a multifunctional unit to perform the specified operation. 

  For a memory reference instruction, the base addresses are needed for both 

source operands and result vectors. If the operands and results are located in the 

vector register file, the designated vector registers must be specified. 

 The address increment between the elements must be specified. 
 

 The address offset relative to the base address should be specified. Using the 

base address and the offset the relative effective address can be calculated. 
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 The Vector length is needed to determine the termination of a vector instruction. 

 The Relative Vector/Scalar Performance and Amdahl Law 

The major hurdle for designing a vector unit is to ensure that the flow of data from 

memory to the vector unit will not pose a bottleneck. In particular, for a vector unit to be 

effective, the memory must be able to deliver one datum per clock cycle. This is usually 

achieved using pipelining using the C-access memory organization (concurrent access) or 

the S-access memory organization (simultaneous access), or a combination thereof. 

Vector-register vector processors 

If a vector processor contains vector registers, the elements of the vector are read from 

memory directly into the vector register by a load vector operation. The vector result of a 

vector operation is put into a vector register before it is stored back in memory by a store 

vector operation; this permits it to be used in another computation without needing to be 

reread, and it allows the store to be overlapped by other operations. On these machines, 

all arithmetic or logical vector operations are register-register operations; that is, they are 

only performed on vectors that are already in the vector registers. For this reason, these 

machines are called vector-register vector processors. 

Memory-memory vector processors 
 

Another type of vector processor allows the vector operands to be fetched directly from 

memory to the different vector pipelines and the results to be written directly to memory; 

these are called memory-memory vector processors. Because the elements of the vector 

need to come from memory instead of a register, it takes a little longer to get a vector 

operation started; this is due partly to the cost of a memory access. One example of a 

memory-memory vector processor is the CDC Cyber 205. 

Because of the ability to overlap memory accesses and the possible reuse of vector 

processors, vector-register vector processors are usually more efficient than memory-

memory vector processors. However as the length of the vectors in a computation 

increase, this difference in efficiency between the two types of architectures is 

diminished. In fact, the memory-memory vector processors may prove more efficient if 

the vectors are long enough. Nevertheless, experience has shown that shorter vectors are 

more commonly used. 

Comparison - Vector and Scalar Operations 
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A scalar operation works on only one pair of operands from the S register and returns the 
 

result to another S register whereas a vector operation can work on 64 pairs of operands 
 

together to produce 64 results executing only one instruction. Computational efficiency is 
 

achieved by processing each element of a vector identically eg initializing all the 
 

elements of a vector to zero. 
 

A vector instruction provides iterative processing of successive vector register elements 
 

by obtaining the operands from the first element of one or more V registers and 
 

delivering the result to another V register. Successive operand pairs are transmitted to a 
 

functional unit in each clock period so that the first result emerges after the start up time 
 

of the functional unit and successive results appear each clock cycle. 
 

Vector overhead is larger than scalar overhead, one reason being the vector length which 
 

has to be computed to determine how many vector registers are going to be needed (i.e., 
 

the number of elements divided by 64). 
 

Each vector register can hold up to 64 words so vectors can only be processed in 64 
 

element segments. This is important when it comes to programming as one situation to be 
 

avoided is where the number of elements to be processed exceeds the register capacity by 
 

a small amount e.g., a vector length of 65. What happens in this case is that the first 64 
 

elements are processed from one register, the 65th element must then be processed using 

a separate register, after the first 64 elements have been processed. The functional unit 

will process this element in a time equal to the start up time instead of one clock cycle 

hence reducing the computational efficiency. 

There is a sharp decrease in performance at each point where the vector length spills over 

into a new register. 

The Cray can receive a result by a vector register and retransmit it as an operand to a 

subsequent operation in the same clock period. In other words a register may be both a 

result and an operand register which allows the chaining of two or more vector operations 

together as seen earlier. In this way two or more results may be produced per clock cycle. 

Parallelism is also possible as the functional units can operate concurrently and two or 

more units may be co-operating at once. This combined with chaining, using the result of 

one functional unit as the input of another, leads to very high processing speeds. 

Scalar and vector processing examples 
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DO 10 I = 1, 3 
 

JJ(I) = KK(I)+LL(I) 
 

10 CONTINUE 
 

A generic vector processor 

Vector registers 

Some vector computers, such as the Cray Y-MP, contain vector registers. A general 

purpose or a floating-point register holds a single value; vector registers contain several 

elements of a vector at one time. For example, the Cray Y-MP vector registers contain 64 

elements while the Cray C90 vector registers hold 128 elements. The contents of these 

registers may be sent to (or received from) a vector pipeline one element at a time. 

