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Lesson No. : 04 

 

In this lesson we will discuss about bus that is used for interconnections between 
 

different processor. We will discuss about use of cache memory in multiprocessor 
 

environment and various addressing scheme used for cache memory. The page 
 

replacement policy and performance of cache is also measured. Also we will discuss how 
 

shared memory concept is used in multiprocessor. Various issues regarding event 
 

ordering specially in case of memory events that deal with shared memory creates 
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synchronization problem we will also discuss various models designed to overcome these 
 

issues. 
 

4.1 Introduction 
 

In the hierarchy memory cache memory are the fastest memory that lies between registers 

and RAM . It holds recently used data and/or instructions and has a size varying from 

few kB to several MB. 

 
 
 
 

Figure 4.1 Memory structure for a processor 
 

The figure 4.1 shows a cache and main memory structure. A cache consists of C slots and 

each slot in the cache can hold K memory words. Here the main memory with 2
n
-1 words 

i.e., M words with each having a unique n-bit address and cache memory having C*K 

words where K is the Block size and C are the number of lines. Each word that resides in 

the cache is a subset of main memory. Since there are more blocks in main memory than 

number of lines in cache, an individual line cannot be uniquely and permanently 

dedicated to a particular block. Therefore, each line includes a tag that identifies which 

particular block of main memory is currently occupying that line of cache. The tag is 

usually a portion of the main memory address. The cache memory is accessed but by 

pattern matching on a tag stored in the cache. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2 Cache / Main memory structure 
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For the comparison of address generated by CPU the memory controller use some 
 

algorithm which determines whether the value currently being addressed in memory is 
 

available in the cache. The transformation data from main memory to cache memory is 
 

referred as a mapping process. Let us derive an address translation scheme using cache as 
 

a linear array of entries, each entry having the following structure as shown in figure 4.3. 
 

A Cache Storage is divided into three fields: 
 

Data - The block of data from memory that is stored in a specific line in the cache 
 

Tag - A small field of length K bits, used for comparison, to check the correct address of 
 

data 
 

Valid Bit - A one-bit field that indicates status of data written into the cache. 
 

The N-bit address is produced by the processor to access cache data is divided into three 
 

fields: 
 

Tag - A K-bit field that corresponds to the K-bit tag field in each cache entry, 
 

Index - An M-bit field in the middle of the address that points to one cache entry 
 

Byte Offset – L Bits that finds particular data in a line if valid cache is found. 
 

It follows that the length of the virtual address is given by N = K + M + L bits. 
 

Cache Address Translation. As shown in Figure 4.3, we assume that the cache address 
 

has length 32 bits. Here, bits 12-31 are occupied by the Tag field, bits 2-11 contain the 

Index field, and bits 0,1 contain the Offset information. The index points to the line in 

cache that supposedly contains the data requested by the processor. After the cache line is 

retrieved, the Tag field in the cache line is compared with the Tag field in the cache 

address. If the tags do not match, then a cache miss is detected and the comparator 

outputs a zero value. Otherwise, the comparator outputs a one, which is and-ed with the 

valid bit in the cache row pointed to by the Index field of the cache address. If the valid 

bit is a one, then the Hit signal output from the and gate is a one, and the data in the 

cached block is sent to the processor. Otherwise a cache miss is registered. 
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Figure 4.3. Schematic diagram of cache 
 

A cache implements several different policies for retrieving and storing information, one 
 

in each of the following categories: 
 

° Fetch policy—determines when information is loaded into the cache. 
 

° Replacement policy—determines what information is purged when space is needed for 
 

a new entry. 
 

° Write policy—determines how soon information in the cache is written to lower levels 
 

in the memory hierarchy. 
 

4.2 Cache addressing models 
 

Most multiprocessor system use private cache associated with different processor. 
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Figure 4.4 A memory hierarchy for a shared memory multiprocessor. 
 

Cache can be addressed either by physical address or virtual address. 
 

Physical address cache: when cache is addressed by physical address it is called 
 

physical address cache. The cache is indexed and tagged with physical address. Cache 
 

lookup must occur after address translation in TLB or MMU. No aliasing is allowed 
 

so that the address is always uniquely translated without confusion. This provides an 
 

advantage that we need no cache flushing, no aliasing problem and fewer cache bugs 
 

in OS kernel. The short coming is the slowdown in accessing the cache until the 
 

MMU/TLB finishes translating the address. 
 

