
ACA (15CS72) MODULE-5

6.0 Objective

6.1 Introduction

6.2 Vector Processors

6.2.1 functional units,

6.2.2 vector instruction,

6.2.3 processor implementation,

6.3 Vector memory

6.3.1 modeling vector memory performance,

6.3.2 Gamma Binomial model.

6.4 Vector processor speedup

6.5 Multiple issue processors

6.6 Self assignment questions

6.7 Reference.

6.0 Objective

In this lesson we will about various types of concurrent processor. To study vector

processor how pipelining is implemented in vector processor through the instruction

format, functional unit. To provides a general overview of the architecture of a vector

computer which includes an introduction to vectors and vector arithmetic, a discussion of

performance measurements used to evaluate this type of machine. Various models for

memory organization for the vector processor are also discussed. We will also study

about multiple instruction issue machine which include VLIW, EPIC etc .

6.1 Introduction

The Concurrent Processors must be able to execute multiple instructions at the same time.

Concurrent processors must be able to make simultaneous accesses to memory and to

simultaneously execute multiple operations. Concurrent processors depend on

sophisticated compilers to detect various types of instruction level parallelism that exist

within a program. They are classified as

157

 Vector processors

 SIMD and small clustered MIMD

 Multiple instruction issue machines

Superscalar (run time schedule)

VLIW (compile time schedule)

EPIC

Hybrids

A Vector processor is a processor that can operate on an entire vector in one instruction.

The operands to the instructions are complete vectors instead of one element.

Vector processors reduce the fetch and decode bandwidth as the numbers of instructions

fetched are less.

They also exploit data parallelism in large scientific and multimedia applications. Based

on how the operands are fetched, vector processors can be divided into two categories - in

memory-memory architecture operands are directly streamed to the functional units from

the memory and results are written back to memory as the vector operation proceeds. In

vector-register architecture, operands are read into vector registers from which they are

fed to the functional units and results of operations are written to vector registers.

Many performance optimization schemes are used in vector processors. Memory banks

are used to reduce load/store latency. Strip mining is used to generate code so that vector

operation is possible for vector operands whose size is less than or greater than the size of

vector registers.

Various techniques are used for fast accessing these include

— Vector chaining - the equivalent of forwarding in vector processors - is used

in case of data dependency among vector instructions.

— Special scatter and gather instructions are provided to efficiently operate on

sparse matrices.

158

Instruction set has been designed with the property that all vector arithmetic instructions

only allow element N of one vector register to take part in operations with element N

from other vector registers. This dramatically simplifies the construction of a highly

parallel vector unit, which can be structured as multiple parallel lanes. As with a traffic

highway, we can increase the peak throughput of a vector unit by adding more lanes.

Adding multiple lanes is a popular technique to improve vector performance as it requires

little increase in control complexity and does not require changes to existing machine

code. The reason behind the declining popularity of vector processors is their cost as

compared to multiprocessors and superscalar processors. The reasons behind high cost of

vector processors are

• Vector processors do not use commodity parts. Since they sell very few copies, design

cost dominates overall cost.

• Vector processors need high speed on-chip memories which are expensive.

• It is difficult to package the processors with such high speed. In the past, vector

manufactures have employed expensive designs for this.

• There have been few architectural innovations compared to superscalar processors to

improve performance keeping the cost low.

Vector processing has the following semantic advantages.

• Programs size is small as it requires less number of instructions. Vector instructions also

hide many branches by executing a loop in one instruction.

• Vector memory access has no wastage like cache access. Every data item requested by

the processor is actually used.

• Once a vector instruction starts operating, only the functional unit(FU) and the register

buses feeding it need to be powered. Fetch unit, de-code unit, ROB etc can be powered

off. This reduces the power usage.

6.2 Vector processor

The vector computer or vector processor is a machine designed to efficiently handle

arithmetic operations on elements of arrays, called vectors. Such machines are especially

useful in high-performance scientific computing, where matrix and vector arithmetic are

quite common. The Cray Y-MP and the Convex C3880 are two examples of vector

processors used today.

159

Vectors and vector arithmetic

A vector, v, is a list of elements

v = (v1, v2, v3, ..., vn),

transposed. The length of a vector is defined as the number of elements in that vector; so

the length of v is n. As far as a vector to a computer program, we declare it as an 1-D

array. In Fortran, we declare v by the statement

DIMENSION V(N)

where N is an integer variable holding the value of the length of the vector.

Arithmetic operations may be performed on vectors. Two vectors are added by adding

corresponding elements:

s = x + y = (x1+y1, x2+y2, ..., xn+yn).

In Fortran, vector addition could be performed by the following code

DO I=1,N

S(I) = X(I) + Y(I)

ENDDO

where s is the vector representing the final sum and S, X, and Y have been declared as

arrays of dimension N. This operation is sometimes called elementwise addition.

Similarly, the subtraction of two vectors, x - y, is an elementwise operation.

The stages of a floating-point operation

Consider the steps or stages involved in a floating-point addition on a sequential machine

with IEEE arithmetic hardware: s = x + y.

 [A:] The exponents of the two floating-point numbers to be added are compared

to find the number with the smallest magnitude.

 [B:] The significand of the number with the smaller magnitude is shifted so that

the exponents of the two numbers agree.

 [C:] The significands are added.

 [D:] The result of the addition is normalized.

