
CS2422 Assembly Language and System Programming

System Software and

Machine Architecture

1

Chapter Outline

Chapter 1 of Beck’s “System Software” book

1.1 Introduction

1.2 System Software and Machine Architecture

1.3 Simplified Instructional Computer (SIC)

 SIC Machine Architecture

 SIC/XE Machine Architecture

 SIC Programming Examples

2

System Software

 System software consists of a variety of
programs that support the operation of a
computer, e.g.

 Text editor, compiler, loader or linker, debugger,
macro processors, operating system, database
management systems, software engineering
tools, ….

3

System Software & Architecture

 System software differs from application software
in machine dependency

 System programs are intended to support the
operation and use of the computer itself, rather
than any particular application.

 Thus, we must include real machines and real
pieces of software in our study

 Simplified Instructional Computer (SIC)

 SIC is a hypothetical computer that includes the
hardware features most often found on real
machines, while avoiding unusual or irrelevant
complexities

4

Simplified Instructional Computer

 Like many other products, SIC comes in two
versions

 The standard model

 An XE version

‒ “extra equipments”, “extra expensive”

 The two versions have been designed to be
upward compatible

5

SIC Machine Architecture (1/5)

 Memory

 Memory consists of 8-bit bytes, 15-bit addresses

 Any 3 consecutive bytes form a word (24 bits)

 Total of 32768 (215) bytes in the computer memory

 Registers

 Five registers, each is 24 bits in length

Mnemonic Number Special use

A 0 Accumulator

X 1 Index register

L 2 Linkage register

PC 8 Program counter

SW 9 Status word

6

 Data formats

 24-bit integer representation in 2’s complement

 8-bit ASCII code for characters

 No floating-point on standard version of SIC

 Instruction formats

 Standard version of SIC

 The flag bit x is used to indicate indexed-
addressing mode

SIC Machine Architecture (2/5)

8 1 15

opcode x address

7

SIC Machine Architecture (3/5)

 Addressing modes

 Two addressing modes

‒ Indicated by the x bit in the instruction

Mode Indication Target address calculation

Direct x=0 TA=address

Indexed x=1 TA=address+(X)

(X): the contents of register X

8

SIC Machine Architecture (4/5)

Instruction set: (Appendix A, Page 495)

 Load/store registers: LDA, LDX, STA, STX

 Integer arithmetic: ADD, SUB, MUL, DIV

 All involve register A and a word in memory, result
stored in register A

 COMP

 Compare value in register A with a word in
memory

 Set a condition code CC (<, =, or >)

 Conditional jump instructions

 JLT, JEQ, JGT: test CC and jump

9

SIC Machine Architecture (5/5)

 Subroutine linkage

 JSUB, RSUB: return address in register L

 Input and output

 Performed by transferring 1 byte at a time to or
from the rightmost 8 bits of register A

 Each device is assigned a unique 8-bit code, as
an operand of I/O instructions

 Test Device (TD): < (ready), = (not ready)

 Read Data (RD), Write Data (WD)

10

SIC Programming Example (Fig 1.2a)

 Data movement

LDA FIVE load 5 into A

STA ALPHA store in ALPHA

LDCH CHARZ load ‘Z’ into A

STCH C1 store in C1

.

.

.

ALPHA RESW 1 reserve one word space

FIVE WORD 5 one word holding 5

CHARZ BYTE C’Z’ one-byte constant

C1 RESB 1 one-byte variable

11

SIC Programming Example (Fig 1.3a)

 Arithmetic operations: BETA = ALPHA+INCR-1

LDA ALPHA

ADD INCR

SUB ONE

STA BETA

LDA GAMMA

ADD INCR

SUB ONE

STA DELTA

...

ONE WORD 1 one-word constant

ALPHA RESW 1 one-word variables

BETA RESW 1

GAMMA RESW 1

DELTA RESW 1

INCR RESW 1

12

SIC Programming Example (Fig 1.4a)

 Looping and indexing: copy one string to another

LDX ZERO initialize index register to 0
MOVECH LDCH STR1,X load char from STR1 to reg A

STCH STR2,X

TIX ELEVEN add 1 to index, compare to 11
JLT MOVECH loop if “less than”
.

.

.

STR1 BYTE C’TEST STRING’

STR2 RESB 11

ZERO WORD 0

ELEVEN WORD 11

13

SIC Programming Example (Fig 1.5a)
LDA ZERO initialize index value to 0
STA INDEX

ADDLP LDX INDEX load index value to reg X
LDA ALPHA,X load word from ALPHA into reg A
ADD BETA,X

STA GAMMA,X store the result in a word in GAMMA
LDA INDEX

ADD THREE add 3 to index value
STA INDEX

COMP K300 compare new index value to 300
JLT ADDLP loop if less than 300
...

...

INDEX RESW 1

ALPHA RESW 100 array variables—100 words each
BETA RESW 100

GAMMA RESW 100

ZERO WORD 0 one-word constants
THREE WORD 3

K300 WORD 300

14

SIC Programming Example (Fig 1.6)

 Input and output

INLOOP TD INDEV test input device
JEQ INLOOP loop until device is ready
RD INDEV read one byte into register A
STCH DATA

.

.

OUTLP TD OUTDEV test output device
JEQ OUTLP loop until device is ready
LDCH DATA

WD OUTDEV write one byte to output device
.

.