Advantage of physically addressed caches: 
 

 no cache flushing on a context switch 
 

 no synonym problem (several different virtual addresses can span the same 

physical addresses : a much better hit ratio between processes) 

Disadvantage of physically addressed caches: 
 

 do virtual-to-physical address translation on every access 
 

 increase in hit time because must translate the virtual address before access the 

cache 
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Virtual Address caches: when a cache is indexed or tagged with virtual address it is 
 

called virtual address cache. In this model both cache and MMU translation or validation 
 

are done in parallel. The physical address generated by the MMU can be saved in tags for 
 

later write back but is not used during the cache lookup operations. 
 

Advantage of virtually-addressed caches 
 

 do address translation only on a cache miss 

 faster for hits because no address translation 

Disadvantage of virtually-addressed caches 
 

cache flushing on a context switch (example : local data segments will get an 

erroneous hit for virtual addresses already cached after changing virtual address 

space, if no cache flushing). 

synonym problem (several different virtual addresses cannot span the same physical 

addresses without being duplicated in cache). 
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(a) A unified cache accessed by virtual address 
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Aliasing: The major problem with cache organization in multiprocessor is that multiple 
 

virtual addresses can map to a single physical address i.e., different virtual address cache 
 

logically addressed data have the same index/tag in the cache. Most processors guarantee 
 

that all updates to that single physical address will happen in program order. To deliver 
 

on that guarantee, the processor must ensure that only one copy of a physical address 
 

resides in the cache at any given time. 
 

4.3 Cache mapping 
 

Caches can be organized according to four different 

strategies: ° Direct 

° Fully 

associative ° Set 

associative 

° Sectored 
 

4.3.1 Direct-Mapped Caches 
 

The easiest way of organizing a cache memory employs direct mapping that is based on a 

simple algorithm to map data block i from the main memory into data block j in the 

cache. There is a one-to-one correspondence between each block of data in the cache and 

each memory block thus to find a memory block i, then there is one and only one place in 

the cache where i is stored 

If we have 2
n 

words in main memory and 2
k 

words in cache memory. In cache 

memory each word consists of data word and its associated tag. The n-bit memory 

address is divided into three fields : low order k bits are referred as the index field and 

used to address a word in the cache. The remaining n-k high-order bits are called the tag. 

The index field is further divided into the slot field, which will be used find a particular 

slot in the cache; and the offset field is used to identify a particular memory word in the 

slot. When a block is stored in the cache, its tag field is stored in the tag field of the cache 

slot. 

When CPU generates an address the index field is used to access the cache. The 

tag field of CPU address is compared with the tag in word read from the cache. If the two 

tags match, there is a hit and else there is a miss and the required word is read from main 

memory. Whenever a ``cache miss'' occurs, the cache line will be replaced by a new line 
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of information from main memory at an address with the same index but with a different 
 

tag. 
 

Lets us understand how direct mapping is implemented with following simple 
 

example Figure 4.7. The memory is composed of 32 words and accessed by a 5-bit 
 

address. Let the address has a 2-bit tag (set) field, a 2-bit slot (line) field and a 1-bit word 

field. The cache memory holds 2
2 

= 4 lines each having two words. When the processor 

generates an address, the appropriate line (slot) in the cache is accessed. For example, if 

the processor generates the 5-bit address 111102, line 4 in set 4 is accessed. The memory 

space is divided into sets and the sets into lines. The Figure 4.7 reveals that there are four 

possible lines that can occupy cache line 4 lines 4 in set 0, in set 1, in set 2 and set 4. In 

this example the processor accessed line 4 in set 4. Now “How does the system resolve 

this issue?" 

Figure 4.7 shows how a direct mapped cache resolves the contention between lines. Each 

line in the cache memory has a tag or label that identifies which set this particular line 

belongs to. When the processor accesses line 4, the tag belonging to line 4 in the cache is 

sent to a comparator. At the same time the set field from the processor is also sent to the 

comparator. If they are the same, the line in the cache is the desired line and a hit occurs. 

If they are not the same, a miss occurs and the cache must be updated. Figure 4.17 

provides a skeleton structure of a direct mapped cache memory system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 Resolving contention between lines in a direct-mapped cache 
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Figure 4.8 Implementation of direct-mapped cache 
 

The advantage of direct mapping are as follows 
 

It’s simplicity. 
 

Both the cache memory and the cache tag RAM are widely available devices. 
 

The direct mapped cache requires no complex line replacement algorithm. If line x in set 
 

y is accessed and a miss takes place, line x from set y in the main store is loaded into the 
 

frame for line x in the cache memory and the tag set to y i.e.,, there is no decision to be 
 

taken regarding which line has to be rejected when a new line is to be loaded. 
 