 [E:] Checks are made to see if any floating-point exceptions occurred during the

addition, such as overflow.

 [F:] Rounding occurs.

160

Ste

p

A B C D E F

x

y

0.1234E

4

-

0.5678E

3

0.12340E

4

-

0.05678E

4

s
0.066620E

4

0.66620E

3

0.66620E

3

0.6662E

3

Figure 6.2 : An example showing the stages of a floating-point addition: s = x + y.

Figure 6.2 shows the step-by-step example of such an addition. The numbers to be added

are x = 1234.00 and y = -567.8. Now consider this scalar addition performed on

all the elements of a pair of vectors (arrays) of length n. Each of the six stages needs to

be executed for every pair of elements. If each stage of the execution takes t units of

time, then each addition takes 6*t units of time (not counting the time required to fetch

and decode the instruction itself or to fetch the two operands). So the number of time

units required to add all the elements of the two vectors in a serial fashion would be Ts

= 6*n*t. These execution stages are shown in figure 6.3 with respect to time.

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t

Step

A
x1 + x2 +

y1 y2

161

B
x1 + x2 +

y1 y2

C
x1 +

y1

D
x1 +

y1

E
x1 +

y1

F
x1 +

y1

Figure 6.3 : Scalar floating-point addition of vector elements.

An arithmetic pipeline

Suppose the addition operation described in the last subsection is pipelined; that is, one of

the six stages of the addition for a pair of elements is performed at each stage in the

pipeline. Each stage of the pipeline has a separate arithmetic unit designed for the

operation to be performed at that stage. Once stage A has been completed for the first

pair of elements, these elements can be moved to the next stage (B) while the second pair

of elements moves into the first stage (A). Again each stage takes t units of time. Thus,

the flow through the pipeline can be viewed as shown in figure 6.4

Time: t 2 t 3 t 4 t 5 t 6 t 7 t 8 t

Step

A
x1 + x2 + x3 + x4 + x5

y1 y2 y3 y4 y5

+ x6 + x7 + x8 +

y6 y7 y8

162

B
x1 + x2 + x3 + x4 + x5

y1 y2 y3 y4 y5

+ x6 + x7 +

y6 y7

C
x1 + x2 + x3 + x4 + x5 + x6 +

y1 y2 y3 y4 y5 y6

D
x1 + x2 + x3 + x4 + x5 +

y1 y2 y3 y4 y5

E
x1 + x2 + x3 + x4 +

y1 y2 y3 y4

F
x1 + x2 + x3 +

y1 y2 y3

Figure 6.4: Pipelined floating-point addition of vector elements.

Observe that it still takes 6*t units of time to complete the sum of the first pair of

elements, but that the sum of the next pair is ready in only t more units of time. And this

pattern continues for each succeeding pair. This means that the time, Tp, to do the

pipelined addition of two vectors of length n is

Tp = 6*t + (n-1)*t = (n + 5)*t.

The first 6*t units of time are required to fill the pipeline and to obtain the first result.

After the last result, xn + yn, is completed, the pipeline is emptied out or flushed.

Comparing the equations for Ts and Tp, it is clear that

(n + 5)*t < 6*n*t, for n > 1.

Thus, this pipelined version of addition is faster than the serial version by almost a factor

of the number of stages in the pipeline. This is an example of what makes vector

processing more efficient than scalar processing. For large n, the pipelined addition for

this sample pipeline is about six times faster than scalar addition.

6.2.1 Vector Functional unit

Vector Processing Requirements

163

A vector operand contains an ordered set of n elements, where n is called the length of

the vector. Each element in a vector is a scalar quantity, which may be a floating point

number, an integer, a logical value or a character. A vector processor consists of a scalar

processor and a vector unit, which could be thought of as an independent functional unit

capable of efficient vector operations.

Vector Hardware

Vector computers have hardware to perform the vector operations efficiently. Operands

can not be used directly from memory but rather are loaded into registers and are put

back in registers after the operation. Vector hardware has the special ability to overlap or

pipeline operand processing.

Figure 6.5 Vector Hardware

Vector functional units pipelined, fully segmented each stage of the pipeline performs a

step of the function on different operand(s) once pipeline is full, a new result is produced

each clock period (cp).

Pipelining

The pipeline is divided up into individual segments, each of which is completely

independent and involves no hardware sharing. This means that the machine can be

working on separate operands at the same time. This ability enables it to produce one

result per clock period as soon as the pipeline is full. The same instruction is obeyed

repeatedly using the pipeline technique so the vector processor processes all the elements

of a vector in exactly the same way. The pipeline segments arithmetic operation such as

floating point multiply into stages passing the output of one stage to the next stage as

input. The next pair of operands may enter the pipeline after the first stage has processed

164

the previous pair of operands. The processing of a number of operands may be carried out

simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability to load one

element each clock period after some initial startup overhead.