Scalar registers 

Scalar registers behave like general purpose or floating-point registers; they hold a single 

value. However, these registers are configured so that they may be used by a vector 

pipeline; the value in the register is read once every tau units of time and put into the 

pipeline, just as a vector element is released from the vector pipeline. This allows the 

elements of a vector to be operated on by a scalar. To compute 

y = 2.5 * x, 
 

the 2.5 is stored in a scalar register and fed into the vector multiplication pipeline every 

tau units of time in order to be multiplied by each element of x to produce y. 

6.2.4 Vector computing performance 
 

For typical vector architectures, the value of tau (the time to complete one pipeline 

stage) is equivalent to one clock cycle of the machine On some machines, it may be equal 

to two or more clock cycles.. Once a pipeline like the one shown in figure 3 has been 

filled, it generates one result for each t units of time, that is, for each clock cycle. This 

means the hardware performs one floating-point operation per clock cycle. 

Let k represent the number of t time units the same sequential operation would take (or 

the number of stages in the pipeline). Then the time to execute that sequential operation 

on a vector of length n is 

Ts = k*n*t, 
 

and the time to perform the pipelined version is 
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Tp = k*t + (n-1)*t = (n + k - 1)*t. 
 

Again for n > 1, Ts > Tp. 
 

A startup time is also required; this is the time needed to get the operation going. In a 

sequential machine, there may some overhead required to set up a loop to repeat the same 

floating-point operation for an entire vector; the elements of the vector also need to be 

fetched from memory. If we let Ss be the number of t time units for the sequential 

startup time, then Ts must include this time: 

Ts = (Ss + k*n)*t. 
 

In a pipelined machine, the flow from the vector registers or from memory to the pipeline 

needs to be started; call this time quantity Sp. Another overhead cost, k*t time units, is 

the time needed to initially fill the pipeline. Hence, Tp must include the startup time for 

the pipelined operation; thus, 

Tp = (Sp + k)*t + (n - 1)*t 

or 

Tp = (Sp + k + n - 1)*t. 
 

As the length of the vector gets larger (as n goes to infinity), the startup time becomes 

negligible in both cases. This means that 

Ts --> k*n*t 

while 

Tp --> n*t. 
 

Thus, for large n, Ts is k times larger than Tp. 
 

There are a number of other terms to describe the performance of vector processors or 

vector computers. The following list introduces some of these: 

 Rn: For a vector processor, the number of Mflops obtainable for a vector of length 

n. 

 R_infinity: The asymptotic number of Mflops for a given vector computer as 

the length of the vectors gets large. This means that the startup time would be 

completely negligible. When the vectors are very long, there should be a result 

from the pipeline at every tau units of time or every clock cycle. So the number 
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of floating-point operations that can be completed in one second is 1.0/tau; 

dividing this result by one million produces the result in Mflops. 

  n_1/2: The length, n, of a vector such that Rn is equal to R_infinity / 2. 

Again for very large vectors, there should be a result from the pipeline at every 

tau units of time. So, n_1/2 represents the vector length needed to get a result 

at every 2*tau units of time or every two clock cycles. 

 n_v: The length, n, of a vector such that performing a vector operation on the n 

elements of that vector is more efficient than executing the n scalar operations 

instead. 

 

Vector Computer Performance 
 

Performance Year Clock Peak R_infinity n_1/2 

Characteristics              Cycle       Perf           (x * y)                (x * y) 

(nsec) (Mflops) (Mflops) 
 
 

Cray-1                  1976      12.5           160 

CDC Cyber 205 1980      20.0           100 

Cray X-MP          1983        9.5           

210 ... with 4 Procs       ---         ---           

840 Cray-2                  1985        4.1           

488 ... with 4 Procs       ---         ---         

1951 IBM 3090             1985      18.5           

108 ... with 8 Procs       ---         ---           

432 ETA 10                1986      10.5         

1250 ... with 8 Procs       ---         ---      

10,000 Alliant FS/8          1986 170.0               

6 ... with 8 Procs       ---         ---             47 

Cray C90              1990        4.2           

952 ... with Procs       ---         ---      

15,238 

Convex C3880 --- --- 960 

22                          18 

50                          86 

70                          53 

---                          ---

56                          83 

---                          ---

54                high 20's 

---                          ---

---                          ---

---                          ---

1                        151 

1                          23 

---                          ---

---                        650 

--- --- 
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Performance Year Clock Peak R_infinity n_1/2 