It inherents parallelism. Since the cache memory holding the data and the cache tag RAM 
 

are entirely independent, they can both be accessed simultaneously. Once the tag has 
 

been matched and a hit has occurred, the data from the cache will also be valid. 
 

The disadvantage of direct mapping are as follows 
 

it is inflexible 
 

A cache has one restriction a particular memory address can be mapped into only one 
 

cache location also, all addresses with the same index field are mapped to the same cache 
 

location. Consider the following fragment of code: 
 

REPEAT 
 

Get_data 
 

Compare 
 

UNTIL match OR end_of_data 
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Let the Get data routine and compare routine use two blocks, both these blocks have 
 

same index but have different tags are repeated accessed. Consequently, the performance 
 

of a direct-mapped cache can be very poor under above circumstances. However, 
 

statistical measurements on real programs indicate that the very poor worst-case behavior 
 

of direct-mapped caches has no significant impact on their average behavior. 
 

4.3.3 Associative Mapping: 
 

One way of organizing a cache memory which overcomes the limitations of direct 

mapped cache such that there is no restriction on what data it can contain can be done 

with associative cache memory. An associative memory is the fastest and most flexible 

way of cache organization. It stores both the address and the value (data) from main 

memory in the cache. An associative memory has an n-bit input. An address from the 

processor is divided into three fields: the tag, the line, and the word.The mapping is done 

with storing tag information in n-bit argument register and comparing it with address tag 

in each location simultaneously. If the input tag matches a stored tag, the data associated 

with that location is output. Otherwise the associative memory produces a miss output. 

Unfortunately, large associative memories are not yet cost-effective. Once the associative 

cache is full, a new line can be brought in only by overwriting an existing line that 

requires a suitable line replacement policy. Associative cache memories are efficient 

because they place no restriction on the data they hold, as permits any location of cache 

to store any word from main memory. 

CPU Address (argument register ) 
 
 

Address Data 

01101001 10010100 

10010001 10101010 

  

  

Figure 4.9 Associative cache 
 
 
 
 
 
 
 
 

105 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.10Associative mapping 
 

All of the comparisons are done simultaneously, so the search is performed very quickly. 

This type of memory is very expensive, because each memory location must have both a 

comparator and a storage element. Like the direct mapped cache, the smallest unit of data 

transferred into and out of the cache is the line. Unlike the direct-mapped cache, there's 

no relationship between the location of lines in the cache and lines in the main memory. 

When the processor generates an address, the word bits select a word location in 

both the main memory and the cache. The tag resolves which of the lines is actually 

present. In an associative cache any of the 64K lines in the main store can be located in 

any of the lines in the cache. Consequently, the associative cache requires a 16-bit tag to 

identify one of the 2
16 

lines from the main memory. Because the cache's lines are not 

ordered, the tags are not ordered, it may be anywhere in the cache or it may not be in the 

cache. 
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Figure 4.11 Associative-mapped cache 
 

4.3.4 Set associative Mapping: 
 

Most computers use set associative mapping technique as it is a compromise between the 

direct-mapped cache and the fully associative cache. In a set associative cache memory 

several direct-mapped caches connected in parallel. Let to find memory block b in the 

cache, there are n entries in the cache that can contain b we say that this type of cache is 

called n-way set associative. For example, if n = 2, then we have a two-way set 

associative cache. This is the simplest arrangement and consists of two direct-mapped 

cache memories. Thus for n parallel sets, a n-way comparison is performed in parallel 

against all members of the set. Usually , for k = 1, 2, 4 are chosen for a set 

associative cache (k = 0 corresponds to direct mapping). As n is small (typically 2 to 14), 

the logic required to perform the comparison is not complex. This is a widely used 

technique in practice (e.g. 80486 uses 4-way, P4 uses 2-way for the instruction cache, 4-

way for the data cache). 

Figure 4.22 describes the common 4-way set associative cache. When the 

processor accesses memory, the appropriate line in each of four direct-mapped caches is 

accessed simultaneously. Since there are four lines, a simple associative match can be 

used to determine which (if any) of the lines in cache are to supply the data. In figure 

4.22 the hit output from each direct-mapped cache is fed to an OR gate which generates a 

hit if any of the caches generate a hit. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 Set associative-mapped cache 
 

4.3.4 Sector mapped cache memory 
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The idea is to partition both the cache and memory into fixed size sectors. Thus in a 
 

sectored cache, main memory is partitioned into sectors, each containing several blocks. 
 