Chaining

Theoretical speedup depends on the number of segments in the pipeline so there is a

direct relationship between the number of stages in the pipeline you can keep full and the

performance of the code. The size of the pipeline can be increased by chaining thus the

Cray combines more than one pipeline to increase its effective size. Chaining means that

the result from a pipeline can be used as an operand in a second pipeline as illustrated in

the next diagram

S(I) = A * X(I) + Y(I)

165

Figure Pipeline Chaining

This example shows how two pipelines can be chained together to form an effectively

single pipeline containing more segments. The output from the first segment is fed

directly into the second set of segments thus giving a resultant effective pipeline length of

8. Speedup (over scalar code) is dependent on the number of stages in the pipeline.

Chaining increases the number of stages

Most vector architectures have more than one pipeline; they may also contain different

types of pipelines. Some vector architectures provide greater efficiency by allowing the

output of one pipeline to be chained directly into another pipeline. This feature is called

chaining and eliminates the need to store the result of the first pipeline before sending it

into the second pipeline. Figure 14.5 demonstrates the use of chaining in the computation

of a saxpy vector operation:

a*x + y,

where x and y are vectors and a is a scalar constant.

Vector Chaining used to compute a*x + y

Figure 6.9 Vector chaining used to compute a scalar value a times a vector x, adding the

elements the resultant vector to the elements of a second vector y (of the same length).

Chaining can double the number of floating-point operations that are done in x

units of time. Once both the multiplication and addition pipelines have been filled,

one floating-point multiplication and one floating-point addition (a total of two

floating-point operations) are completed every x time units. Conceptually, it is

possible to chain more than two functional units together, providing an even

greater speedup. However this is rarely (if ever) done due to difficult timing

problems.

166

6.2.2 Vector instruction /operation

Vector Instructions

The ISA of a scalar processor is augmented with vector instructions of the following

types:

Vector-vector instructions:

f1: Vi -> Vj (e.g. MOVE Va, Vb)

f2: Vj x Vk -> Vi (e.g. ADD Va, Vb, Vc)

Vector-scalar instructions:

f3: s x Vi -> Vj (e.g. ADD R1, Va, Vb)

Vector-memory instructions:

f4: M -> V (e.g. Vector Load)

f5: V -> M (e.g. Vector Store)

Vector reduction instructions:

f6: V -> s (e.g. ADD V, s)

f7: Vi x Vj ->s (e.g. DOT Va, Vb, s)

Scatter and gather operations

Sometimes, only certain elements of a vector are needed in a computation. Most vector

processors are equipped to pick out the appropriate elements (a gather operation) and put

them together into a vector or a vector register. If the elements to be used are in a

regularly-spaced pattern, the spacing between the elements to be gathered is called the

stride. For example, if the elements

x1, x5, x9, x13, ..., x[4*floor((n-1)/4)+1]

are to be extracted from the vector

(x1, x2, x3, x4, x5, x6, ..., xn)

for some vector operation, we say the stride is equal to 4. A scatter operation reformats

the output vector so that the elements are spaced correctly. Scatter and gather operations

may also be used with irregularly-spaced data.

f8: M x Va -> Vb (e.g. gather)

f9: Va x Vb -> M (e.g. scatter)

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses

a base address and a set of indices to access from memory "few" of the elements of a

167

large vector into one of the vector registers. The scatter operation does the opposite. The

masking operations allows conditional execution of an instruction based on a

"masking" register.

Masking instructions:

fa: Va x Vm->Vb (e.g. MMOVE V1, V2, V3)

Gather and scatter are used to process sparse matrices/vectors. The gather operation, uses

a base address and a set of indices to access from memory "few" of the elements of a

large vector into one of the vector registers. The scatter operation does the opposite. The

masking operation allows conditional execution of an instruction based on a "masking"

register.

 A Boolean vector can be generated as a result of comparing two vectors, and can

be used as a masking vector for enabling and disabling component operations in a

vector instruction.

 A compress instruction will shorten a vector under the control of a masking of

vector.

 A merge instruction combines two vectors under the control of a masking vector.

In general machine operation suitable for pipelining should have the following properties:

 Identical Processes (or functions) are repeatedly invoked many times, each of

which can be subdivided into subprocesses (or sub functions)

 Successive Operands are fed through the pipeline segments and require as few

buffers and local controls as possible.

 Operations executed by distinct pipelines should be able to share expensive

resources, such as memories and buses in the system.

 The operation code must be specified in order to select the functional unit or to

reconfigure a multifunctional unit to perform the specified operation.

 For a memory reference instruction, the base addresses are needed for both

source operands and result vectors. If the operands and results are located in the

vector register file, the designated vector registers must be specified.

 The address increment between the elements must be specified.

 The address offset relative to the base address should be specified. Using the

base address and the offset the relative effective address can be calculated.

168

 The Vector length is needed to determine the termination of a vector instruction.

 The Relative Vector/Scalar Performance and Amdahl Law

The major hurdle for designing a vector unit is to ensure that the flow of data from

memory to the vector unit will not pose a bottleneck. In particular, for a vector unit to be

effective, the memory must be able to deliver one datum per clock cycle. This is usually

achieved using pipelining using the C-access memory organization (concurrent access) or

the S-access memory organization (simultaneous access), or a combination thereof.

Vector-register vector processors

If a vector processor contains vector registers, the elements of the vector are read from

memory directly into the vector register by a load vector operation. The vector result of a

vector operation is put into a vector register before it is stored back in memory by a store

vector operation; this permits it to be used in another computation without needing to be

reread, and it allows the store to be overlapped by other operations. On these machines,

all arithmetic or logical vector operations are register-register operations; that is, they are

only performed on vectors that are already in the vector registers. For this reason, these

machines are called vector-register vector processors.