Characteristics              Cycle       Perf           (x * y)                (x * y) 

(nsec) (Mflops) (Mflops) 
 
 

Cray 3-128           1993        2.1           948                    ---                          ---

... with 4 Procs       ---         ---         3972                    ---                          --- 

 
 
 

Table 1: Performance characteristics of vector processing computers using 64-bit 

floating-point numbers. The expression (x * y) refers to the element wise multiplication 

of two vectors, x and y 
 

Table 1 provides some performance characteristics for some of the vector computers 
 

discussed later in this section. The values of R_infinity and n_1/2 are for the 

elementwise multiplication of two vectors. 

The pipeline vector computers can be divided into 2 architectural configurations 

according to where the operands are received in a vector processor. They are : 

 Memory -to- memory Architecture, in which source operands, intermediate and 

final results are retrieved directly from the main memory. 

 Register-to-register architecture, in which operands and results are retrieved 

indirectly from the main memory through the use of large number of vector or 

scalar registers. 

Pipelined Vector Processing Methods 
 

Vector computations are often involved in processing large arrays of data. By ordering 

successive computations in the array, the vector array processing can be classified into 

three types : 

 Horizontal Processing, in which vector computations are performed horizontally from 

left to right in row fashion. 

 Vertical processing, in which vector computations are carried out vertically from top to 

bottom in column fashion. 

 Vector looping, in which segmented vector loop computations are performed from left to 

right and top to bottom in a combined horizontal and vertical method. 

A simple vector summation computation illustrate these vector processing methods 
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Let { ai for 1 <= i<= n) be n scalar contstants, Xj = (X1j,X2j…… Xmj)T for j = 1,2,3 
 

….n be n column vectors and Yj = (Y1j,Y2j…… Ym)T be a column vector of m 
 

components. The computation to be performed is 
 

Y = ai.x1 + a2.x2 + …. an.xn 
 

Y1 = Z11 + Z12 + …..Z1n 
 

Y2 = Z21 + Z22 + …..Z2n 
 

. 
 

. 
 

. Ym = Zm1 +Zm2+…..Zmn 
 

Horizontal Vector Processing 
 

In this method all components of the vector y are calculated in sequential order, yi for i = 

1,2,….m. Each summation involving n-1 additions must be completed before switching 

to the evaluation the next summation. 

Vertical Vector Processing : 
 

The sequence of additions in this method are, compute the partial sum sequentially 

through the pipeline (in row wise z11+z12…) 

Computer the partial sum in the column format repeatedly. 

Vector Looping Method: 

It combines the horizontal and vertical approaches into a block approach. 
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The Relative Vector/Scalar Performance and Amdahl Law 
 

Let r be the vector/scalar speed ratio and f be the vectorization ratio. For example, if the 
 

time it takes to add a vector of 64 integers using the scalar unit is 10 times the time it 
 

takes to do it using the vector unit, then r = 10. Moreover, if the total number of 
 

operations in a program is 100 and only 10 of these are scalar (after vectorization), then 
 

f=90 (i.e. 90% of the work is done by the vector unit). It follows that the achievable 
 

speedup is: 
 

Time without the vector unit 
 

---------------------------- 
 

Time with the vector unit 
 

For our example, assuming that it takes one unit of time to execute one scalar operation, 

this ratio will be: 

100x1 
 

------------- = 100/19 (approx 5). 

10x1 + 90x0.1 

In general, the speedup is: 
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r 
 

---------- 
 

(1-f)r + f 
 

So even if the performance of the vector unit is extremely high (r = oo) we get a speedup 
 

less than 1/(1-f), which suggests that the ratio f is crucial to performace since it poses a 
 

limit on the attainable speedup. This ratio depends on the efficiency of the compilation, 
 

etc... This also suggests that a scalar unit with a mediocre performance (even if coupled 
 

with the fastest vector unit), will yield mediocre speedup. 
 