The cache is partitioned into sector frames, each containing several lines. (The number of 
 

lines/sector frame = the number of blocks/sector.) As shown in figure below sector size is 
 

of 16 block. Each sector can be mapped to any of the sector frame with full associative at 
 

the sector level. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.13 Sector mapped memory 

Each sector can be placed in any of the available sector frame. The memory requests are 
 

destined for blocks not for sectors. This can be filtered out by comparing the sector tag in 
 

the memory address with all sector tags using fully associative search. 
 

When block b of a new sector c is brought in, 
 

• it is brought into line b within some sector frame f, and 
 

• the rest of the lines in sector frame f are marked invalid. 
 

Thus, if there are S sector frames, there are S choices of where to place a block. 
 

4.3.5 CACHE performance Issues 
 

As far as the performance of cache is considered the trade off exist among the cache size, 

set number, block size and memory speed. Important aspect in cache designing with 

regard to performance are : 

a. the cycle count : This refers to the number of basic machine cycles needed for 

cache access, update and coherence control. This count is affected by underlying 

static or dynamic RAM technology, the cache organization and the cache hit 

ratios. The write through or write back policy also affect the cycle count. The 
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cycle count is directly related to the hit ratio, which decreases almost linearly with 
 

increasing values of above cache parameters. 
 

b. Hit ratio: The processor generates the address of a word to be read and send it to 
 

cache controller, if the word is in the cache it generates a Hit signal and also 
 

deliver it to the processor. If the data is not found in the cache, then it generates a 
 

MISS signal and that data is delivered to the processor from main memory, and 
 

simultaneously loaded into the cache. The hit ratio is number of hits divided by 
 

total number of CPU references to memory (hits plus misses). When cache size 
 

approaches 
 

c. Effect of Block Size: With a fixed cache size, cache performance is sensitive to 
 

the block size. This block size is determined mainly by the temporal locality in 
 

typical program. 
 

d. Effect of set number in set associative number. 
 

4.4 Cache replacement algorithm 
 

When a new block is brought into cache, one of the existing blocks must be replaced. The 

obvious question arise is which page to be replaced? With direct mapping, the solution is 

easy as we have not choice. But in other circumstances, we do. The three most commonly 

used algorithms are Least Recently Used, First in First out and Random. 

Random -- The optimal algorithm is called random replacement, whereby a location to 

which a block is to be written in cache is chosen at random from the range of cache 

indices. The random replacement strategy usually implemented using a random number 

generator. In a 2-way set associative cache, this can be accomplished with a single 

modulo 2 random variable obtained, from an internal clock 

First in, first out (FIFO) -- here the first value stored in the cache is the index position 

representing value to be replaced. For a 2-way set associative cache, this replacement 

strategy can be implemented by setting a pointer to the previously loaded word each time 

a new word is stored in the cache; this pointer need only be a single bit. 

Least recently used (LRU) -- here the value which was actually used least recently is 

replaced. In general, it is more likely that the most recently used value will be the one 

required in the near future. This approach, while not always optimal, is intuitively 

attractive from the perspective of temporal locality. That is, a given program will likely 
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not access a page or block that has not been accessed for some time. The LRU 
 

replacement algorithm requires that each cache or page table entry have a timestamp. 
 

This is a combination of date and time that uniquely identifies the entry as having been 
 

written at a particular time. Given a timestamp t with each of N entries, LRU merely 
 

finds the minimum of the cached timestamps, as 
 

tmin = min{ti : i = 1..N} . 
 

The cache or page table entry having t = tmin is then overwritten with the new entry. 
 

For a 2-way set associative cache, this is readily implemented by setting a special bit 

called the ``USED'' bit for the other word when a value is accessed while the 

corresponding bit for the word which was accessed is reset. The value to be replaced is 

then the value with the USED bit set. This replacement strategy can be implemented by 

adding a single USED bit to each cache location. The LRU strategy operates by setting a 

bit in the other word when a value is stored and resetting the corresponding bit for the 

new word. For an n-way set associative cache, this strategy can be implemented by 

storing a modulo n counter with each data word. 

4.5 Cache Coherence and Synchronization 

4.5.1Cache coherence problem 

An important problem that must be addressed in many parallel systems - any system that 

allows multiple processors to access (potentially) multiple copies of data - is cache 

coherence. The existence of multiple cached copies of data creates the possibility of 

inconsistency between a cached copy and the shared memory or between cached copies 

themselves. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.14 cache coherence problem in multiprocessor 
 

There are three common sources of cache inconsistency: 
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 Inconsistency in data sharing : In a memory hierarchy for a multiprocessor system 

data inconsistency may occur between adjacent levels or within the same level. 