Memory-memory vector processors

Another type of vector processor allows the vector operands to be fetched directly from

memory to the different vector pipelines and the results to be written directly to memory;

these are called memory-memory vector processors. Because the elements of the vector

need to come from memory instead of a register, it takes a little longer to get a vector

operation started; this is due partly to the cost of a memory access. One example of a

memory-memory vector processor is the CDC Cyber 205.

Because of the ability to overlap memory accesses and the possible reuse of vector

processors, vector-register vector processors are usually more efficient than memory-

memory vector processors. However as the length of the vectors in a computation

increase, this difference in efficiency between the two types of architectures is

diminished. In fact, the memory-memory vector processors may prove more efficient if

the vectors are long enough. Nevertheless, experience has shown that shorter vectors are

more commonly used.

Comparison - Vector and Scalar Operations

169

A scalar operation works on only one pair of operands from the S register and returns the

result to another S register whereas a vector operation can work on 64 pairs of operands

together to produce 64 results executing only one instruction. Computational efficiency is

achieved by processing each element of a vector identically eg initializing all the

elements of a vector to zero.

A vector instruction provides iterative processing of successive vector register elements

by obtaining the operands from the first element of one or more V registers and

delivering the result to another V register. Successive operand pairs are transmitted to a

functional unit in each clock period so that the first result emerges after the start up time

of the functional unit and successive results appear each clock cycle.

Vector overhead is larger than scalar overhead, one reason being the vector length which

has to be computed to determine how many vector registers are going to be needed (i.e.,

the number of elements divided by 64).

Each vector register can hold up to 64 words so vectors can only be processed in 64

element segments. This is important when it comes to programming as one situation to be

avoided is where the number of elements to be processed exceeds the register capacity by

a small amount e.g., a vector length of 65. What happens in this case is that the first 64

elements are processed from one register, the 65th element must then be processed using

a separate register, after the first 64 elements have been processed. The functional unit

will process this element in a time equal to the start up time instead of one clock cycle

hence reducing the computational efficiency.

There is a sharp decrease in performance at each point where the vector length spills over

into a new register.

The Cray can receive a result by a vector register and retransmit it as an operand to a

subsequent operation in the same clock period. In other words a register may be both a

result and an operand register which allows the chaining of two or more vector operations

together as seen earlier. In this way two or more results may be produced per clock cycle.

Parallelism is also possible as the functional units can operate concurrently and two or

more units may be co-operating at once. This combined with chaining, using the result of

one functional unit as the input of another, leads to very high processing speeds.

Scalar and vector processing examples

170

DO 10 I = 1, 3

JJ(I) = KK(I)+LL(I)

10 CONTINUE

A generic vector processor

Vector registers

Some vector computers, such as the Cray Y-MP, contain vector registers. A general

purpose or a floating-point register holds a single value; vector registers contain several

elements of a vector at one time. For example, the Cray Y-MP vector registers contain 64

elements while the Cray C90 vector registers hold 128 elements. The contents of these

registers may be sent to (or received from) a vector pipeline one element at a time.

Scalar registers

Scalar registers behave like general purpose or floating-point registers; they hold a single

value. However, these registers are configured so that they may be used by a vector

pipeline; the value in the register is read once every tau units of time and put into the

pipeline, just as a vector element is released from the vector pipeline. This allows the

elements of a vector to be operated on by a scalar. To compute

y = 2.5 * x,

the 2.5 is stored in a scalar register and fed into the vector multiplication pipeline every

tau units of time in order to be multiplied by each element of x to produce y.

6.2.4 Vector computing performance

For typical vector architectures, the value of tau (the time to complete one pipeline

stage) is equivalent to one clock cycle of the machine On some machines, it may be equal

to two or more clock cycles.. Once a pipeline like the one shown in figure 3 has been

filled, it generates one result for each t units of time, that is, for each clock cycle. This

means the hardware performs one floating-point operation per clock cycle.

Let k represent the number of t time units the same sequential operation would take (or

the number of stages in the pipeline). Then the time to execute that sequential operation

on a vector of length n is

Ts = k*n*t,

and the time to perform the pipelined version is

171

Tp = k*t + (n-1)*t = (n + k - 1)*t.

Again for n > 1, Ts > Tp.

A startup time is also required; this is the time needed to get the operation going. In a

sequential machine, there may some overhead required to set up a loop to repeat the same

floating-point operation for an entire vector; the elements of the vector also need to be

fetched from memory. If we let Ss be the number of t time units for the sequential

startup time, then Ts must include this time:

Ts = (Ss + k*n)*t.

In a pipelined machine, the flow from the vector registers or from memory to the pipeline

needs to be started; call this time quantity Sp. Another overhead cost, k*t time units, is

the time needed to initially fill the pipeline. Hence, Tp must include the startup time for

the pipelined operation; thus,

Tp = (Sp + k)*t + (n - 1)*t

or

Tp = (Sp + k + n - 1)*t.

As the length of the vector gets larger (as n goes to infinity), the startup time becomes

negligible in both cases. This means that

Ts --> k*n*t

while

Tp --> n*t.

Thus, for large n, Ts is k times larger than Tp.

There are a number of other terms to describe the performance of vector processors or

vector computers. The following list introduces some of these:

 Rn: For a vector processor, the number of Mflops obtainable for a vector of length

n.