INDEV BYTE X’F1’ input device number
OUTDEV BYTE X’05’ output device number
DATA RESB 1

15

SIC/XE Machine Architecture (1/11)

 Memory

 Maximum memory available on a SIC/XE system
is 1 megabyte (220 bytes)

 An address (20 bits) cannot be fitted into a 15-bit
field as in SIC Standard

 Must change instruction formats and addressing
modes

16

SIC/XE Machine Architecture (2/11)

 Registers

 Additional registers are provided by SIC/XE

Mnemonic Number Special use

B 3 Base register

S 4 General working register

T 5 General working register

F 6 Floating-point accumulator (48 bits)

17

SIC/XE Machine Architecture (3/11)

1 11 36

s exponent fraction

f*2(e-1024)

 There is a 48-bit floating-point data type

 fraction is a value between 0 and 1

 exponent is an unsigned binary number between 0
and 2047

 zero is represented as all 0

18

SIC/XE Machine Architecture (4/11)

 Instruction formats
8

op

8 4 4

op r1 r2

Format 1 (1 byte)

Format 2 (2 bytes)

Formats 1 and 2 do not reference memory at all

Bit e distinguishes between format 3 and 4

6 1 1 1 1 1 1 12

op n i x b p e dispFormat 3 (3 bytes)

6 1 1 1 1 1 1 20

op n i x b p e addressFormat 4 (4 bytes)

19

SIC/XE Machine Architecture (5/11)

 Base Relative Addressing Mode

 Program-Counter Relative Addressing Mode

n i x b p e

opcode 1 0 disp

b=1, p=0, TA=(B)+disp (0disp 4095)

n i x b p e

opcode 0 1 disp

b=0, p=1, TA=(PC)+disp (-2048disp 2047)

20

SIC/XE Machine Architecture (6/11)

 Direct Addressing Mode

n i x b p e

opcode 0 0 disp

b=0, p=0, TA=disp (0disp 4095)

n i x b p e

opcode 1 0 0 disp

b=0, p=0, TA=(X)+disp

(with index addressing mode)

21

SIC/XE Machine Architecture (7/11)

 Immediate Addressing Mode

 Indirect Addressing Mode

n i x b p e

opcode 0 1 0 disp

n=0, i=1, x=0, operand=disp

n i x b p e

opcode 1 0 0 disp

n=1, i=0, x=0, TA=(disp)

22

SIC/XE Machine Architecture (8/11)

 Simple Addressing Mode

n i x b p e

opcode 0 0 disp

i=0, n=0, TA=bpe+disp (SIC standard)

opcode+n+i = SIC standard opcode (8-bit)

n i x b p e

opcode 1 1 disp

i=1, n=1, TA=disp (SIC/XE standard)

23

SIC/XE Machine Architecture (9/11)
 Addressing Modes Summary (p.499) Assembler decides

which format to use

24

SIC/XE Machine Architecture (10/11)

Example Instruction

Format

(PC) + disp

(B) + disp + (X)

((PC) + disp)

disp

b/p/e + disp

addr

25

SIC/XE Machine Architecture (11/11)

 Instruction set:

 load and store the new registers: LDB, STB, etc.

 Floating-point arithmetic operations

‒ ADDF, SUBF, MULF, DIVF

 Register move: RMO

 Register-to-register arithmetic operations
‒ ADDR, SUBR, MULR, DIVR

 Supervisor call: SVC

 Input and output:

 I/O channels to perform I/O while CPU is
executing other instructions: SIO, TIO, HIO

26

SIC/XE Programming Example (Fig 1.2b)

LDA #5

STA ALPHA

LDCH #90

STCH C1

.

.

.

ALPHA RESW 1

C1 RESB 1

LDA FIVE

STA ALPHA

LDCH CHARZ

STCH C1

.

.

.

ALPHA RESW 1

FIVE WORD 5

CHARZ BYTE C’Z’

C1 RESB 1

SIC version SIC/XE version

27

SIC/XE Programming Example (Fig 1.3b)

LDS INCR

LDA ALPHA BETA=ALPHA+INCR-1

ADDR S,A

SUB #1

STA BETA

LDA GAMMA DELTA=GAMMA+INCR-1

ADDR S,A

SUB #1

STA DELTA

...

...

ALPHA RESW 1 one-word variables

BETA RESW 1

GAMMA RESW 1

DELTA RESW 1

INCR RESW 1

28

SIC/XE Programming Example (Fig 1.4b)

 Looping and indexing: copy one string to another

LDT #11 initialize register T to 11
LDX #0 initialize index register to 0

MOVECH LDCH STR1,X load char from STR1 to reg A
STCH STR2,X store char into STR2
TIXR T add 1 to index, compare to 11
JLT MOVECH loop if “less than” 11
.

.

.

STR1 BYTE C’TEST STRING’

STR2 RESB 11

29

SIC/XE Programming Example (Fig 1.5b)

LDS #3

LDT #300

LDX #0

ADDLP LDA ALPHA,X load from ALPHA to reg A
ADD BETA,X

STA GAMMA,X store in a word in GAMMA
ADDR S,X add 3 to index value
COMPR X,T compare to 300
JLT ADDLP loop if less than 300
...

...

ALPHA RESW 100 array variables—100 words each
BETA RESW 100

GAMMA RESW 100

30

SIC/XE Programming Example (Fig 1.7b)