The cache inconsistency problem occurs only when multiple private cache are 

used. Thus it is, the possible that a wrong data being accessed by one processor 

because another processor has changed it, and not all changes have yet been 

propagated. Suppose we have two processors, A and B, each of which is dealing 

with memory word X, and each of which has a cache. If processor A changes X, 

then the value seen by processor B in its own cache will be wrong, even if 

processor A also changes the value of X in main memory (which it - ultimately -

should). 

 
 
 
 
 
 
 
 
 
 

Figure 4.15 Cache coherence problem 
 

In above example initially, x1 = x2 = X = 5. 
 

P1 writes X:=10 using write-through. 
 

P2 now reads X and uses its local copy x2, but finds that X is still 5. 
 

Thus P2 does not know that P1 modified X. 
 

Thus the cache inconsistency problem occurs when multiple private cache are used 

and especially the problem arose by writing the shared variables. 

 Process migration(even if jobs are independent): This problem occurs when a 

process containing shared variable X migrates from process 1 to process2 using 

the write back cache on the right. Thus another important aspect of coherence is 

serialization of writes - that is, if two processors try to write 'simultaneously', then 

(i) the writes happen sequentially (and it doesn't really matter who gets to write 

first - provided we have sensible arbitration); and (ii) all processors see the writes 

as occurring in the same order. That is, if processors A and B both write to X, 

with A writing first, then any other processors (C, D, E) all see the same thing. 
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 DMA I/O – this inconsistency problem occur during the I/O operation that bypass 

the cache. This problem is present even in a uniprocessor and can be removed by 

OS cache flushes) 

In practice, these issues are managed by a memory bus, which by its very nature ensures 

write serialization, and also allows us to broadcast invalidation signals (we essentially 

just put the memory address to be invalidated on the bus). We can add an extra valid bit 

to cache tags to mark then invalid. Typically, we would use a write-back cache, because 

it has much lower memory bandwidth requirements. Each processor must keep track of 

which cache blocks are dirty - that is, that it has written to - again by adding a bit to the 

cache tag. If it sees a memory access for a word in a cache block it has marked as dirty, it 

intervenes and provides the (updated) value. There are numerous other issues to address 

when considering cache coherence. 

One approach to maintaining coherence is to recognize that not every location needs to be 

shared (and in fact most don't), and simply reserve some space for non-cacheable data 

such as semaphores, called a coherency domain. 

Using a fixed area of memory, however, is very restrictive. Restrictions can be reduced 

by allowing the MMU to tag segments or pages as non-cacheable. However, that requires 

the OS, compiler, and programmer to be involved in specifying data that is to be 

coherently shared. For example, it would be necessary to distinguish between the sharing 

of semaphores and simple data so that the data can be cached once a processor owns its 

semaphore, but the semaphore itself should never be cached. 

In order to remove this data inconsistency there are a number of approaches based on 

hardware and software techniques few are given below: 

 No caches is used which is not a feasible solution 
 

  Make shared-data non-cacheable this is the simplest software solution but produce 

low performance if a lot of data is shared 

  software flush at strategic times: e.g., after critical sections, this is relatively 

simple technique but has low performance if synchronization is not frequent 

  hardware cache coherence this can be achieved by making memory and caches 

coherent (consistent) with each other, in other words if the memory and other 

processors see writes then without intervention of the to software 

 
 

112 



 

 absolute coherence all copies of each block have same data at all times 
 

 It is not necessary what is required is appearance of absolute coherence that is 

done by making temporary incoherence is OK (e.g., write-back cache) 

In general a cache coherence protocols consist of the set of possible states in local caches, 

the state in shared memory and the state transitions caused by the messages transported 

through the interconnection network to keep memory coherent. There are basically two 

kinds of protocols depends on how writes is handled 

4.5.2 Snooping Cache Protocol (for bus-based machines); 
 

With a bus interconnection, cache coherence is usually maintained by adopting a "snoopy 

protocol", where each cache controller "snoops" on the transactions of the other caches 

and guarantees the validity of the cached data. In a (single-) multi-stage network, 

however, the unavailability of a system "bus" where transactions are broadcast makes 

snoopy protocols not useful. Directory based schemes are used in this case. 

In case of snooping protocol processors perform some form of snooping - that is, keeping 

track of other processor's memory writes. ALL caches/memories see and react to ALL 

bus events. The protocol relies on global visibility of requests (ordered broadcast). This 

allows the processor to make state transitions for its cache-blocks. 