 R_infinity: The asymptotic number of Mflops for a given vector computer as

the length of the vectors gets large. This means that the startup time would be

completely negligible. When the vectors are very long, there should be a result

from the pipeline at every tau units of time or every clock cycle. So the number

172

of floating-point operations that can be completed in one second is 1.0/tau;

dividing this result by one million produces the result in Mflops.

 n_1/2: The length, n, of a vector such that Rn is equal to R_infinity / 2.

Again for very large vectors, there should be a result from the pipeline at every

tau units of time. So, n_1/2 represents the vector length needed to get a result

at every 2*tau units of time or every two clock cycles.

 n_v: The length, n, of a vector such that performing a vector operation on the n

elements of that vector is more efficient than executing the n scalar operations

instead.

Vector Computer Performance

Performance Year Clock Peak R_infinity n_1/2

Characteristics Cycle Perf (x * y) (x * y)

(nsec) (Mflops) (Mflops)

Cray-1 1976 12.5 160

CDC Cyber 205 1980 20.0 100

Cray X-MP 1983 9.5

210 ... with 4 Procs --- ---

840 Cray-2 1985 4.1

488 ... with 4 Procs --- ---

1951 IBM 3090 1985 18.5

108 ... with 8 Procs --- ---

432 ETA 10 1986 10.5

1250 ... with 8 Procs --- ---

10,000 Alliant FS/8 1986 170.0

6 ... with 8 Procs --- --- 47

Cray C90 1990 4.2

952 ... with Procs --- ---

15,238

Convex C3880 --- --- 960

22 18

50 86

70 53

--- ---

56 83

--- ---

54 high 20's

--- ---

--- ---

--- ---

1 151

1 23

--- ---

--- 650

--- ---

173

Performance Year Clock Peak R_infinity n_1/2

Characteristics Cycle Perf (x * y) (x * y)

(nsec) (Mflops) (Mflops)

Cray 3-128 1993 2.1 948 --- ---

... with 4 Procs --- --- 3972 --- ---

Table 1: Performance characteristics of vector processing computers using 64-bit

floating-point numbers. The expression (x * y) refers to the element wise multiplication

of two vectors, x and y

Table 1 provides some performance characteristics for some of the vector computers

discussed later in this section. The values of R_infinity and n_1/2 are for the

elementwise multiplication of two vectors.

The pipeline vector computers can be divided into 2 architectural configurations

according to where the operands are received in a vector processor. They are :

 Memory -to- memory Architecture, in which source operands, intermediate and

final results are retrieved directly from the main memory.

 Register-to-register architecture, in which operands and results are retrieved

indirectly from the main memory through the use of large number of vector or

scalar registers.

Pipelined Vector Processing Methods

Vector computations are often involved in processing large arrays of data. By ordering

successive computations in the array, the vector array processing can be classified into

three types :

 Horizontal Processing, in which vector computations are performed horizontally from

left to right in row fashion.

 Vertical processing, in which vector computations are carried out vertically from top to

bottom in column fashion.

 Vector looping, in which segmented vector loop computations are performed from left to

right and top to bottom in a combined horizontal and vertical method.

A simple vector summation computation illustrate these vector processing methods

174

Let { ai for 1 <= i<= n) be n scalar contstants, Xj = (X1j,X2j…… Xmj)T for j = 1,2,3

….n be n column vectors and Yj = (Y1j,Y2j…… Ym)T be a column vector of m

components. The computation to be performed is

Y = ai.x1 + a2.x2 + …. an.xn

Y1 = Z11 + Z12 + …..Z1n

Y2 = Z21 + Z22 + …..Z2n

.

.

. Ym = Zm1 +Zm2+…..Zmn

Horizontal Vector Processing

In this method all components of the vector y are calculated in sequential order, yi for i =

1,2,….m. Each summation involving n-1 additions must be completed before switching

to the evaluation the next summation.

Vertical Vector Processing :

The sequence of additions in this method are, compute the partial sum sequentially

through the pipeline (in row wise z11+z12…)

Computer the partial sum in the column format repeatedly.

Vector Looping Method:

It combines the horizontal and vertical approaches into a block approach.

175

The Relative Vector/Scalar Performance and Amdahl Law

Let r be the vector/scalar speed ratio and f be the vectorization ratio. For example, if the

time it takes to add a vector of 64 integers using the scalar unit is 10 times the time it

takes to do it using the vector unit, then r = 10. Moreover, if the total number of

operations in a program is 100 and only 10 of these are scalar (after vectorization), then

f=90 (i.e. 90% of the work is done by the vector unit). It follows that the achievable

speedup is:

Time without the vector unit

Time with the vector unit

For our example, assuming that it takes one unit of time to execute one scalar operation,

this ratio will be:

100x1

------------- = 100/19 (approx 5).

10x1 + 90x0.1

In general, the speedup is:

176

r

(1-f)r + f

So even if the performance of the vector unit is extremely high (r = oo) we get a speedup

less than 1/(1-f), which suggests that the ratio f is crucial to performace since it poses a

limit on the attainable speedup. This ratio depends on the efficiency of the compilation,

etc... This also suggests that a scalar unit with a mediocre performance (even if coupled

with the fastest vector unit), will yield mediocre speedup.

Strip-mining

If a vector to be processed has a length greater than that of the vector registers, then strip-

mining is used, whereby the original vector is divided into equal size segments (equal to

the size of the vector registers) and these segments are processed in sequence. The

process of strip-mining is usually performed by the compiler but in some architectures

(like the Fujitsu VP series) it could be done by the hardware.