Strip-mining 
 

If a vector to be processed has a length greater than that of the vector registers, then strip- 
 

mining is used, whereby the original vector is divided into equal size segments (equal to 
 

the size of the vector registers) and these segments are processed in sequence. The 
 

process of strip-mining is usually performed by the compiler but in some architectures 
 

(like the Fujitsu VP series) it could be done by the hardware. 
 

Compound Vector Processing 
 

A sequence of vector operation may be bundled into a "compound" vector function 
 

(CVF), which could be executed as one operation (without having to store intermediate 
 

results in register vectors, etc..) using a technique called chaining, which is an extension 

of bypassing (used in scalar pipelines). The purpose of "discovering" CVFs is to explore 

opportunities for concurrent processing of linked vector operations. 

Notice that the number of available vector registers and functional units imposes 

limitations on how many CVFs can be executed simulataneously (e.g. Cray 1 CVP of 

SAXPY code leads to a speedup of 5/3. The X-MP results in a speadup of 5). 

6.3 Vector memory 

Interleaved memory banks 

To allow faster access to vector elements stored in memory, the memory of a vector 

processor is often divided into memory banks. Interleaved memory banks associate 

successive memory addresses with successive banks cyclically; thus word 0 is stored in 

bank 0, word 1 is in bank 1, ..., word n-1 is in bank n-1, word n is in bank 0, word 

n+1 is in bank 1, ..., etc., where n is the number of memory banks. As with many other 

computer architectural features, n is usually a power of 2: 

 
 

177 



 

n = 2^k, 
 

where k = 1, 2, 3, or 4. 
 

One memory access (load or store) of a data value in a memory bank takes several clock 

cycles to complete. Each memory bank allows only one data value to be read or stored in 

a single memory access, but more than one memory bank may be accessed at the same 

time. When the elements of a vector stored in an interleaved memory are read into a 

vector register, the reads are staggered across the memory banks so that one vector 

element is read from a bank per clock cycle. If one memory access takes n clock cycles, 

then n elements of a vector may be fetched at a cost of one memory access; this is n 

times faster than the same number of memory accesses to a single bank. 

The figure below is an interleaved memory as it can be seen it places consecutive words 

of memory in different memory modules: 

 
 
 
 
 
 
 
 

Since a read or write to one module can be started before a read/write to another module 
 

finishes, reads/writes can be overlapped. Only the leading bits of the address are used to 
 

determine the address within the module. The least-significant bits (in the diagram above, 
 

the two least-significant bits) determine the memory module. Thus, by loading a single 
 

address into the memory-address register (MAR) and saying “read” or “write”, the 
 

processor can read/write M words of memory. We say that memory is M-way interleaved. 
 

Low-order interleaving distributes the addresses so that consecutive addresses are located 
 

within consecutive modules. For example, for 8-way interleaving: 
 
 
 
 
 
 
 
 

The Low end machine use the interleaved memory 

• Memory banks take turns being connect to bus 
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• Interleaved memory access improves available bandwidth and may reduce latency for 
 

concurrent accesses. 
 

High end machine use the multiple concurrent banks 
 

• Might use crossbar switch (instead of bus, not instead of VDS) to connect several 

memory banks to the VDS simultaneously 

• Might be interleaved and assume different subsets of banks connected each clock 

Interleaved-memory designs: Interleaved memory divides an address into two portions: 

one selects the module, and the other selects an address within the module. 

Each module has a separate MAR and a separate MDR. 
 

· When an address is presented, a decoder determines which MAR should be loaded with 

this address. It uses the low-order m — log2M bits to decide this. 

· The high-order n–m bits are actually loaded into the MAR. They select the proper 

location within the module. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An alternative to feeding a vector processor directly from external storage is to provide a 
 

hierarchical memory system similar to cache memory. Memory on the processor chip is 
 

called register storage rather than L1 cache, and is managed directly by the programmer 
 

rather than automatically by the hardware. 
 

A vector processor with high-speed register storage: 
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The vector registers are large – 64 to 256 floating point numbers each. 256 floating point 
 

numbers at 64 bits each times 8 registers is equivalent to a 16k byte internal data cache. 
 

6.3.1 Vector Memory Modeling 
 

In vector processor when vector operate the parallel execution the memory access can be 

overlapped with vector execution the problem arise if the memory cannot keep up with 

vector execution rate. 