Write Invalidate protocol 
 

The states of a cache block copy changes with respect to read, write and replacement 

operations in the cache. The most common variant of snooping is a write invalidate 

protocol. In the example above, when processor A writes to X, it broadcasts the fact and 

all other processors with a copy of X in their cache mark it invalid. When another 

processor (B, say) tries to access X again then there will be a cache miss and either 

(i) in the case of a write-through cache the value of X will have been updated 

(actually, it might not because not enough time may have elapsed for the 

memory write to complete - but that's another issue); or 

(ii)  in the case of a write-back cache processor A must spot the read request, and 

substitute the correct value for X. 
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Figure 6.16 Write back with cache 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. 17 Write through with cache 
 

An alternative (but less-common) approach is write broadcast. This is intuitively a little 
 

more obvious - when a cached value is changed, the processor that changed it broadcasts 
 

the new value to all other processors. They then update their own cached values. The 
 

trouble with this scheme is that it uses up more memory bandwidth. A way to cut this is 
 

to observe that many memory words are not shared - that is, they will only appear in one 
 

cache. If we keep track of which words are shared and which are not, we can reduce the 
 

amount of broadcasting necessary. There are two main reasons why more memory 
 

bandwidth is used: in an invalidation scheme, only the first change to a word requires an 
 

invalidation signal to be broadcast, whereas in a write broadcast scheme all changes must 
 

be signaled; and in an invalidation scheme only the first change to any word in a cache 

block must be signaled, whereas in a write broadcast scheme every word that is written 

must be signaled. On the other hand, in a write broadcast scheme we do not end up with a 

cache miss when trying to access a changed word, because the cached copy will have 

been updated to the correct value. 
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Figure 6.18 write back with broadcast 
 

If different processors operate on different data items, these can be cached. 
 

1. Once these items are tagged dirty, all subsequent operations can be performed locally 
 

on the cache without generating external traffic. 
 

2. If a data item is read by a number of processors, it transitions to the shared state in the 
 

cache and all subsequent read operations become local. 
 

In both cases, the coherence protocol does not add any overhead. 
 

4.5.3Write-through vs. Write-back 
 

In a write-back cache, the snooping logic must also watch for reads that access main 

memory locations corresponding to dirty locations in the cache (locations that have been 

changed by the processor but not yet written back). 

At first it would seem that the simplest way to maintain coherence is to use a write-

through policy so that every cache can snoop every write. However, the number of extra 

writes can easily saturate a bus. The solution to this problem is to use a write-back policy, 

but that leads to additional problems because there can be multiple writes that do not go 

to the bus, leading to incoherent data. 

One approach is called write-once. In this scheme, the first write is a write-through to 

signal invalidation to other caches. After that, further writes can occur in write-back 

mode as long as there is no invalidation. Essentially, the first write takes ownership of the 

data, and another write from another processor must first deal with the invalidation and 

may then take ownership. Thus, a cache line has four states: 

 Invalid 
 

 Valid unwritten (valid) 
 

     Valid written once (reserved) 

     Valid written multiple (dirty) 
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The last two states indicate ownership. The trouble with this scheme is that if a non- 
 

owner frequently accesses an owned shared value, it can slow down to main memory 
 

speed or slower, and generate excessive bus traffic because all accesses must be to the 
 

owning cache, and the owning cache would have to perform a broadcast on its next write 
 

to signal that the line is again invalid. 
 

One solution is to grant ownership to the first processor to write to the location and not 
 

allow reading directly from the cache. This eliminates the extra read cycles, but then the 
 

cache must write-through all cycles in order to update the copies. 
 

We can change the scheme so that when a write is broadcast, if any other processor has a 
 

snoop hit, it signals this back to the owner. Then the owner knows it must write through 
 

again. However, if no other processor has a copy (signals snooping), it can proceed to 
 

write privately. The processor's cache must then snoop for read accesses from other 
 

processors and respond to these with the current data, and by marking the line as 
 

snooped. The line can return to private status once a write-through results in a no-snoop 
 

response. 
 

One interesting side effect of ownership protocols is that they can sometimes result in a 
 

speedup greater than the number of processors because the data resides in faster memory. 
 

Thus, other processors gain some speed advantage on misses because instead of fetching 

from the slower main memory, they get data from another processor's fast cache. 

However, it takes a fairly unusual pattern of access for this to actually be observed in real 

system performance. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.19 write once protocol 
 

Disadvantages: 
 

 If multiple processors read and update the same data item, they generate 

coherence functions across processors. 
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 Since a shared bus has a finite bandwidth, only a constant 
 

Rather than flush the cache completely, hardware can be provided to "snoop" on the bus, 

watching for writes to main memory locations that are cached. 

Another approach is to have the DMA go through the cache, as if the processor is writing 

it to memory. This results in all valid cache locations. However, any processor cache 

accesses are stalled during that time, and it clearly does not work well in a 

multiprocessor, as it would require copies being written to all caches and a protocol for 

write-back to memory that avoids inconsistency. 