Compound Vector Processing

A sequence of vector operation may be bundled into a "compound" vector function

(CVF), which could be executed as one operation (without having to store intermediate

results in register vectors, etc..) using a technique called chaining, which is an extension

of bypassing (used in scalar pipelines). The purpose of "discovering" CVFs is to explore

opportunities for concurrent processing of linked vector operations.

Notice that the number of available vector registers and functional units imposes

limitations on how many CVFs can be executed simulataneously (e.g. Cray 1 CVP of

SAXPY code leads to a speedup of 5/3. The X-MP results in a speadup of 5).

6.3 Vector memory

Interleaved memory banks

To allow faster access to vector elements stored in memory, the memory of a vector

processor is often divided into memory banks. Interleaved memory banks associate

successive memory addresses with successive banks cyclically; thus word 0 is stored in

bank 0, word 1 is in bank 1, ..., word n-1 is in bank n-1, word n is in bank 0, word

n+1 is in bank 1, ..., etc., where n is the number of memory banks. As with many other

computer architectural features, n is usually a power of 2:

177

n = 2^k,

where k = 1, 2, 3, or 4.

One memory access (load or store) of a data value in a memory bank takes several clock

cycles to complete. Each memory bank allows only one data value to be read or stored in

a single memory access, but more than one memory bank may be accessed at the same

time. When the elements of a vector stored in an interleaved memory are read into a

vector register, the reads are staggered across the memory banks so that one vector

element is read from a bank per clock cycle. If one memory access takes n clock cycles,

then n elements of a vector may be fetched at a cost of one memory access; this is n

times faster than the same number of memory accesses to a single bank.

The figure below is an interleaved memory as it can be seen it places consecutive words

of memory in different memory modules:

Since a read or write to one module can be started before a read/write to another module

finishes, reads/writes can be overlapped. Only the leading bits of the address are used to

determine the address within the module. The least-significant bits (in the diagram above,

the two least-significant bits) determine the memory module. Thus, by loading a single

address into the memory-address register (MAR) and saying “read” or “write”, the

processor can read/write M words of memory. We say that memory is M-way interleaved.

Low-order interleaving distributes the addresses so that consecutive addresses are located

within consecutive modules. For example, for 8-way interleaving:

The Low end machine use the interleaved memory

• Memory banks take turns being connect to bus

178

• Interleaved memory access improves available bandwidth and may reduce latency for

concurrent accesses.

High end machine use the multiple concurrent banks

• Might use crossbar switch (instead of bus, not instead of VDS) to connect several

memory banks to the VDS simultaneously

• Might be interleaved and assume different subsets of banks connected each clock

Interleaved-memory designs: Interleaved memory divides an address into two portions:

one selects the module, and the other selects an address within the module.

Each module has a separate MAR and a separate MDR.

· When an address is presented, a decoder determines which MAR should be loaded with

this address. It uses the low-order m — log2M bits to decide this.

· The high-order n–m bits are actually loaded into the MAR. They select the proper

location within the module.

An alternative to feeding a vector processor directly from external storage is to provide a

hierarchical memory system similar to cache memory. Memory on the processor chip is

called register storage rather than L1 cache, and is managed directly by the programmer

rather than automatically by the hardware.

A vector processor with high-speed register storage:

179

The vector registers are large – 64 to 256 floating point numbers each. 256 floating point

numbers at 64 bits each times 8 registers is equivalent to a 16k byte internal data cache.

6.3.1 Vector Memory Modeling

In vector processor when vector operate the parallel execution the memory access can be

overlapped with vector execution the problem arise if the memory cannot keep up with

vector execution rate.

Gamma () inomial model

This model request is based on the principal to use vector request buffer to bypass

waiting requests. An associated issue is the degree of bypassing or out-of-order requests

that a source can make to the memory system. Suppose a conflict arises: a request is

directed to a busy module. How many subsequent requests can the source make before it

must wait? Assume each of s access ports to memory has a buffer of size T BE / s (Fig

7.19). This buffer holds requests (element addresses) to memory that are being held due

to a conflict. For each source, the degree of bypassing is defined as the allowable number

of requests waiting before stalling of subsequent requests occurs.

From a modeling point of view, this is different from the simple binomial or the

δ-binomial models. The basis difference is that the queue awaiting service from a

module is larger by an amount لا, where لا is the man queue size of bypassed requests

awaiting service. Note that the average queue size (لا) is always less than or equal to the

buffer size:

 ,TBF / s ≥لا

180

Since r cannot exceed the size of the physically implemented buffer. (Although,

depending on the organization of the TBF, one source buffer could “borrow” from

another)

With or without request bypassing, there ids a buffer between the s request sources and

the m memory modules (Figure 7.19). This must be large enough to accommodate

denied requests (no bypassing) i.e.:

Buffer = TBF. mQc

Where Qc is the expected number of denied requests per module, and m is the number of

modules. The m . Qc = n –B, as discussed in chapter 6. If we allow bypassing, we will

require additional buffer entries and additional control. Typically, an entry could include:

 Request source id.

 Request source tag (i.e., VR number).

 Module id.

 Address for request to a module

 Entry priority id (assuming more than one request can be bypassed).