Gamma ()   inomial model 
 

This model request is based on the principal to use vector request buffer to bypass 

waiting requests. An associated issue is the degree of bypassing or out-of-order requests 

that a source can make to the memory system. Suppose a conflict arises: a request is 

directed to a busy module. How many subsequent requests can the source make before it 

must wait? Assume each of s access ports to memory has a buffer of size T BE / s (Fig 

7.19). This buffer holds requests (element addresses) to memory that are being held due 

to a conflict. For each source, the degree of bypassing is defined as the allowable number 

of requests waiting before stalling of subsequent requests occurs. 

From a modeling point of view, this is different from the simple binomial or the 

δ-binomial models. The basis difference is that the queue awaiting service from a 

module is larger by an amount لا, where لا is the man queue size of bypassed requests 

awaiting service. Note that the average queue size (لا ) is always less than or equal to the 

buffer size: 

 ,TBF / s ≥لا
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Since r cannot exceed the size of the physically implemented buffer. (Although, 
 

depending on the organization of the TBF, one source buffer could “borrow” from 
 

another) 
 

With or without request bypassing, there ids a buffer between the s request sources and 
 

the m memory modules (Figure 7.19). This must be large enough to accommodate 
 

denied requests (no bypassing) i.e.: 
 

Buffer = TBF. mQc 
 

Where Qc is the expected number of denied requests per module, and m is the number of 

modules. The m . Qc = n –B, as discussed in chapter 6. If we allow bypassing, we will 

require additional buffer entries and additional control. Typically, an entry could include: 

 Request source id. 
 

 Request source tag (i.e., VR number). 

 Module id. 

 Address for request to a module 
 

 Entry priority id (assuming more than one request can be bypassed). 

While some optimization is possible, it is clear that large bypassed request buffers can be 

complex. 

7.3.3 Gamma( لا )-Binomial Model 
 

We now develop the لا -binomial model of bypassed vector memory behavior. Assume 

that each vector sources issues a request each cycle (δ = 1), and that each physical 

requestor in the vector processor has the same buffer capacity and characteristic. If the 

vector processor can make s requests per cycle, and there are t cycles per Tc, we have: 

Total requests per Tc = t . s = n. 

This is the same as our n requests per Tc in the simple binominal model, but the situation 

in the vector processor is more complex. We assume that each of the sources s makes a 

request each cycle and each of its لا -buffered requests also makes a request. 

Depending on the buffer control, these buffer requests are made only implicitly. The 

controller “knows” when a target module will be free and therefore schedules the actual 

request for that time. From a memory modeling point of view, this is equivalent to the 

buffer requesting service each cycle until the module is free. 

Thus, we now have: 
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Total requests per Tc = t . s + t . s. لا 
 

= t . s (1 +لا ) 
 

= n(1 +لا ) 
 
 

Vector computation model not as compelling as it once was 
 

• Multi-issue, latency-tolerant architectures reduce cost of loop overhead 
 

– Instruction concurrency is available, and can substitute for data concurrency 
 

• Improved compiler technology reduces value of programmer using vectors to give hints 

to hardware 

– Improved algorithms to exploit cache 
 

– Smart pre-fetching hardware, cache bypass, latency tolerance 
 

• Commodity networked computing can often achieve comparable performance to a 

supercomputer 

– Single-chip CPUs now have very high clock rates 
 

– Improved infrastructure for parallel computing makes it accessible 

But, desktop CPUs can benefit from supercomputer tricks 

• Strided prefetching to reduce latency and better use memory bandwidth 

• Selective bypassing of cache to avoid cache pollution 

• Intel i860 was an experiment in this direction; but it was a poor compiler target 

6.4 Multiple issue machines 

The alternative to vector processors is multiple-issue machine. There are two broad 

classes of multiple-issue machines: statically scheduled and dynamically scheduled. In 

principle, these two classes are quite similar. Dependencies among groups of instructions 

are evaluated, and groups found to be independent are simultaneously dispatched to 

multiple execution units. For statically scheduled processors, this detection process is 

done by the compiler, and Instructions are assembled into instruction packets, which are 

decoded and executed at run time. For dynamically scheduled processors, the detection 

of independent instructions may also be done at compiler time and the code suitably 

arranged to optimize execution patterns, but the ultimate selection of instructions (to be 

executed or dispatched) is done by the hardware in the decoder at run time. In principle, 

the dynamically scheduled processor may have an instruction representation and form 
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that is indistinguishable from slower pipeline processors. Statically scheduled processors 
 

must have some additional information either implicitly or explicitly indicating 
 

instruction packet boundaries. 
 