4.5.4 Directory-based Protocols 
 

When a multistage network is used to build a large multiprocessor system, the snoopy 

cache protocols must be modified. Since broadcasting is very expensive in a multistage 

network, consistency commands are sent only to caches that keep a copy of the block. 

This leads to Directory Based protocols. A directory is maintained that keeps track of the 

sharing set of each memory block. Thus each bank of main memory can keep a directory 

of all caches that have copied a particular line (block). When a processor writes to a 

location in the block, individual messages are sent to any other caches that have copies. 

Thus the Directory-based protocols selectively send invalidation/update requests to only 

those caches having copies—the sharing set leading the network traffic limited only to 

essential updates. Proposed schemes differ in the latency with which memory operations 

are performed and the implementation cost of maintaining the directory. The memory 

must keep a bit-vector for each line that has one bit per processor, plus a bit to indicate 

ownership (in which case there is only one bit set in the processor vector). 

 
 
 
 
 
 
 
 
 
 
 
 

.figure 6.20 Directory based protocol 
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These bitmap entries are sometimes referred to as the presence bits. Only processors that 
 

hold a particular block (or are reading it) participate in the state transitions due to 
 

coherence operations. Note that there may be other state transitions triggered by 
 

processor read, write, or flush (retiring a line from cache) but these transitions can be 
 

handled locally with the operation reflected in the presence bits and state in the directory. 
 

If different processors operate on distinct data blocks, these blocks become dirty in the 
 

respective caches and all operations after the first one can be performed locally. 
 

If multiple processors read (but do not update) a single data block, the data block gets 
 

replicated in the caches in the shared state and subsequent reads can happen without 
 

triggering any coherence overheads. 
 

Various directory-based protocols differ mainly in how the directory maintains 
 

information and what information is stored. Generally speaking the directory may be 
 

central or distributed. Contention and long search times are two drawbacks in using a 
 

central directory scheme. In a distributed-directory scheme, the information about 
 

memory blocks is distributed. Each processor in the system can easily "find out" where to 
 

go for "directory information" for a particular memory block. Directory-based protocols 
 

fall under one of three categories: 
 

Full-map directories, limited directories, and chained directories. 
 

This full-map protocol is extremely expensive in terms of memory as it store enough data 

associated with each block in global memory so that every cache in the system can 

simultaneously store a copy of any block of data.. It thus defeats the purpose of leaving a 

bus-based architecture. 

A limited-map protocol stores a small number of processor ID tags with each line in main 

memory. The assumption here is that only a few processors share data at one time. If 

there is a need for more processors to share the data than there are slots provided in the 

directory, then broadcast is used instead. 

Chained directories have the main memory store a pointer to a linked list that is itself 

stored in the caches. Thus, an access that invalidates other copies goes to memory and 

then traces a chain of pointers from cache to cache, invalidating along the chain. The 

actual write operation stalls until the chain has been traversed. Obviously this is a slow 

process. 
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Duplicate directories can be expensive to implement, and there is a problem with keeping 
 

them consistent when processor and bus accesses are asynchronous. For a write-through 
 

cache, consistency is not a problem because the cache has to go out to the bus anyway, 
 

precluding any other master from colliding with its access. 
 

But in a write-back cache, care must be taken to stall processor cache writes that change 
 

the directory while other masters have access to the main memory. 
 

On the other hand, if the system includes a secondary cache that is inclusive of the 
 

primary cache, a copy of the directory already exists. Thus, the snooping logic can use 
 

the secondary cache directory to compare with the main memory access, without stalling 
 

the processor in the main cache. If a match is found, then the comparison must be passed 
 

up to the primary cache, but the number of such stalls is greatly reduced due to the 
 

filtering action of the secondary cache comparison. 
 

A variation on this approach that is used with write-back caches is called dirty inclusion, 
 

and simply requires that when a primary cache line first becomes dirty, the secondary line 
 

is similarly marked. This saves writing through the data, and writing status bits on every 
 

write cycle, but still enables the secondary cache to be used by the snooping logic to 
 

monitor the main memory accesses. This is especially important for a read-miss, which 
 

must be passed to the primary cache to be satisfied. 
 

The previous schemes have all relied heavily on broadcast operations, which are easy to 

implement on a bus. However, buses are limited in their capacity and thus other 

structures are required to support sharing for more than a few processors. These 

structures may support broadcast, but even so, broadcast-based protocols are limited. 

The problem is that broadcast is an inherently limited means of communication. It 

implies a resource that all processors have access to, which means that either they 

contend to transmit, or they saturate on reception, or they have a factor of N hardware for 

dealing with the N potential broadcasts. 