While some optimization is possible, it is clear that large bypassed request buffers can be

complex.

7.3.3 Gamma(لا)-Binomial Model

We now develop the لا -binomial model of bypassed vector memory behavior. Assume

that each vector sources issues a request each cycle (δ = 1), and that each physical

requestor in the vector processor has the same buffer capacity and characteristic. If the

vector processor can make s requests per cycle, and there are t cycles per Tc, we have:

Total requests per Tc = t . s = n.

This is the same as our n requests per Tc in the simple binominal model, but the situation

in the vector processor is more complex. We assume that each of the sources s makes a

request each cycle and each of its لا -buffered requests also makes a request.

Depending on the buffer control, these buffer requests are made only implicitly. The

controller “knows” when a target module will be free and therefore schedules the actual

request for that time. From a memory modeling point of view, this is equivalent to the

buffer requesting service each cycle until the module is free.

Thus, we now have:

181

Total requests per Tc = t . s + t . s. لا

= t . s (1 +لا)

= n(1 +لا)

Vector computation model not as compelling as it once was

• Multi-issue, latency-tolerant architectures reduce cost of loop overhead

– Instruction concurrency is available, and can substitute for data concurrency

• Improved compiler technology reduces value of programmer using vectors to give hints

to hardware

– Improved algorithms to exploit cache

– Smart pre-fetching hardware, cache bypass, latency tolerance

• Commodity networked computing can often achieve comparable performance to a

supercomputer

– Single-chip CPUs now have very high clock rates

– Improved infrastructure for parallel computing makes it accessible

But, desktop CPUs can benefit from supercomputer tricks

• Strided prefetching to reduce latency and better use memory bandwidth

• Selective bypassing of cache to avoid cache pollution

• Intel i860 was an experiment in this direction; but it was a poor compiler target

6.4 Multiple issue machines

The alternative to vector processors is multiple-issue machine. There are two broad

classes of multiple-issue machines: statically scheduled and dynamically scheduled. In

principle, these two classes are quite similar. Dependencies among groups of instructions

are evaluated, and groups found to be independent are simultaneously dispatched to

multiple execution units. For statically scheduled processors, this detection process is

done by the compiler, and Instructions are assembled into instruction packets, which are

decoded and executed at run time. For dynamically scheduled processors, the detection

of independent instructions may also be done at compiler time and the code suitably

arranged to optimize execution patterns, but the ultimate selection of instructions (to be

executed or dispatched) is done by the hardware in the decoder at run time. In principle,

the dynamically scheduled processor may have an instruction representation and form

182

that is indistinguishable from slower pipeline processors. Statically scheduled processors

must have some additional information either implicitly or explicitly indicating

instruction packet boundaries.

The extensive use of register ports provides simultaneous access to data as required by a

VLIW processor. This suggests the register set as a processor bottleneck. Dynamic

multiple-issue processors usually use multiple buses connecting the register set and

functional units, and each bus services multiple functional units. This may limit the

maximum degree of concurrency, but it can also significantly reduce the required number

of register ports.

6.4.1 Very Long Instruction Words

Another approach to the parallelism problem is to exploit instruction level parallelism by

having the compiler create bundles of instructions that take advantage of the chip's

known functional units. For instance, if the processor is capable of executing 2 ALU

operations, 1 load/store operation, and one multiply operation simultaneously, the

compiler can do its best to arrange the instructions in such a way that groups consisting of

all these elements will be formed. Together, the group will be issued as a very long

instruction.

This technique is not as popular as superscalar because of the high dependency on

compiler support, and the initial lack thereof. VLIW avoids the chip complexity issues

that are present in superscalar, but it is hindered by the fact that if there is no compiler

capable of efficiently created very long instructions, the architecture is basically useless.

The VLIW technique is probably most useful in certain implementations of high-

performance computers where the types of programs that will be executed are known in

advance and that extensive compiler support is not needed.

VLIW Machines

As superscalar machines become more complex, the difficulties of scheduling instruction

issue become more complex. The on-chip hardware devoted to resolving dependencies

and deciding on instruction issue is growing as a proportion of the total. In some ways,

the situation is reminiscent of the trend towards more complex CISC processors -

eventually leading to the radical change to RISC machines.

183

Another way of looking at superscalar machines is as dynamic instruction schedulers -

the hardware decides on the fly which instructions to execute in parallel, out of order, etc.

An alternative approach would be to get the compiler to do it beforehand - that is, to

statically schedule execution. This is the basic concept behind Very Long Instruction

Word, or VLIW machines.

VLIW machines have, as you may guess, very long instruction words - in which a

number of 'traditional' instructions can be packed. (Actually for more recent examples,

this is arguably not really true but it's a convenient mental model for now.) For example,

suppose we have a processor which has two integer operation units; a floating point unit;

a load/store unit; and a branch unit. An 'instruction' for such a machine would consist of

[up to] two integer operations, a floating point operation, a load or store, and a branch. It

is the compilers responsibility to find the appropriate operations, and pack them together

into a very long instruction - which the hardware can execute simultaneously without

worrying about dependencies (because the compiler has already considered them).

Pros and Cons

VLIW has both advantages and disadvantages. The main advantage is the saving in

hardware - the compiler now decides what can be executed in parallel, and the hardware

just does it. There is no need to check for dependencies or decide on scheduling - the

compiler has already resolved these issues. (Actually, as we shall see, this may not be

entirely true either.) This means that much more hardware can be devoted to useful

computation, bigger on-chip caches etc., meaning faster processors.