The extensive use of register ports provides simultaneous access to data as required by a 
 

VLIW processor. This suggests the register set as a processor bottleneck. Dynamic 
 

multiple-issue processors usually use multiple buses connecting the register set and 
 

functional units, and each bus services multiple functional units. This may limit the 
 

maximum degree of concurrency, but it can also significantly reduce the required number 
 

of register ports. 
 

6.4.1 Very Long Instruction Words 
 

Another approach to the parallelism problem is to exploit instruction level parallelism by 

having the compiler create bundles of instructions that take advantage of the chip's 

known functional units. For instance, if the processor is capable of executing 2 ALU 

operations, 1 load/store operation, and one multiply operation simultaneously, the 

compiler can do its best to arrange the instructions in such a way that groups consisting of 

all these elements will be formed. Together, the group will be issued as a very long 

instruction. 

This technique is not as popular as superscalar because of the high dependency on 

compiler support, and the initial lack thereof. VLIW avoids the chip complexity issues 

that are present in superscalar, but it is hindered by the fact that if there is no compiler 

capable of efficiently created very long instructions, the architecture is basically useless. 

The VLIW technique is probably most useful in certain implementations of high-

performance computers where the types of programs that will be executed are known in 

advance and that extensive compiler support is not needed. 

VLIW Machines 
 

As superscalar machines become more complex, the difficulties of scheduling instruction 

issue become more complex. The on-chip hardware devoted to resolving dependencies 

and deciding on instruction issue is growing as a proportion of the total. In some ways, 

the situation is reminiscent of the trend towards more complex CISC processors -

eventually leading to the radical change to RISC machines. 
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Another way of looking at superscalar machines is as dynamic instruction schedulers - 
 

the hardware decides on the fly which instructions to execute in parallel, out of order, etc. 
 

An alternative approach would be to get the compiler to do it beforehand - that is, to 
 

statically schedule execution. This is the basic concept behind Very Long Instruction 
 

Word, or VLIW machines. 
 

VLIW machines have, as you may guess, very long instruction words - in which a 
 

number of 'traditional' instructions can be packed. (Actually for more recent examples, 
 

this is arguably not really true but it's a convenient mental model for now.) For example, 
 

suppose we have a processor which has two integer operation units; a floating point unit; 
 

a load/store unit; and a branch unit. An 'instruction' for such a machine would consist of 
 

[up to] two integer operations, a floating point operation, a load or store, and a branch. It 
 

is the compilers responsibility to find the appropriate operations, and pack them together 
 

into a very long instruction - which the hardware can execute simultaneously without 
 

worrying about dependencies (because the compiler has already considered them). 

Pros and Cons 

VLIW has both advantages and disadvantages. The main advantage is the saving in 

hardware - the compiler now decides what can be executed in parallel, and the hardware 

just does it. There is no need to check for dependencies or decide on scheduling - the 

compiler has already resolved these issues. (Actually, as we shall see, this may not be 

entirely true either.) This means that much more hardware can be devoted to useful 

computation, bigger on-chip caches etc., meaning faster processors. 

Not surprisingly, there are also disadvantages. 
 

 Compilers. First, obviously compilers will be harder to build. In fact, to get the 

best out of current, dynamically scheduled superscalar processors it is necessary 

for compilers to do a fair bit of code rearranging to 'second guess' the hardware, 

so this technology is already developing. It is observed that building good 

compilers for VLIW is non-trival. 

 Code Bigger. Secondly, programs will get bigger. If there are not enough 

instructions that can be done in parallel to fill all the available slots in an 

instruction (which will be the case most of the time). There will consequently be 

empty slots in instructions. It is likely that the majority of instructions, in typical 

 
 

184 



 

applications, will have empty code slots, meaning wasted space and bigger code. 
 

(It may well be the case that to ensure that all scheduling problems are resolved at 
 

compiler time, we will need to put in some completely empty instructions.) 
 

Memory and disk space is cheap - however, memory bandwidth is not. Even with 
 

the large and efficient caches, we would prefer not to have to fetch large, half- 
 

empty instructions. 
 