Snoopy cache protocols are not appropriate for large-scale systems because of the 

bandwidth consumed by the broadcast operations 

In a multistage network, cache coherence is supported by using cache directories to store 

information on where copies of cache reside. 
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A cache coherence protocol that does not use broadcast must store the locations of all 
 

cached copies of each block of shared data. This list of cached locations whether 
 

centralized or distributed is called a cache directory. A directory entry for each block of 
 

data contains a number of pointers to specify the locations of copies of the block. 
 

Distributed directory schemes 
 

In scalable architectures, memory is physically distributed across processors. The 

corresponding presence bits of the blocks are also distributed. Each processor is 

responsible for maintaining the coherence of its own memory blocks. Since each memory 

block has an owner its directory location is implicitly known to all processors. When a 

processor attempts to read a block for the first time, it requests the owner for the block. 

The owner suitably directs this request based on presence and state information locally 

available. When a processor writes into a memory block, it propagates an invalidate to 

the owner, which in turn forwards the invalidate to all processors that have a cached copy 

of the block. Note that the communication overhead associated with state update 

messages is not reduced. Distributed directories permit O(p) simultaneous coherence 

operations, provided the underlying network can sustain the associated state update 

messages. From this point of view, distributed directories are inherently more scalable 

than snoopy systems or centralized directory systems. The latency and bandwidth of the 

network become fundamental performance bottlenecks for such systems. 

4.6 Keywords 
 

cache A high-speed memory, local to a single processor , whose data transfers are carried 

out automatically in hardware. Items are brought into a cache when they are referenced, 

while any changes to values in a cache are automatically written when they are no longer 

needed, when the cache becomes full, or when some other process attempts to access 

them. Also To bring something into a cache. 

cache consistency The problem of ensuring that the values associated with a particular 

variable in the caches of several processors are never visibly different. 

associative memory: Memory that can be accessed by content rather than by address; 

content addressable is often used synonymously. An associative memory permits its user 

to specify part of a pattern or key and retrieve the values associated with that pattern. 
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direct mapping :A cache that has a set associativity of one so that each item has a unique 
 

place in the cache at which it can be stored. 
 

4.7 Summary 
 

In this lesson we had learned how cache memory in multiprocessor is organized and how 

its address are generated both for physical and virtual address. Various techniques of 

cache mapping are discussed. 

Mapping 
 

technique 

Advantage disadvantage 

Direct 

Mapping 

Fast lookup (only one 

comparison needed). 

Cheap hardware (no associative 

comparison). 
Easy to decide 

Contention for lines 

Fully 

associative 

Minimal contention for lines. 

Wide variety of replacement 

algorithms feasible. 

The most expensive of all 

organizations, due to the high 

cost of associative-comparison 

hardware. 

Set associative mapping trade off advantage and disadvantage of direct and fully 
 

associative mapping. 
 

We had discussed about the shared memory organization and how consistency is 
 

maintained in it. There are various issues of synchronization and event handling on which 
 

various consistency models are designed. Various techniques through which cache 
 

coherence is maintained are discussed. Bus based systems are not scalable and not 
 

efficient for the processor to snoop and handle the traffic. Directories based system is 
 

used in cache coherence for large MPs Cache coherency protocols maintain exclusive 
 

writes in a multiprocessor. Memory consistency policies determine how different 

processors observe the ordering of reads and writes to memory. Snoopy caches are 

typically associated with multiprocessor systems based on broadcast interconnection 

networks such as a bus or a ring. All processors snoop on (monitor) the bus for 

transactions. Directory based systems the global memory is augmented with a directory 

that maintains a bitmap representing cache-blocks and the processors at which they are 

cached. 

4.8 Self assessment questions 
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1. With diagram, explain the interconnection structures in a generalized multiprocessor 
 

system with local memory, private caches, shared memory and shared peripherals. 
 

2. Discuss advantage and disadvantage of various cache mapping techniques 
 

3. Discuss different page replacement polices. 
 

4. Describe the Cache coherence problems in data sharing and in process migration. 
 

5. Draw and explain 2 state-transition graphs for a cache block using write-invalidate 
 

snoopy protocols. 
 

6. Explain the Goodman’s write-once cache coherence protocol using the write- 
 

invalidate policy on write-back caches. 
 

7. Discuss the basic concept of a directory-based cache coherence scheme. 
 

8. Mention and explain the three types of cache directory protocols. 
 

4.9 References/Suggested readings 
 

Advance Computer architecture: Kai Hwang 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

122 