Not surprisingly, there are also disadvantages.

 Compilers. First, obviously compilers will be harder to build. In fact, to get the

best out of current, dynamically scheduled superscalar processors it is necessary

for compilers to do a fair bit of code rearranging to 'second guess' the hardware,

so this technology is already developing. It is observed that building good

compilers for VLIW is non-trival.

 Code Bigger. Secondly, programs will get bigger. If there are not enough

instructions that can be done in parallel to fill all the available slots in an

instruction (which will be the case most of the time). There will consequently be

empty slots in instructions. It is likely that the majority of instructions, in typical

184

applications, will have empty code slots, meaning wasted space and bigger code.

(It may well be the case that to ensure that all scheduling problems are resolved at

compiler time, we will need to put in some completely empty instructions.)

Memory and disk space is cheap - however, memory bandwidth is not. Even with

the large and efficient caches, we would prefer not to have to fetch large, half-

empty instructions.

 One Stalls, all Stall. Unfortunately, it is not possible at compile time to identify

all possible sources of pipeline stalls and their durations. For example, suppose a

memory access causes a cache miss, leading to a longer than expected stall. If

other, parallel, functional units are allowed to continue operating, sources of data

dependency may dynamically emerge. For example, consider two operations

which have an output dependency. The original scheduling by the compiler would

ensure that there is no consequent WAW hazard. However, if one stalls and the

other 'runs ahead', the dependency may turn into a WAW hazard. In order to get

the compiler to do all dependency resolution, it is required to stall all pipeline

elements together. This is another performance problem.

 Hardware Shows Through A significant issue is the break in the barrier between

architecture and implementation which has existed since the IBM 360 in the

early/mid 60s. It will be necessary for compilers to know exactly what the

capabilities of the processor are - for example, how many functional units are

there?

  VLIW instruction sets are not backward compatible between implementations. As

wider implementations (more execution units) are built, the instruction set for the

wider machines is not backward compatible with older, narrower

implementations.

 Load responses from a memory hierarchy which includes CPU caches and

DRAM do not give a deterministic delay of when the load response returns to the

processor. This makes static scheduling of load instructions by the compiler very

difficult.

6.4.2 Moving beyond VLIW

EPIC architectures add several features to get around the deficiencies of VLIW:

185

  Each group of multiple software instructions is called a bundle. Each of the

bundles has information indicating if this set of operations is depended upon by

the subsequent bundle. With this capability, future implementations can be built

to issue multiple bundles in parallel. The dependency information is calculated by

the compiler, so the hardware does not have to perform operand dependency

checking.

 A speculative load instruction is used as a type of data prefetch. This prefetch

increases the chances for a primary cache hit for normal loads.

 A check load instruction also aids speculative loads by checking that a load was

not dependent on a previous store.

The EPIC architecture also includes a grab-bag of architectural concepts to increase ILP:

  Predicated execution is used to decrease the occurrence of branches and to

increase the speculative execution of instructions. In this feature, branch

conditions are converted to predicate registers which are used to kill results of

executed instructions from the side of the branch which is not taken.

 Delayed exceptions (using a Not-A-Thing bit within the general purpose registers)

also allow more speculative execution past possible exceptions.

 Very large architectural register files avoid the need for register renaming.

 Multi-way branch instructions

The IA-64 architecture also added register rotation - a digital signal processing concept

useful for loop unrolling and software pipelining.

6.5 Summary

Vector supercomputers are not viable due to cost reason, but vector instruction set

architecture is still useful. Vector supercomputers are adapting commodity technology

like SMT to improve their price-performance. Superscalar microprocessor designs have

begun to absorb some of the techniques made popular in earlier vector computer systems

(Ex - Intel MMX extension). Vector processors are useful for embedded and multimedia

applications which require low power, small code size and high performance.

Vector Processor vs Multiple Issue processor

Advantage of Vector Processor

— good Sp on large scientific problems

186

— mature compiler technology.

Disadvantage of Vector Processor

— limited to regular data and control structures

— Vector Registers and buffers

— memory BW

Advantage of multiple issue processor

— general-purpose

— good Sp on small problems

— developing compiler technology

Advantage of multiple issue processor

— instruction decoder H/W

— large D cache

— inefficient use of multiple ALUs

6.6 Keywords

vector an ordered list of items in a computer's memory. A simple vector is defined as

having a starting address, a length, and a stride. An indirect address vector is defined as

having a relative base address and a vector of values to be applied as indices to the base.

vector processor A computer designed to apply arithmetic operations to long vectors or

arrays. Most vector processors rely heavily on pipelining to achieve high performance.

vector register a storage device that acts as an intermediate memory between a

computer's functional units and main memory

interleaved memory memory divide into a number of modules or banks that can be

accessed simultaneously.

VLIW Very Long Instruction Word; the use of extremely long instructions (256 bits or

more) in a computer to improve its ability to chain operations together.

6.7 Self assessment Question

1. What are vector?

2. Why vector processors popular in scientific calculations

3. Drawback of vector processor

4. Drawback of VILW processor

5. Write problems in implementing VILW processor?

187

6.8 Reference:

Advance computer architecture by Kai Hwang

Computer Architecture by Michael J. Flynn

188