 One Stalls, all Stall. Unfortunately, it is not possible at compile time to identify 
 

all possible sources of pipeline stalls and their durations. For example, suppose a 
 

memory access causes a cache miss, leading to a longer than expected stall. If 
 

other, parallel, functional units are allowed to continue operating, sources of data 
 

dependency may dynamically emerge. For example, consider two operations 
 

which have an output dependency. The original scheduling by the compiler would 
 

ensure that there is no consequent WAW hazard. However, if one stalls and the 
 

other 'runs ahead', the dependency may turn into a WAW hazard. In order to get 
 

the compiler to do all dependency resolution, it is required to stall all pipeline 
 

elements together. This is another performance problem. 
 

 Hardware Shows Through A significant issue is the break in the barrier between 
 

architecture and implementation which has existed since the IBM 360 in the 

early/mid 60s. It will be necessary for compilers to know exactly what the 

capabilities of the processor are - for example, how many functional units are 

there? 

  VLIW instruction sets are not backward compatible between implementations. As 
 

wider implementations (more execution units) are built, the instruction set for the 
 

wider machines is not backward compatible with older, narrower 
 

implementations. 
 

 Load responses from a memory hierarchy which includes CPU caches and 
 

DRAM do not give a deterministic delay of when the load response returns to the 
 

processor. This makes static scheduling of load instructions by the compiler very 
 

difficult. 

6.4.2 Moving beyond VLIW 
 

EPIC architectures add several features to get around the deficiencies of VLIW: 
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  Each group of multiple software instructions is called a bundle. Each of the 
 

bundles has information indicating if this set of operations is depended upon by 
 

the subsequent bundle. With this capability, future implementations can be built 
 

to issue multiple bundles in parallel. The dependency information is calculated by 
 

the compiler, so the hardware does not have to perform operand dependency 
 

checking. 
 

 A speculative load instruction is used as a type of data prefetch. This prefetch 
 

increases the chances for a primary cache hit for normal loads. 
 

 A check load instruction also aids speculative loads by checking that a load was 
 

not dependent on a previous store. 

The EPIC architecture also includes a grab-bag of architectural concepts to increase ILP: 

  Predicated execution is used to decrease the occurrence of branches and to 
 

increase the speculative execution of instructions. In this feature, branch 
 

conditions are converted to predicate registers which are used to kill results of 
 

executed instructions from the side of the branch which is not taken. 
 

 Delayed exceptions (using a Not-A-Thing bit within the general purpose registers) 
 

also allow more speculative execution past possible exceptions. 
 

 Very large architectural register files avoid the need for register renaming. 

 Multi-way branch instructions 

The IA-64 architecture also added register rotation - a digital signal processing concept 
 

useful for loop unrolling and software pipelining. 

6.5 Summary 
 

Vector supercomputers are not viable due to cost reason, but vector instruction set 

architecture is still useful. Vector supercomputers are adapting commodity technology 

like SMT to improve their price-performance. Superscalar microprocessor designs have 

begun to absorb some of the techniques made popular in earlier vector computer systems 

(Ex - Intel MMX extension). Vector processors are useful for embedded and multimedia 

applications which require low power, small code size and high performance. 

Vector Processor vs Multiple Issue processor 

Advantage of Vector Processor 

— good Sp on large scientific problems 
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— mature compiler technology. 
 

Disadvantage of Vector Processor 
 

— limited to regular data and control structures 
 

— Vector Registers and buffers 
 

— memory BW 
 

Advantage of multiple issue processor 
 

— general-purpose 
 

— good Sp on small problems 
 

— developing compiler technology 
 

Advantage of multiple issue processor 
 

— instruction decoder H/W 
 

— large D cache 
 

— inefficient use of multiple ALUs 
 

6.6 Keywords 
 

vector an ordered list of items in a computer's memory. A simple vector is defined as 

having a starting address, a length, and a stride. An indirect address vector is defined as 

having a relative base address and a vector of values to be applied as indices to the base. 

vector processor A computer designed to apply arithmetic operations to long vectors or 

arrays. Most vector processors rely heavily on pipelining to achieve high performance. 

vector register a storage device that acts as an intermediate memory between a 

computer's functional units and main memory 

interleaved memory memory divide into a number of modules or banks that can be 

accessed simultaneously. 

VLIW Very Long Instruction Word; the use of extremely long instructions (256 bits or 

more) in a computer to improve its ability to chain operations together. 

6.7 Self assessment Question 

1. What are vector? 

2. Why vector processors popular in scientific calculations 

3. Drawback of vector processor 

4. Drawback of VILW processor 
 

5. Write problems in implementing VILW processor? 
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